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Abstract

We present a visual specification language for constructing distributed applications and their
direct manipulation graphical user interfaces. Each distributed application consists of a collec-
tion of independent modules and a configuration of logical connections that define communica-
tion among the data interfaces of the modules. Our specification language uses a single visual
mechanism that allows end-users to define interprocess communication among distributed mod-
ules and to define intraprocess communication among objects within a module. This seamless
specification provides a general encapsulation/abstraction mechanism and is designed to sup-
port dynamic change to the communication structure. User interfaces are completely decoupled
from the module(s) they control.

1 Introduction

Distributed multimedia applications supported by a global electronic infrastructure have tremen-
dous potential for providing users with customized communication and computation environments.
These applications include remote collaboration, information and resource sharing, and access to
broadcast media (Figure 1). The future users of the infrastructure will vary greatly in technical
ability, ranging from novice users to sophisticated expert users and programmers.

Since communication and computation requirements vary by context and change dynamically,
it is unlikely that system programmers will anticipate the needs of all users. Therefore, empower-
ing end-users to create their own customized communication and computation environments is an

important challenge. Any successful approach to this problem will require a visual language that

*This research was supported in part by the National Science Foundation under grants CCR-91-10029 and CDA-
91-23643.
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Figure 1: Distributed multimedia applications on the “Information Superhighway”

integrates distributed application configuration and user interface construction. This will require
the integration of all aspects of communication, from intraprocess communication (e.g., creating
constraints among graphical objects in a display) to interprocess communication (e.g., establishing
teleconferencing connections). This paper presents a visual specification language for establishing
both intraprocess and interprocess communication using a uniform “connection” abstraction. In-
traprocess communication (within a user interface module) is achieved by connecting attributes of
simple and compound graphical objects through equality constraints and grouping abstractions.
Interprocess communication (among diverse distributed modules) is accomplished by managing
logical connections among independent modules.

A single visual mechanism with a consistent semantics is used for all aspects of communica-
tion. The user thinks at a high level about “plugging together” the components of a distributed
multimedia application, and is not concerned with the low level implementation details of such a
system. The system is free to make choices about how to implement the communication specified

by each connection in the configuration.



1.1 I/O Abstraction

Our model of interprocess communication is called I/0 absiraction [5]. Each module in a system has
a module boundary ! containing values (published data structures) that may be externally observed
and/or manipulated. A distributed application consists of a collection of independent modules and
a configuration of logical connections among the published values at module boundaries. Whenever
a module updates one of its own published data items, communication occurs implicitly according

to the logical connections.

I/O abstraction communication is declarative, rather than imperative. One declares direct
high-level logical connections among the data items of individual modules, as opposed to directing
communication within the control flow of the module. This makes implicit communication possible.
Output is essentially a byproduct of computation, and input is observed passively, or handled by
reactive control within a module.

This declarative approach simplifies application programming by cleanly separating computa-
tion from communication. Software modules written using I/O abstraction do not make explicit
requests to establish or effect communication, but instead are concerned only with the details of the

local computation. Exposing the configuration allows the run-time system to handle communication

more effectively.
1.2 Objectives

We claim that the separation of computation from communication achieved by 1/O abstraction
can form the basis of tools that allow end-users to create sophisticated customized distributed
applications from computational building blocks. To support this claim, this paper presents a
visual language for specifying the communication structure of a distributed application. Qur visual
language addresses all aspects of communication, including interprocess communication among
independent distributed modules, module boundary declarations, and intraprocess communication
among objects within a single module. Our treatment of interprocess communication is completely

general, while our treatment of intraprocess communication concentrates on the specification of

In other papers [5, 20] describing the I/O abstraction concept, the data interface of an I/O abstraction module
has been called the “presentation.” Since this paper deals with interfaces for visual languages, we use the term
boundary in order Lo avoid confusion with user “interfaces” and a visual “presentation.”



sophisticated direct-manipulation graphical user interfaces that interact with multiple independent
modules in a distributed application.

In the intraprocess communication area, we have concentrated on the user interface construction
problem because it is critical for supporting the kinds of distributed multimedia application we
envision. However, our connection oriented visual communication language would also blend nicely
with general purpose visual computation languages based on dataflow concepts, such as the “Show
and Tell” system [10].

Our visual language is designed to support end-user configuration of distributed multimedia
applications un top of The Programmer’s Playground, a sollware library and run-tlme system
we are developing to support the I/O abstraction programming model. The user of our visual
specification language does not need to write any source code to establish communication or even
know the details of how the communication works.

