
Constraint-driven diagram layout

Citation
Dengler, Ed, Mark Friedell, and Joe Marks. 1993. Constraint-Driven Diagram Layout. Harvard
Computer Science Group Technical Report TR-10-93.

Published Version
doi:10.1109/VL.1993.269619

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25968718

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:25968718
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Constraint-driven%20diagram%20layout&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Constraint-Driven Diagram Layout �

Ed Dengler
Univ. of Waterloo

Mark Friedell
Lotus Development Corp.

Joe Marks
DEC CRL

Abstract

Taking both perceptual organization and aesthetic
criteria into account is the key to high-quality dia-
gram layout, but makes for a more di�cult problem
than pure aesthetic layout. Computing the layout of a
network diagram that exhibits a speci�ed perceptual or-
ganization can be phrased as a constraint-satisfaction
problem. Some constraints are derived from the
perceptual-organization speci�cation: the nodes in the
diagram must be positioned so that they form speci�ed
perceptual gestalts, i.e., certain groups of nodes must
form perceptual groupings by proximity, or symmetry,
or shape motif, etc. Additional constraints are derived
from aesthetic considerations: the layout should sat-
isfy criteria that concern the number of link crossings,
the sum of link lengths, or diagram area, etc. Using
a generalization of a simple mass-spring layout tech-
nique to \satis�ce" constraints, we show how to pro-
duce high-quality layouts with speci�ed perceptual or-
ganization for medium-sized diagrams (10{30 nodes)
in under 30 seconds on a workstation.

1 Introduction

The layout problem for network diagrams (also
known as node-link diagrams and circle-and-arrow di-
agrams) is to assign to each node, ni, x and y locations
in the plane, nx

i and nyi .
This problem has been investigated extensively and

a variety of layout techniques have been proposed [1].
Most techniques attempt to create a good layout by
optimizing according to one or more aesthetic criteria,
such as diagram area, the number of crossing links, or
the total length of the links; many techniques are spe-
cialized for networks that satisfy certain topological
restrictions, e.g., trees or acyclic graphs.

The approach reported in [5] takes a di�erent tack.
In order to have a truly general layout technique, the

�Reprinted from the Proceedings of the 1993 IEEE Sym-
posium on Visual Languages, Bergen, Norway, August, 1993,
pages 330-335. Copyright 1993 by the Institute of Electrical
and Electronics Engineers, Inc.

Sequential
Placement

Alignment

Evenly Spaced
Alignment

Zoning

Hub Shape

T Shape

A
B

C
DA

B

C

D

Symmetry

Figure 1: Visual Organization Features (VOFs)

state_vector

signals

processdata_stream

lamp

motor

b2

bve

ctrl

bb

eb

ee

b1

e1

bv

ev

Legend

* VERTEX NAME -> TEXT LABEL

* VERTEX TYPE -> ENCLOSURE BOXES

* VERTEX IMPORTANCE -> PEN WIDTH

importance = 0

importance = 1

Figure 2: Zoning and symmetry VOFs illustrated

topological characteristics of particular networks are
not exploited. Furthermore, instead of optimizing
relative to general aesthetics, Kosak et al. attempt
to create a layout that exhibits the Visual Organi-
zation Features (VOFs) needed to convey e�ectively
the message of the diagram. VOFs are arrangements
of related nodes in the diagram; VOFs include hori-
zontal and vertical alignment, axial and radial sym-
metries, various shape motifs (e.g., \T"-shaped and
hub-shaped motifs), left-to-right and top-to-bottom
sequential placement, and simple node proximity. As
illustrated in Figure 1 (positive examples are shown
on the right, negative examples on the left), VOFs are
used routinely by human graphic designers and are
indispensable in the creation of good diagram layouts
[6, 8]. Three diagrams that exhibit various VOFs are
shown in Figures 2, 3, and 4; these diagrams were laid
out using the algorithm described here.

We believe the approach of Kosak et al. to be
correct conceptually; however, it relies primarily on
stochastic search and is implemented on a Connection
Machine (a 4,096-processor CM-2), which can take
several tens of minutes to produce a satisfactory lay-
out.

The issue of where VOFs come from is not ad-
dressed here: we assume that they are speci�ed by
the user, or generated automatically by an intelligent

edp

faxphonephone

ntlan

lessp

tessp

lessp

tessp

lessp

tessp

scp

Legend

* VERTEX NAME -> TEXT LABEL

* VERTEX TYPE -> NODE SHAPE

warehouse

showroom

Figure 3: Shape-motif VOFs illustrated

diagram-design system.1 The contribution of this pa-
per is a layout technique incorporating VOFs that typ-
ically requires only a few tens of seconds to produce
a good result on a DEC AXP workstation or similar
computer. Our technique exploits the constraints im-
posed by a VOF speci�cation to guide the search for
a good layout.

