
1

 Abstract

Fundamental to the design of visual languages are the
goals of facilitating communication between people and
computers, and between people and other people. The
Object Block Programming Environment (OBPE) is a
visual design, programming, and simulation tool which
emphasizes support for both human-human and human-
computer communication. OBPE provides several features
to support effective communication: (1) multiple,
coordinated views and aspects, (2) customizable graphics,
(3) the “machines with push-buttons” metaphor, and (4)
the host/transient pattern. OBPE uses a diagram-based,
visual object-oriented language that is intended for quickly
designing and programming visual simulations of
factories.

1. Introduction
Complex visual programs are difficult to construct,

understand, and evolve. These difficulties are compounded
when a group of people need to achieve a shared under-
standing of complex software to carry out a task. Addition-
ally, designers need to express their mental model of a
design in a formal model to benefit from computer simula-
tion, analysis, and refinement. These two needs reflect two
challenges to any visual language: human to human com-
munication and human to computer communication.

We examine these challenges in the domain of designing
factory automation software, although they are evident in
software development regardless of domain. Rockwell
International developed theObject Block Programming
Environment (OBPE) design, programming, and simula-
tion tool to address these challenges.

OBPE uses a diagram-based, visual object-oriented lan-
guage [13] that is intended for quickly designing and pro-
gramming visual simulations of factories. That domain has
encouraged us to orient our thinking and designs very
closely around real-world objects. When designing soft-
ware we first look at existing real world objects and their

relationships and then try to model them as closely as pos-
sible while abstracting details that distract attention from
our main concerns.

Currently, OBPE exists as a research prototype serving
to explore the concepts and features that are needed to
allow effective visual programming in our domain. OBPE
programs are composed of object blocks, ports, and arcs.
Object blocks useports as their interface points to the rest
of the system.Arcs are message passageways between
ports. Object blocks (or simply, blocks) are visual abstract
data types [1] which encapsulate state, behavior, visualiza-
tion of state and behavior, and user interface event process-
ing. Furthermore, blocks are first class objects because they
are instances of normal Smalltalk classes.1

Users interact with OBPE through browsers that allow
direct manipulation of blocks and visualization of their
state. Users can modify the visualized state directly, e.g.,
dragging on the hands of a clock face changes the time, and
they can invoke operations by pushing buttons on the block
itself. Multiple browsers can view the same block at the
same time, and all views update automatically. OBPE has
no notion of run time or compile time: any block may be
manipulated at any time, and the internal logic of any block
can be modified at any time.

The main thrust of this paper is to discuss the features of
OBPE that support human-human and human-computer
communication. Section 2 provides a conceptual frame-
work for the communication needs in program develop-
ment. Section 3 provides an overview of OBPE. Section 4
discusses specific features of OBPE that address the needs
raised in Section 2. Finally, OBPE is placed in the context
of related work.

2. Problem statement
One of our goals in building OBPE is to provide support

for the various groups of people who are involved in devel-
oping and using factory automation software. The needs of
these various stakeholders impose diverse requirements
and constraints. Factory designers want to model the fac-
tory and its software in a way that fits their mental model of

1. This paper presents OBPE as an extension to Smalltalk, although ver-
sions of OBPE have been implemented in C++, and Objective-C.

Visual Language Features Supporting Human-Human and
Human-Computer Communication

Jason E. Robbins1, David J. Morley2, David F. Redmiles1, Vadim Filatov3, Dima Kononov3

1 University of California, Irvine 2 Rockwell International 3RR-Gateway, AO

This research is supported in part by the Air Force Material Command and
the Advanced Research Projects Agency under Contract Number F30602-
94-C-0218. Additional support is provided by Rockwell International. The
content of the information does not necessarily reflect the position or the pol-
icy of the funders and no official endorsement should be inferred.

2

the factory. Designers should be able to communicate their
designs to corporate decision makers in a form that is clear
and persuasive. Staff programmers should be able to use a
model both as an active specification and in implementing
a working control system.2 Machine operators on the fac-
tory floor need to understand the correspondence between
the real machines and the model, not only in situations that
the model is designed for, but more importantly in excep-
tional situations. Designers must communicate their mental
model of the factory to the operators so that they may relate
it to their own.