The specification of a GUI is created as an independent module using a graphics editor. At run
time, the user establishes logical connections among the GUI module boundary and the boundaries
of other modules in the system in order to configure a complete customized distributed application.

The development work is being conducted in the context of an ATM network being deployed

on the Washington University campus [3].
1.3 Overview

The remainder of this paper is organized as follows. In Section 2, we provide an overview of related
work. We present our visual communication language in the context of an air traffic control example
introduced in Section 3. Section 4 discusses visual specification of intraprocess communication. In
our case, intraprocess communication can be established through constraints between graphics
objects or through data boundaries of encapsulated widgets (created by an end-user through direct
manipulation). Section 5 describes visual specification of interprocess communication between
distributed modules through data boundaries. Both intraprocess and interprocess communication
are specified with a connection oriented visual abstraction. Communication and visualization of

data aggregates is also addressed. Section 6 discusses our current implementation status.



2 Related Work

We are not aware of other visual specification languages that integrate all aspects of communica-
tion in support of end-user construction of customized distributed multimedia applications with
user-specified graphical interfaces. However, there has been considerable work in the area of co-
ordination languages for configurable distributed systems and in the area of visual specification of
user interfaces. In this section, we highlight some of this related work.

The purpose of a coordination language [4] is to separate communication from computation in
order to offer programmers a uniform communication abstraction that is independent of a particular
programming language or operating system. The separation of computation from communication
permits local reasoning about functional components in terms of well-defined interfaces and allows
systems to be designed by assembling collections of individually verified functional components.

Coordination languages typically provide a structured configuration mechanism for specify-
ing relationships among program modules. For example, Darwin [11, 14, 13] is a configuration
language for managing message-passing connections between process ports in a dynamic system.
Processes are expressed in a separate computation language that allows ports to be declared for in-
terconnection within Darwin. Conic, the predecessor of Darwin, provides a graphical configuration
mechanism for establishing bindings among the ports [12]. However, the modules of the system
must still be concerned with when to send or receive messages on these ports. In Polylith [16, 17],
a configuration is expressed using “module interconnection constructs” that establish procedure
call bindings among modules in a distributed system. CONCERT [21] provides a uniform com-
munication abstraction by extending several procedural programming languages to support the
Hermes [19] distributed process model. PROFIT [9] provides a mixture of data sharing and RPC
communication through facets with data and procedure slots that are bound to slots in other facets
during compilation. Extensions to PROFIT enable dynamic binding of slots in special cases [7].
The Weaves system [6] provides a configuration mechanism based on dataflow.

The above systems adopt a given communication model and concentrate on the configuration
problem. Here, we have taken a more comprehensive approach by concomitantly developing a

configuration mechanism and a new communication model (I/O abstraction) in order to achieve a



more effective separation of communication and computation.?

Much work has been done in the area of user interface construction. Here, we mention three
systems that are representative of this paradigm. The Thinglab system [2] uses multiway constraints
to specify relationships between parts of a simulation graphical display. Thinglab represents early
work in graphical constraint systems and provided the foundation for many later systems. The
Garnet system [15] provides a toolkit which allows the user to construct interactive graphical user
interfaces using an object oriented constraint based library. The Garnet system comes the closest
to resembling the display construction aspects of our system, but Garnet does not provide end-
users with graphical mechanisms for establishing relationships between the user interface and the
application that it controls. The RENDEZVOQUS project [8] concentrates on the separation of the
user interfaces from their applications. RENDEZVOUS is a transition from purely user interface
oriented systems to systems that attempt to decouple the construction of the graphical user interface

from their applications.
3 Example Application

We present our visual communication language in the context of a “toy” example of an air traffic
control system. The air traffic control system consists of several communicating components [1]:
a radar component that gets information about the position and identity of the set of current
airplanes, a radio component that is used to coordinate audio communication between the pilots
and the air traffic controller, and a graphical user interface component (GUI) that displays the
current state of the airplanes as shown in Figure 2.

The air traffic controller sees on the display a circular area surrounding a centered “airport”.
The area contains a number of airplanes which are currently approaching or leaving the airport.
In our example, an airplane is represented using a wedge shape with a textual name representing
the flight ID. The length of the wedge is used to visually represent relative speed of the airplane
(i.e. the longer the wedge, the faster the airplane is moving). Over time, the position and length
of the airplanes is updated to display the current state from available information. The user of the

GUI can communicate with the pilots through audio radio channels. By clicking on airplanes with

2See the technical report version of [5] for a comparison of 1/Q abstraction with other communication models.