2 The Layout Algorithm

The �rst attempt to compute layouts that exhibited
the VOFs considered here used a spatial-grammar ap-
proach [5]. When this approach succeeded, the result-
ing layout was usually good, and was often produced
quickly. Unfortunately, the layout rules were very spe-
cialized and highly interdependent. As a result, the
system frequently failed to produce a satisfactory lay-
out, and running time was sometimes very long as a
result of extensive backtracking.

A second attempt involved a parallel genetic algo-
rithm running on a Connection Machine [4]. This ap-
proach was very robust and almost always produced

1All aspects of the network diagrams included in this paper
were designed automatically by the ANDD system [7].

lamp
motor

b2

bve

ctrl

bb

eb

ee

b1
e1

bv
ev

Legend

* VERTEX NAME -> TEXT LABEL

* VERTEX IMPORTANCE -> PEN WIDTH

importance = 0

importance = 1

* VERTEX TYPE -> NODE SHAPE

process

state vector

data stream

signals

Figure 4: Alignment VOFs illustrated

a good layout. It did, however, depend on a rare and
expensive compute engine, and it sometimes required
several tens of minutes to produce a layout. We devel-
oped constraint-driven diagram layout in an attempt
to combine, on a commonplace computing platform,
the speed of the rule-based approach with the robust-
ness of the genetic algorithm.

The underlying premise of constraint-driven dia-
gram layout is that the VOF speci�cation and cer-
tain aesthetic criteria can be stated as constraints that
should be satis�ed in the �nal layout. Furthermore,
an additional premise is that the constraints derived
from the VOFs and aesthetic criteria contain su�cient
information to restrict the search for acceptable lay-
outs considerably, thus permitting the rapid position-
ing of diagram elements in a satisfactory way. Our
theory thus presumes that a good layout can be con-
structed quickly in the vast majority of practical cases,
even though the general layout problem is known to
be NP-complete [2].

In our view of the problem, the set of N nodes
in a diagram induces a high-dimensional articulation
space with 2N dimensions, corresponding to the spa-
tial attributes (x location and y location) of each node
in the diagram's two-dimensional, Cartesian layout
space. This formulation establishes a bijection be-
tween the set of possible diagram layouts and the set
of points in the articulation space.

To evaluate the quality of a given layout, we form
an objective function from the constraints. Each
term in the objective function is itself a function,
cj(nx

0 ; n
y
0; : : : ; n

y
imax

), which returns a number that in-
dicates the degree to which the jth constraint is sat-
is�ed (see Figure 5 for an example). The objective
function,

LC =

jmaxX
j=0

�jcj;

is then a measure of the degree to which the various
constraints are satis�ed, and, consequently, the degree
to which the given layout varies from ideal. The �j

coe�cients provide a means of expressing the relative
importance of the various constraints. Our interest in
producing functional, rather than simply good-looking
layouts, leads us to weigh more heavily the terms that
represent important VOFs, and to de-emphasize the
terms corresponding to aesthetic criteria. This prefer-
ence is re
ected in the constraint-enforcement sched-
ule described in Subsection 2.2.

A constraint cj to maintain a minimum
distance � between nodes:

y

x

n1

n2

d

d =
p
(nx

2 � nx1)
2 + (ny2 � ny1)

2

cj(n
x
0 ; n

y
0; : : : ; n

y
imax

) =

�
0 if d � �
�� d if d < �

If d = �
2 then �

cj
nx1

= � �:cos(�)
4

�
cj
nx2

= �:cos(�)
4

�
cj
ny1

= � �:sin(�)
4

�
cj
ny2

= �:sin(�)
4

Figure 5: Calculating di�erence corrections

2.1 Layout by Incremental Improvement

We use di�erence calculus to create a good lay-
out by incrementally improving one that is chosen
randomly.2 If the value of cj is the sum of unsigned
displacements of the nodes in layout space from the
nearest local minimum for cj , then di�erence correc-

tions for the n
a(= x or y)
i , �

cj
na
i
, can be calculated e�-

ciently for most cj . A simple example is shown in
Figure 5.