These issues are the same that are faced generally in
software design. The need for human-human communica-
tion is evident in both team software development and in
the designer’s task of communicating with decision makers
and users. The need for human-computer communication is
evident in the tasks of writing programs, and interpreting
program output. These two needs become more related as
software becomes more complex. In fact, the process of
developing complex software can best be understood as a
communication and learning process [7]. Much of the VL
literature tacitly considers both types of communication;
we do so explicitly.

Necessarily, design and programming languages allow
humans to externalize their mental model of a given prob-
lem and solution. Once a designer’s mental model is in an
explicit form it can be simulated, analyzed, and communi-
cated to other people. Thus, generally stated, the problem
that we address in this paper is designing a visual language
that supports human-human and human-computer commu-
nication.

3. Overview of OBPE and usage scenario
Figure 1 shows some blocks that model the machines

found in a bottling plant: a bottle washer, a filler, and a
labeler. On each block are buttons that operate the block,
such ascycle which performs all the steps of the machine’s
main task and then returns to a known, safe state. For exam-
ple, thecycle button on the washer causes a sequence of
varying water pressures and temperatures in the attached
Bottle. Thecycle button is actually an input port, as will be
further discussed in Section 4.3. The smaller blocks in Fig-
ure 1 perform sequencing: when a message is sent to the
input port of the top sequence block (labeled “312”), it
sends one message via each output port in order. The dia-
gram in Figure 1 defines oneaspect of class BottlingLine.
In fact, all diagrams exist within someblock class, just as
all Smalltalk methods exist within some class.

2. An eventual goal of OBPE is to directly control factory devices. Some
experiments have been carried out toward that goal, but OBPE can also
support a prototype-then-reimplement development process.

Figure 2a shows how an alarm clock can be composed
of three components: two simple clocks and a bell. The left-
hand clock stores the current time, the right-hand clock
stores the alarm time. Whenever the left-hand clock is run-
ning it broadcasts its current time.3 The right-hand clock
compares that time against its own. When the alarm time is
reached the bell starts to ring.

3. OBPE uses concurrency so that active blocks like the clock have their
own thread of control. This also allows the user to edit a diagram while it
is running. Any diagram with active blocks is virtually always running.

Figure 1. Class BottlingLine, aspect cycle

Figure 2. Composing an AlarmClock

3

Input ports are parts of both the user interface and pro-
grammatic interface of a block. Input ports on a block are
associated with Smalltalk methods defined in that block’s
class.Output ports are associated with output methods that
package and send arguments out of the block. In sending a
message from one block to another the following events
occur: (1) the sending block invokes its own output method,
(2) that method packages its arguments and sends them
over any attached arcs, and (3) any receiving input ports use
their own message selectors to invoke methods on the
receiving blocks. The sending block does not specify which
other blocks receive the message, nor what message selec-
tor to use; that information is determined by the connectiv-
ity of blocks. This type of implicit invocation has been used
in a variety of systems to facilitate late binding and reuse
[15, 22]. Furthermore, input and output ports together
delimit the network of objects that make up a block, thus
bounding recursive operations such as deepCopy [12].

Some diagrammatic conventions are evident in the fig-
ures: input ports have triangular shapes that point toward
the body of the block or upward, output ports have triangu-
lar shapes that point away, ports are labeled with the name
of the operation that they perform, colons indicate argu-
ments, and ports labeled with only a colon broadcast or set
the value of some obvious state variable. However, these
are only conventions, not syntax rules, OBPE has a remark-
ably simple syntax. In fact, the desire to allow users to
evolve their notation conflicts with complex, enforced syn-
tactic rules. This conflict will be discussed briefly in Sec-
tion 4.2.

Each block is an instance of a block class. Rather than
construct new instances through code, OBPE takes a proto-
type-based approach [23]: each class stores a prototypical
instance, and any instance can be cloned to make a new one
(e.g., the leftmost Bottle in Figure 1). The prototypical
instance of a class can be modified in the OBPE class
browser (Figure 3 and all other screen shots). Block classes
are simply Smalltalk classes and thus encapsulate state and
behavior. Block classes form a class hierarchy and inherit
code and instance variables as one would expect; they also
inherit aspects, ports, and subcomponent blocks. The
OBPE class browser is identical to the Smalltalk class hier-
archy browser, with the addition of panes for selecting and
defining aspects. Individual panes in the OBPE browser
may be resized or eliminated to make more room for others.