£\

TWA-101

TWA-422

USAir-507

Delta-500

Figure 2: Air traffic control example application

the mouse, a “focus” set of flight IDs is selected. This action establishes the subset of pilots with

whom the user wishes to speak.
3.1 Task Outline

We illustrate our visual language in the context of a graphical editor that we are developing. Using
this editor, we will describe in a bottom-up fashion how one can construct the air traffic control
application. First, we define a graphical widget to represent an airplane. This involves drawing the
widget, creating constraints on the shape of the widget, and establishing a data boundary through
which the widget can be manipulated. These actions result in an encapsulation of the widget.
Next, we define the air traffic control GUI using the graphics editor. This involves drawing the
GUT and establishing a data boundary through which the GUI module communicates with external
distributed applications. This data boundary includes an audio channel between the pilots and the
controller, a set of current airplane tuples, and a set of currently selected planes. To visualize the
set of airplanes, we define an aggregate mapping from a set of airplane tuples to the coordinate
system of the GUI. Similarly, we create an aggregate mapping from selected airplanes of the GUI

to external modules.
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Figure 3: Graphical user interface editor

Finally, we configure the air traffic control module with the radar and radio modules with logical
connections between data values in the modules’ data boundaries. This configuration, performed
at run-time with a visual user interface, completes the construction of the distributed application.

The editor consists of three distinct parts (see Figure 3). The body of the window is used
for drawing widgets or graphical user interfaces. The upper portion of the editor window con-
tains a palette of drawing commands including basic graphics objects (e.g., rectangles, ovals) and
uscr/system defined compound graphics objects (i.e., widgets). Among these widgets are imagi-
nary alignment objects such as a “perpendicular” object used maintain a right angle between two
lines. The left side of the editor window contains the data boundary portion of editor. For widgets,
the data boundary defines the set of attributes which can be used externally by the containing
user interface to control the widget appearance. For graphical user interfaces, the data boundary
defines the set of data structures which can be externally manipulated by external I/Q abstraction

modules.



{A)

oittop] ~ [widih]

ond

{B)

©

Figure 4: A) A rectangle and line with exposed attributes. B) Establishing constraints between
the rectangle and line. C) The result of satisfying the constraints between the rectangle and line.

4 Intraprocess Communication: Constraints and Associations

This section describes how users create simple and compound objects of a user interface and define
relationships among those objects. Relationships include equality constraints and encapsulation of

graphics object groups by means of a data boundary.
4.1 Graphics Primitives And Attributes

Each graphics object has a set of atiributes whose values define not only its visual appearance
but also other state information such as whether or not an object is “selected”. An object may
have redundant attributes for flexibility. For example, a line is defined in terms of its end-points,
length, and slope. Length and slope are redundant attributes of a line since those attributes can
be computed from the end-point attributes.

Attributes of a graphics object are visually represented as tags which are positioned in appropri-

ate places relative to the graphics object. Figure 4a shows line and rectangle graphics objects with



an viewed subset of attributes. These tags are used as “data ports” for user interaction. That is,
the user can establish relationships (e.g., constraints) among the attributes of the graphics objects
through the tags. For novice users, tags might be labeled textually, but the text could be hidden

for more experienced users to avoid clutter.
4.2 Widgets

Most graphics toolkits support the concept of a widget. We define a widget to be a compound
graphics object that is a grouping of graphics objects with a subset of exposed attributes. One
may think of a widget as a “module” of graphics shapes with a “data boundary” of externally
readable/writable attributes. The values of the attributes in a widget’s data boundary are the only
means of controlling or viewing the state of the widget externally. Widgets are created visually
by end-users. As with other graphics objects, the external attributes of a widget can be viewed,
revealing tags which can be used in forming connections to the widget.

A widget can have multiple visual representations which we refer to as alternatives. For instance,
a widget may have an alternative for its “selected” representation in addition to its conventional
representation. Each alternative may have a set of exposed attributes. The currently displayed
alternative is selected by means of a standard “alternative” widget attribute.

For example, an airplane in our air traffic control example can be defined as a widget. With the
mouse, the user draws the outline of the polygon consisting of four points, just as in other graphics
editors such as MacDraw or zfig. A textual name label for the identification of the airplane is
created and positioned under the polygon (Figure 3). One might also define an alternative to

display the widget differently when it is selected.
4.3 Spaces

A space is a coordinate system which contains graphics objects. To simplify construction of user
interfaces, our visual language allows the end-user to define multiple spaces with independent
coordinate units, origin, and clipping region. Aggregate values such as sets and arrays can be
mapped onto the space or mapped from the space to an external variable in the data boundary

using a visual mechanism (see Section 5.2).