Now consider a speci�c layout with nai = lai . Since

cj

�
lx0 ; l

y
0 ; : : : ; l

a
i +�

cj
na
i
; : : : ; lyimax

�
� cj

�
lx0 ; l

y
0; : : : ; l

y
imax

�
and

@cj
@nai

������� �lx0 ; ly0 ; : : : ; lai +�
cj
nai
; : : : ; lyimax

� = 0;

a multidimensional, di�erence form of Newton's

2The approach we describe here can be thought of as a gener-
alization of the simple \mass-spring model" of layout developed
by Kamada and Kawai [3].

method can be used to incrementally drive LC to-
wards 0. Let

�cj =
h
�

cj
nx0
;�

cj
ny0
; : : : ;�

cj
ny
imax

i
be the correction vector for constraint cj , and de�ne

�k
LC =

kX
j=0

�cj :

Given a point in articulation space, �, representing
a given layout, we can compute an improved layout,
represented by �0, by

�0 = �+ ��k
LC: (1)

This process may then be repeated to move towards
an increasingly better layout, with � in Equation 1
being a scalar less than one which balances speed and
robustness { a smaller value reduces the risk of diver-
gence and oscillation, while a larger value increases
the speed with which a good layout may be found. As
discussed below, we advance k in Equation 1 from 0
to jmax as we incorporate increasingly more correction
vectors during the process of incrementally improving
the diagram layout.

2.2 Scheduling Constraint Enforcement

If all constraints are applied immediately and simul-
taneously, constraint-driven layout performs poorly.
This is because the incremental search for a good lay-
out tends to become \trapped" with LC at a local
minimum very near to the starting con�guration in
articulation space. This di�culty can be avoided by
enforcing the terms in the objective function according
to a strategically devised schedule.

If we attempt to enforce a single constraint, we
move directly towards the closest point in the artic-
ulation space at which the constraint is satis�ed. To
understand the interplay of enforcing multiple con-
straints, consider constraint A, which is very restric-
tive and satis�ed in only a small number of small
subspaces of the articulation space, and constraint B,
which is very weak and satis�ed in a large number of
large subspaces.

What would happen if we enforced B, then enforced
A? First, we would move directly to a point at which
B was satis�ed. We would then attempt to move di-
rectly to a point at which A was satis�ed, but if we
ever moved through a point at which B was violated,
we would get \pushed back" towards the closest point
satisfying B. We would only be able to satisfy A if we

B satisfied

B satisfied

B satisfied

A satisfied

Initial
Layout

A then B

B then A

Figure 6: 2D cross-section of articulation space

could move to a point satisfying A through a region
of points satisfying B. Such a path is unlikely to ex-
ist, because the regions of points that satisfy A are
few and small. If, however, we satisfy A (the more
restrictive constraint) �rst, we would have a better
chance of moving to a point that satis�ed B without
passing through a point that violated A (since there
are many big regions that satisfy B). These di�erent
search paths are illustrated in Figure 6.

Attempting to enforce A and B simultaneously is
about as unlikely to be successful as solving B then
A. We would attempt to move to the closest point
that satis�ed both A and B, but as soon as we passed
though a region that satis�ed either|most likely B{
we would get trapped in that region.

In light of this phenomenon, we enforce constraints
serially, in decreasing order of restrictiveness, by ad-
vancing k in Equation 1. Our sequence is:

1. separate nodes (this avoids degenerate solutions)
and reduce edge lengths (to make layouts more
compact);

2. form left-to-right and top-to-bottom sequences;

3. form horizontal and vertical alignments;

4. create \T" shapes;

5. create \hub" shapes;

6. form and separate zones;

7. establish horizontal symmetries and vertical sym-
metries;

8. establish bi-axial symmetries;

9. separate nodes from edges; and

10. uncross edges.

It is, of course, possible for constraint-driven layout
to become trapped with LC at a local minimum, even
if the constraints are applied in order of decreasing
restrictiveness. Indeed, it is not uncommon to have
a set of constraints which cannot all be satis�ed, and
for which some degree of \satis�cing" is the best that
can be achieved. We attempt to avoid the di�culties
caused by local minima and mutually inconsistent con-
straints by creating several layouts from several initial,
random con�gurations of nodes. We return the best
layout found, as determined by LC. The speed of the
incremental-improvement technique allows us to try
several initial con�gurations in under 30 seconds on a
workstation; the layouts shown in Figures 2{4 were the
best that resulted from 50 independent trials, each of
which took between 0.25 and 0.5 seconds to compute.