OBPE exhibits four characteristics common to VL’s:
conceptual simplicity, concreteness, explicitness, and live-
ness [1]. OBPE uses a small number of concepts, each of
which is powerful and simple. Direct manipulation of
blocks and diagrams makes them concrete and their rela-
tionships explicit. Multiple views and aspects maintain a
high level of liveness. These characteristics cut across the
features discussed in the next section.

4. OBPE support for human-human and
human-computer communication

OBPE meets the objectives described in Section 2 with
a small number of powerful features and metaphors. The
underlying theme of these features is correspondence of
OBPE models with the mental models of various stake-
holders involved in designing and using the system. Most
VL designers implicitly consider communication of mental
models, considering it explicitly yields more thorough sup-
port, as discussed in this section and Related work.

4.1 Multiple, overlapping aspects and views
OBPE allows each block to have multiple aspects, and

different presentations associated with it. This allows a
given block to appear in a way that is appropriate for a
given usage (see Figure 3). Each aspect presents a subset of
the ports defined on the block.

The use of multiple aspects in a single block separates
concerns and factors complexity. The bottling line example
shown in Figures 1 and 4 illustrates two aspects of class
BottlingLine. Figure 1 shows logic related to a single cycle
of the line, Figure 4 shows the logic for continuous process-
ing. Each of these aspects is used to implement part of the
functionality of the bottling line. Figure 5 shows the logic

Figure 3. Different aspects for different uses

Figure 4. Class BottlingLine,
aspect start/stop/resume

4

needed to reset the line to a known, safe state. The aspects
contain distinct, coordinated views on the same three
machines, e.g., operations that affect the filler are shown in
all views. Because each view may present the block differ-
ently, each view may show the operation differently.

Separation of concerns implies that different concerns
may be addressed by different people doing different tasks.
Using multiple aspects allows the same model to be viewed
in different ways to support different people and tasks [13].
Figure 6 shows the operator’s user interface to the bottling
line. It presents the bottling line status and allows some pre-
defined manipulations without showing any logic. The but-
tons in the operator aspect are simplified views on the same
buttons depicted in the other aspects.

Abstraction mechanisms in many VL’s [18, 5] and tex-
tual languages, e.g., Ada, separate a module’s interface
from its implementation. Those languages provide for a
single programmatic interface while dividing the imple-
mentation into several methods and cases. OBPE supports
this traditional abstraction mechanism. It also provides for
more flexible abstraction via multiple, overlapping aspects.
Figure 7 compares the traditional abstraction mechanism to
the use of multiple aspects in OBPE. Heavy boxes repre-
sent the total interface and implementation of the module or
block, each point represents a language statement or ele-

ment. Each aspect contains part of the complexity, and may
overlap other aspects (as seen in the bottling line). In fact,
two aspects may overlap totally if they differ only in pre-
sentation. A single aspect may mix interface and imple-
mentation for convenience in early development, to make
the correspondence between interface and logic explicit (as
in Figure 4), or to demonstrate the operation of a block via
“a black box with a window.” Some of the aspects of a
block may be considered public or private, depending on
the amount and kind of interface contained. Overlapping
aspects aid stakeholders in extending partial understanding
of the system because unfamiliar blocks are shown in rela-
tion to familiar ones [13]. For example, a stakeholder
familiar with the behavior of Figure 6 can leverage that
knowledge to understand Figure 4, and from there to under-
stand Figures 1 and 5. On each step, familiar blocks are
related to (and in this example, surround) unfamiliar ones.

Decomposition of complexity can be hierarchical or
alternative. In traditional top-down design the complexity
of the bottling line would be hierarchically decomposed
into various subcomponents, one of which is the washer.
Strict hierarchical decomposition is well suited for struc-
turing large amounts of complexity in one way, supporting
one understanding of that complexity, and one task. Alter-
native decompositions are well suited for structuring com-
plexity in complementary ways. The combination of
decomposition techniques in OBPE allows designers to
address multiple concerns in depth, while facilitating
understanding by others.

Using multiple aspects support correspondence between
OBPE models and mental models by dividing complexity
and separating concerns. Overlap among aspects provides
context for stakeholders in understanding those aspects.
Alternative decompositions support the different mental
models of different stakeholders.