10



Figure 5: Imaginary object constraints

4.4 Constraints

Constraints are a simple, yet powerful, way to specify relationships among graphical objects. Qur
language uses equality constraints exclusively. This makes it easy for users to define constraints
visually. Establishing an equality constraint between graphical objects is accomplished by simply
making a connection between a pair of exposed attributes of two graphical objects. Figure 4b and
4c show how a user would specify a line to be constrained between the corners of the rectangle.

However, many desirable constraint relationships cannot be established by direct equality con-
straints. For this reason, our specification language supports the concept of “imaginary objects.”
Imaginary objects are invisible shapes which serve as an abstraction for defining indirect constraints
between attributes. Any graphics object (i.e., graphics primitive or widget) can serve as an imag-
inary object. The attributes of an imaginary object can be constrained with the attributes of
other graphics objects (imaginary or visible). In this way, users create indirect constraints between
graphics objects visually using the same mechanism used to create direct constraints between the
attributes of visible objects.

To define the shape of the airplane, we create imaginary line segments AD, BC, and M B,
where M is the midpoint of AD (note: the lines are not actually labeled in the editor). Then
we constrain M B and BC to be co-linear and constrain AD and M B to be perpendicular using a
“perpendicular” imaginary alignment object which is predefined in the widget library (see Figure 5).

Note that all of these relationships are declared visually by the end-user.

11



4.5 Intraprocess Data Boundaries

Once the component shapes and internal constraints of a widget are specified, it is “packaged” for
later use in a graphical interface. When used, the internal details of the widget are hidden from
the user. The appearance of the widget is controlled strictly through its data boundary which is a
subset of widget atiributes denoted as “exposed” to the external environment (i.e., the graphical
interface which will contain the widget). In our graphics editor, the widget boundary is declared by
establishing connections between attributes of the widget and the data boundary area of the editor.
Each such connection creates a data boundary attribute that is shown as a rectangle containing
the user-specified attribute name.

In the air traffic control example, the position, orientation, length, and name of each airplane
is determined by an external data source (recall that the length of an airplane is proportional to
its speed). We create three widget attributes current, previous, and flight in the data boundary
of the widget. Current represents the current position of the airplane; previous represents the
previous position of the airplane; flight represents the flight ID of the airplane. To satisfy position,
orientation, and length requirements, we can think of the current position of the airplane being at
the “nose” of the airplane; the previous position of the airplane is at the “tail” of the airplane.
In this way, given the current position and previous position of the airplane, the orientation and
length requirements are satisfied. The greater the difference between the current position and the
previous position, the greater the distance between the nose and the tail of the airplane widget.

We publish attributes of the airplane widget as shown in Figure 6. When the airplane widget
is instantiated in a user interface, only the current, previous, and flight attributes are externally
exposable. When the exposed attributes of the widget viewed, they are revealed in place relative

to their position within the widget.
5 Interprocess Communication

An 1/0 abstraction module is an independent process that has a data boundary consisting of a set of
exposed variables. Modules communicate exclusively through the variables in their data boundaries.

A Playground user does not need to understand the details of interprocess commurication to create

12
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Figure 6: Publishing external widget attributes

distributed software modules. A Playground module is simply a program written in a standard
programming language (e.g., C++) using the Playground library. The Playground library defines
special data types which are used for interprocess communication. To create an exposed variable in
the data boundary of a module, the program declares a variable (using one of the special Playground
types) and publishes the variable.

Communication between modules is specified through logical connections between variables
of the module boundaries. When the value of a published variable changes during the course
of execution, the changed value is implicitly communicated to all connected variables in other
modules. The details of how the communication is handled is hidden from the implementor and
users of the module. This simplifies module construction and gives the run-time system flexibility
in optimizing communication. The configuration of connections is determined dynamically at run-
time, rather than statically at compile time. This gives users the flexibility to add new components

or relationships to their applications dynamically.
5.1 Interprocess Connection Manager

Playground modules and logical connections have a visual representation in our visual specification
language. A Playground module (that is, an active process) is represented as box with a set of

data “plugs” for each variable in the module’s boundary. The color of each plug represents its type.

13
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Logical connections are represented as arrows between pairs of variables in module data boundaries
(see Figure 8). The metaphor is that of wiring together the components of a stereo system, where

the color of each wire denotes the type of information it carries.