2.3 Uncrossing Edges

We do not know of a simple procedure for calcu-
lating a correction vector to uncross diagram edges.
Instead, we use a highly constrained stochastic-search
process. For each pair of nodes, n1 and n2, and edges,
e1 and e2, such that

1. e1 and e2 cross;

2. n1 is an endpoint of e1 and n2 is an endpoint of e2,
or n1 is an endpoint of e2 and n2 is an endpoint
of e1;

3. for each zone, Z, n1 is in Z , n2 is in Z;

4. for each symmetry group, SG, n1 is in SG , n2
is in SG;

5. for each alignment, A, n1 is in A , n2 is in A;
and

6. for each sequence, S, n1 is not in S and n2 is not
in S,

we swap the positions of n1 and n2 and re-evaluate
LC to determine if the diagram was improved.

3 Results and Conclusions

Most attempts to design diagrams automatically fo-
cus on aesthetic criteria, such as the number of cross-
ing lines or the total length of diagram edges. In our

umask

stat

sprintf

setimes

rindex

readdir

rcopy

opendir

mmap

mkdir

main

fstat

copy

closedir

chmod

perror stdio_h

stat_h

dir_h

cp_c

Figure 7: Calling relations for UNIX subroutines

work, we focus on creating structures in the diagram
that convey e�caciously the diagram's message, treat-
ing aesthetics secondarily.

We have used this layout technique as a module in
a system, ANDD (Automated Network Diagram De-
signer), for creating network diagrams that runs on a
variety of commonplace workstations. It is composed
of separate subsystems for two di�erent tasks: design,
which establishes a set of constraints on the appear-
ance of the diagram [7], and articulation, which forms
a diagram that satis�es the constraints. Layout is part
of the articulation task. As an illustration of the per-
formance of the ANDD system, the densely connected
16-node diagram in Figure 7 required 5 seconds for
design and 30 seconds for articulation on a DEC AXP
workstation; to compute the layout shown, 50 candi-
date layouts were generated, each taking less than 0.6
seconds to compute.

The diagram-layout problem is known to be NP-
complete; however, we have developed a good solu-
tion to many practical diagram-layout problems. We
recognize that our technique for incrementally improv-
ing randomly chosen layouts may, in theory, become
trapped in unsatisfactory local maxima of layout qual-
ity as it searches for a good layout. In practice, how-
ever, this occurs only rarely. The risk can be reduced
signi�cantly by chosing the best of several alternative

layouts developed from di�erent initial random con-
�gurations.

In future work we hope to investigate the use of
constraint-driven diagram layout as a means of im-
proving user-drawn diagrams. We plan to derive
the intended design of a diagram from the user's
rough sketch, and to re-express it with our diagram-
articulation techniques. By so doing, we would \clean
up" the rough sketch and propose alternative design
and articulation ideas.

4 Acknowledgements

This work bene�ted directly from discussions with
Sandeep Kochhar, Computervision; Peter McMurry,
Microsoft; Stuart Shieber, Harvard University; and
Steve Sistare, Thinking Machines.

References

[1] P. Eades and R. Tamassia. Algorithms for drawing
graphs: An annotated bibliography. Technical Re-
port CS-89-09, Department of Computer Science,
Brown University, October 1989. Revised version.

[2] M. R. Garey and D. S. Johnson. Crossing number
is NP-complete. SIAM Journal of Algebraic and
Discrete Methods, 4(3):312{316, September 1983.

[3] T. Kamada and S. Kawai. An algorithm for draw-
ing general undirected graphs. Information Pro-
cessing Letters, 31:7{15, April 1989.

[4] C. Kosak, J. Marks, and S. Shieber. A parallel
genetic algorithm for network-diagram layout. In
Proceedings of the Fourth International Conference
on Genetic Algorithms, pages 458{465, UCSD,
California, July 1991.

[5] C. Kosak, J. Marks, and S. Shieber. Automating
the layout of network diagrams with speci�ed vi-
sual organization. IEEE Transactions on Systems,
Man, and Cybernetics, 1993. To appear.

[6] S. M. Kosslyn. Understanding charts and graphs.
Applied Cognitive Psychology, 3:185{226, 1989.

[7] J. Marks. A formal speci�cation scheme for
network diagrams that facilitates automated de-
sign. Journal of Visual Languages and Computing,
2(4):395{414, December 1991.

[8] J. Marks and E. Reiter. Avoiding unwanted con-
versational implicatures in text and graphics. In
Proceedings of the Eighth National Conference on
Arti�cial Intelligence (AAAI '90), pages 450{456,
Boston, Massachusetts, August 1990.