4.2 Customizable presentation graphics
During software development designers must convinc-

ingly communicate their designs to decision makers in a
form that emphasizes issues over details of language syn-
tax. The characteristics of the model being demonstrated

Figure 5. Class BottlingLine, aspect reset

Figure 6. Class BottlingLine, aspect operator

Interface

Implementation

Traditional Abstraction Overlapping Aspects

Interface and
Implementation

Figure 7. Two abstraction mechanisms

5

must be tied to decision issues and arguments. Further-
more, the style of presentation must fit the social and pro-
fessional norms of that group: it must look like a
presentation, not a programmer’s whiteboard.

OBPE empowers designers to make their work clear,
concrete, informative, and persuasive. The editors used to
construct diagrams have all the power and flexibility of
commercial drawing and presentation packages. Diagrams
may be annotated with unstructured graphical elements,
such as stylized text and bitmaps, for documentation, argu-
mentation, and notes (see Figure 8 and others). Informal
graphical annotations that are used repeatedly may be for-
malized by defining a block with the same appearance (e.g.,
the authorship block in Figures 1 and 8). We view this capa-
bility in the context of a theory of incremental formalism
[19]. Like pseudo-code, it has the benefit of allowing
designers to get their ideas down easily without formaliz-
ing too early.

We trade syntax for convention. Two constructs make up
the majority of OBPE syntax: the block-port-arc graph rep-
resentation, and the constraint that output ports can only be
connected to input ports with the same number of argu-
ments. Any graphical element may be used as a port, not
just triangles and circles. Ports need not be labeled accord-
ing to our conventions, or labeled at all (e.g., one output
port on the filler looks like a valve symbol). Leaving
appearances to the designer means that they cannot be
depended on for syntactic rules. As language designers we

have given up the power to make a rule that, for example,
red ports are synchronous and blue ports are asynchronous,
although that can be a convention. We reinforce our con-
ventions with extensive, reusable examples. Of course, we
could extend the environment to warn the user when con-
ventions are violated, as we have done in the Argo design
environment [17]. Using OBPE in another domain would
demand a new set of conventions, but those can be defined
within the environment itself.

Each block instance stores a local, editable copy of each
aspect. This allows blocks to have customized appearances
and ports that make them better suited for each usage. This
can reduce visual clutter, e.g., the blocks in Figure 1 show
only a subset of their input ports. It can also facilitate reuse
and composition of visualizations. Figure 2 shows three
steps in the construction of an alarm clock: (a) two clocks
and a bell are connected as described earlier, (b) new views
on the clocks are created and each is edited to remove
undesired graphical elements, (c) the two views are moved
on top of each other to present a single clock face with an
alarm hand. The event handlers of the two clocks are also
composed, so that the user may drag on the normal hands
to set the time and the alarm hand to set the alarm time.
Reusing presentations and event handling supports scaling
up to more complex blocks [2]. In order for reuse to take
place, it must be easier to reuse components than to rein-
vent them [11]. In general, part of reuse is adaptation of the
reused component to fit the new context. Customization in
OBPE has the side benefit of easing reuse.

The main benefit of customizable presentation graphics
is in human-human communication. Designers can outline
their mental models in OBPE very quickly, without being
forced to fit a structure predefined by the tool. The model
can be presented to optimize recognition by humans, not
parsing by computers.

4.3 The “machines with push-buttons” metaphor
Real factory machines have a variety of operator con-

trols. The most common of these controls is the simple
push-button that invokes a specific operation. Acycle but-
ton causes the machine to do its main sequence of actions.
Other buttons are typically labeled with the names of indi-
vidual steps in the machine’s main sequence. They are pro-
vided to allow experimentation, testing, and recovery from
exceptional situations. These same activities are central to
the process of factory automation design.

In OBPE, blocks have the same buttons as the corre-
sponding real machines. Users can push buttons to operate
blocks just as they would real machines. The results of
these operations are immediately visible. Direct manipula-
tion of machines is so understandable, concrete, and com-
pelling that we based our programming facility on it, i.e.,
the user and programmatic interfaces of a block are the

Figure 8. Class Starter, aspect documentation

6

same. OBPE blocks interoperate with other components by
“pushing their buttons.” The sending of a message from one
block to another can be thought of as one machine reaching
out and pushing a button on another. The similarity of
manipulation and programming is reinforced by using the
same animation techniques for both. When the user clicks
on an input port, it highlights. When one block sends a mes-
sage to another block, the same highlighting is seen.