5.2 Aggregates

The Playground system supports aggregates (compound data types such as sets and arTays) in a
module’s data boundary. Visualization of an aggregate is accomplished in our language through
“mapping” the elements of the aggregate to a space in a graphical user interface. This is accom-
plished by first creating a protoiype instance of the graphical representation of an element of the
aggregate within a space. To establish the mapping, one connects the attributes of a representative
element of the aggregate to attributes of the prototype instance.

For example, in our air traffic control GUI, we would like to establish a mapping between the
“planes” aggregate from the radar module to the space of the GUIL First, we select our previously
defined airplane widget and denote it as the prototype instance (see Figure 7). Next, we expose
the representative element of the planes variable, which consists of a tuple containing variables
“position”, “last”, and “name”. Finally, we make the appropriate connections to the airplane
widget prototype.

We also establish an aggregate mapping from the space of the GUI to the focus module boundary

14
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value (recall that the “focus” value is a subset of airplane flight IDs which are selected by the user).
This mapping is defined through the use of a “selected” airplane widget alternative. The mapping
is established by connecting the flight ID attribute from the widget’s selected alternative to the
focus value in the module boundary.

When an airplane widget is selected by the air traffic controller, the widget changes visual
representations toggling between the conventional and selected alternatives. When an airplane
widget is currently displayed using the selected alternative, its flight ID is included in the focus
set due to the aggregate mapping. Thus, the user can select a subset of airplanes dynamically.
External distributed modules may view this value. In our example, it is used to select appropriate

radio channels within the radio module.
5.3 Configuration of Air Traffic Control Modules

The radar and radio modules, having been separately defined using the Playground library, are
configured with the air traffic control module to complete the application. The data boundary of
the radar tracker module consists of a single readable “planes” variable, which is a set of tuples
containing current airplane status. The data boundary of the radio module consists of a read/write
“audio” variable and a writable “focus” variable. Note that the audio variable is a continuous data

type, but communication is specified in the same way as discrete data types.

15



The graphics editor from Figure 7 automatically creates a module for the air traffic control
GUI without user programming. With a connection manager GUI®, we can configure the modules
of the air traffic control application dynamically at run-time (see Figure 8). We use this GUI to

create logical connections between the radar, radio, and air traffic control modules, establishing

interprocess communication.
5.4 Extensibility and Module Reuse

The air traffic control module is independent of the radar and radio modules of the application
shown in Figure 8. Because of this independence, it is easy to use this module for a slightly
different purpose. Suppose that in addition to the air traffic control display of the current state
of the airplanes, we wish to have a projected display of the future trajectory of the airplanes.
That is, we want a simulation which repeatedly extrapolates forward in time at an accelerated rate
from the current state to a future state (e.g., one minute ahead). This can be accomplished by
creating a “simulator” module which takes as input the current state of the airplanes and outputs
the interpolated future state of the airplanes. As seen in Figure 9, the end-user can simply create
a separate instantiation of the air traffic control GUI to display the simulated state in addition
to the current state display (these GUIs would be displayed in separate windows). Also note
that the output of the radar tracker is a mullicast connection to two different modules in this
configuration. The Playground system automatically handles the details of this communication at

run-time, without any special consideration from the implementor of the radar tracker module.

6 Implementation Status

Our visual specification language is a tool for constructing distributed multimedia applications.
A version of the Playground system exists for creating distributed software modules in the C++
programming language. Also, we have designed and implemented a customized graphics package
which will be used as the foundation of the user interface management system. This graphics pack-
age is currently implemented on top of the X window system [18], but it is not designed exclusively

for X windows. Using the graphics package, we have implemented the “connection manager” direct

3The connection manager GUI could be created using the graphics editor described in this paper.
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manipulation graphical interface for managing interprocess communication Playground system (i.e.
similar to Figures 8 and 9).

During the next several months, we plan to implement a bootstrap version of the user interface
management system described in earlier sections. Using this bootstrap version and the Playground

run-time system, we will create the complete user interface management system.

7 Conclusion

We have presented a visual specification language for the configuration of distributed multimedia
applications. Our visual language supports the specification of communication among components
of a distributed application at all levels, from communication among graphics primitives within a
user interface to communication among large modules distributed across multiple processors. The
language also supports encapsulation at each level, and allows the user to expose information at the
data boundary for use at the next level of abstraction. The visual mechanisms and semantics are
consistent across all levels, and we expect that they are sufficiently intuitive to support end-users

in constructing their own customized distributed multimedia applications.

17
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