Of course, most real machines do not have buttons to
invoke all the low level operations that are desirable in
automation, but we need not abandon our metaphor,
because we can imagine opening a panel to discover
“power user” buttons that extend both the user and pro-
grammatic interfaces simultaneously. Obviously, a simple
click does not supply arguments to a method; however, we
tend toward operations that rely primarily on the state of the
receiving block instead of arguments. In cases where argu-
ments must be supplied, the user is prompted to supply
them.

Interspersing programming and direct manipulation
without switching mental contexts allows users of OBPE to
test, debug, and understand programs by experimentation.
This form of human-computer communication allows
designers to effectively transform their mental models into
programs, and understand simulation results. Human-
human communication is bolstered when stakeholders
demonstrate simulations to one another.

4.4 The host/transient pattern
We encountered the need for dynamic relationships in

the factory domain when we attempted to model material
flow, e.g., the motion of bottles among machines. The con-
cept of material flow divides the designer’s mental model
into two parts: transient objects that flow, andstable
objects that do not. Each transient follows one of several
possible trajectories, which themselves are stable.

In Figures 1 and 4 each machine is statically connected
to a BottleHost block (presented as a hollow rectangle).
When a Bottle is placed in a BottleHost (either by dragging
it there, or programmatically) a dynamic relationship is
formed between them, and messages sent to ports on the
BottleHost are delegated to the Bottle if possible. If the
Bottle is resident, it handles thefill: message, but theeject
message is handled by the BottleHost because the Bottle
does not implementeject. If the Bottle is removed (by
dragging it out, or by invokingeject) the BottleHost han-
dles all messages itself. The message selector is determined
by the port on the host that receives the message. The Bottle
implementsfill: by raising its fluid level, the BottleHost
models empty space by spilling fluid on the floor in
response tofill: (Figure 9). Polymorphism allows other
blocks, such as Jar or Can, to be resident in the BottleHost,
and a Bottle block may be resident in different types of

hosts, e.g., Crate. In each case OBPE ensures that the
appropriate method is activated.

OBPE supports controlled dynamism via a novel design
pattern we callhost/transient (Figure 10).Each block may
act as a host for a resident transient block to which it dele-
gates as many messages as possible. Blocks acting as tran-
sients may act as hosts for other blocks, e.g., dust inside a
bottle inside a washer.

Modeling material flow via dynamic inheritance [23] or
the Chain of Responsibility pattern [9] would allow the
transient object to temporarily take on some features of the
more stable object, thus clients must refer to the transient
object. In contrast, the host/transient pattern allows the sta-
ble object to temporarily take on the features of the tran-
sient object. Thus, clients may simply refer to the stable
object. This difference is key because it leverages the static
nature of the diagram to structure dynamism and make it
understandable.

Although the host/transient pattern was initially con-
ceived to model material flow, applications to other

Figure 9. A Host without a Transient

Figure 10. The host/transient pattern

aBlock
transient
host

aBlock
transient
host

aBlock
transient
host

Other blocks may form stable
relationships with the host

Method lookup order

This end
of the chain
changes
most fre-
quently

7

domains are possible: patches and viruses can be modeled
as transients resident in software hosts, and nested user
interface modes can be modeled as both hosts and tran-
sients.

OBPE uses a diagram-based visual language in which
connected graphs represent programs structured after men-
tal models of the real world. Material flow is a natural and
eminently understandable use of dynamism in the factory
domain. The host part of host/transient makes it easier for
designers to understand certain dynamic behaviors by con-
cretely presenting the possible trajectories of transients.
The host blocks provide user interface affordances [13] for
designers to recognize and manipulate trajectories. The
transient part of host/transient makes clearer the correspon-
dence between the OBPE model and the designer’s mental
model by introducing the concept of transience. Without
the concept of transience, dynamic relationships are only
implicitly differentiated from static ones: every relation-
ship appears equally likely to change, and dynamism can
undermine users’ confidence in their understanding of all
parts of the model.

5. Related work
Function block diagrams are based on data flow dia-

grams and are commonly used in factory modeling. From
our point of view, the function block paradigm is wrong for
visual programming. Functions are verbs, and it is difficult
to present verbs (except as the animation of nouns). Objects
are nouns, and it is often easy and natural to present nouns.
The superficial resemblance of function and object block
diagrams is deceptive; indeed, the diagrams are the graph
duals of each other. In data flow diagrams, nodes represent
behavior and arcs represent state. In object block diagrams,
nodes represent state and arcs represent behavior. This shift
in focus is fundamental to the object-oriented paradigm.

Agentsheets [16] and KIDSIM [20] are two visual pro-
gramming environments that emphasize goals similar to
our own: ease of expressing mental models of problem
solutions through object-orientation and customizable
graphics. However, both limit the range of applications
they can support due to a fixed grid representation and
time-step (as opposed to discrete-event) simulation. The
rule-based paradigm supports dynamism, but lacks clear
affordances, as discussed in Section 4.4. While Agent-
sheets supports designers and end users with multiple edi-
tors, it does not allow definition of multiple, overlapping
aspects for different stakeholders.

Vista [18] is a VL which has much in common with
OBPE. Both are diagram-based languages with multiple
views, nested components, and support for dynamic rela-
tionships. Aliases in Vista support an asymmetric form of
multiple views in which one view is considered the origi-
nal. Support for multiple aspects in Vista is limited to inter-

face (iconic) or implementation (expanded), where
implementation networks partition the logic of a module,
as shown in Figure 7. Vista’s notation is task-specific only
in the amount of detail shown and whether text or graphics
are used; whereas, OBPE provides for distinct aspects
using notations evolved to satisfy different stakeholders.
Both systems allow components to be composed, but only
OBPE supports composition of visualizations and event
handlers. Blocks are more concrete than Vista processors
because of their liveness and the “machines with push-but-
tons” metaphor. Dynamic substitution of public subcompo-
nents in Vista provides controlled dynamism, but it does
not leverage default behaviors as the host/transient pattern
does via delegation. Vista focuses on software engineering
principles and human-computer communication; whereas,
OBPE focuses on human-human and human-computer
communication.

Instance-based and prototype based languages, such as
Self [23], have influenced OBPE. We take a hybrid
approach that uses both classes and prototypes: classes
define some behavior via methods and state via instance
variables, but other behaviors are encoded in aspects of
prototypical blocks via the connectivity and local state of
subcomponent blocks. Dynamic inheritance in Self allows
arbitrary dynamism, whereas we desired controlled dyna-
mism that reinforces correspondence with mental models.

The distinction between view-centered and object-cen-
tered environments, discussed in [6], requires each object
be presented in only one location at a time, thus obeying a
basic physical law. OBPE departs from the definition of
object-centered by allowing multiple views on the same
block that may appear very differently. We find that sup-
porting liveness [21] is enough for users to understand that
they are seeing multiple views of the same object and to
feel as though they are manipulating it directly. Directness
of multiple views is reinforced by the fact that when one
view of a block is selected it is enclosed in a red (selection)
highlight box, at the same time all other views of that same
block are enclosed in blue (informative) highlight boxes.

Many authors have used the “software IC” metaphor:
software components are like integrated circuits that com-
bine to make larger components [4]. The difficulty in build-
ing on this metaphor is that integrated circuits have no user
interface. Real IC’s do nothing when held in one’s hand,
human beings are incapable of manipulating or querying an
IC directly. In the software IC metaphor the user interface
and programmatic interface are not bound together.

We have discussed issues and features that support
human-human and human-computer communication. In so
doing, we have addressed some of the needs designers face
in expressing their mental models of problem solutions.
However we have not discussed problem-domain specific
support as suggested by many researchers including [8].

8

6. Conclusions
We have presented four features of OBPE that support

human-human and human-computer communication by
flexibly supporting the mental models of various stakehold-
ers. Multiple, overlapping views and aspects help manage
complexity, separate concerns, and facilitate reuse. Cus-
tomizable graphics give designers the flexibility to evolve
notation appropriate for the current domain, organization,
project, task, and stakeholders. The push-button metaphor
keeps factory models recognizably close to the real world,
and encourages experimentation by uniting programmatic
interfaces with user interfaces. The host/transient pattern
provides affordances for controlled dynamism while rein-
forcing correspondence with mental models.

OBPE’s simplicity and communication features are
applicable to other domains. We have built two systems
apply OBPE’s block-port-arc representation, multiple
aspects, and customizable graphics. In the software archi-
tecture domain, Argo is a design environment for Chiron-2
style GUI architectures [17, 22]. In the process modeling
domain, the Rockwell Graphical Enterprise Modeler
(RGEM) is a tool in experimental use at Rocketdyne. Addi-
tional experimental systems have modeled factory commu-
nication networks and extended the VisualWorks4 GUI
screen generator to graphically represent widget relation-
ships.

7. Acknowledgments
We would like to acknowledge the many staff members

at RR-Gateway, AO, in Moscow Russia who contributed
countless ideas, not to mention hours, to the concepts and
implementation of OBPE through its several versions. We
also thank the management at Rockwell International Sci-
ence Center which has so patiently supported this research.

8. References
[1] M. M. Burnett, “Seven Programming Language Issues”, in

[3].
[2] M. M. Burnett, M. J. Baker, C. Bohus, P. Carlson, S. Yang,

P. van Zee, “Scaling Up Visual Programming Languages,”
IEEE Computer, March 1995, pp. 45-54.

[3] M. M. Burnett, A. Goldberg, T. G. Lewis (Eds.)Visual
Object-Oriented Programming: Concepts and
Environments, Prentice Hall, Englewood Cliffs, NJ, 1995.

[4] B. J. Cox. Object Oriented Programming: An Evolutionary
Approach.

[5] P. T. Cox, F. R. Giles, T. Peitrzykowski, “Prograph,” in [3]
[6] B. Chang, D. Ungar, and R. B. Smith. “Getting Close to

Objects”, in [3].
[7] Curtis, Krasner, and Iscoe. “A Field Study of the Software

Design Process for Large Systems,”Communications of the
ACM, 31(11):1268-1287, Nov. 1988.

[8] G. Fischer and A. C. Lemke, “Construction Kits and Design

4. VisualWorks is a trademark of ParcPlace-Digitalk.

Environments: Steps Toward Human Problem-Domain
Communication,”Human-Computer Interaction, Vol. 3, No.
3, 1988, pp. 179-222.

[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley. 1994.

[10] A. Goldberg, M. M. Burnett, T. G. Lewis, “What is Visual
Object-Oriented Programming?” in [3].

[11] C. W. Krueger, “Software Reuse”,Computing Surveys,
24(2):131-184, June 1992.

[12] D. Morley, S. Chiu, J. Robbins, G. Veolker, and T. Maddux.
“Reusable Objects” Technology of Object-Oriented
Languages and Systems, March 1991, CNIT Paris, France.

[13] D. A. Norman,The Psychology of Everyday Things. Basic
Books, Inc. 1988.

[14] C. Rathke and D. F. Redmiles, “Improving the Explanatory
Power of Examples by a Multiple Perspectives
Representation,” Proceedings of the 1994 East-West
Conference on Computer Technologies in Education (EW-
ED’94, Crimea, Ukraine), P. Busilovsky, S. Dikareva, J.
Greer, V. Petrushin (Eds.), September 1994, pp. 195-200.

[15] S. P. Reiss, “Connecting Tools using Message passing in the
Field Environment,”IEEE Software, 7(4):57-66, July 1990.

[16] A. Repenning, T. and Sumner, “Agentsheets: A Medium for
Creating Domain-Oriented Visual Languages,”Computer,
Vol. 28, No. 3., March 1995, pp.17-25.

[17] J. E. Robbins and D. F. Redmiles, “Software Design From
the Perspective of Human Cognitive Needs,”Proceedings of
the 1996 California Software Symposium (Los Angeles,
CA), April 1996.

[18] S. Schifer and J. H. Frohlich. “Visual Programming and
Software Engineering with Vista”, in [3].

[19] F. Shipman and R. McCall, “Supporting Knowledge-Base
Evolution with Incremental Formalization,”Human Factors
in Computing Systems, CHI’94 Conference Proceedings,
Boston, MA, 1994, pp. 285-291.

[20] D. C. Smith, A. Cypher, J. Spohrer, “KIDSIM: Programming
Agents Without a Programming Language,”
Communications of the ACM, Vol. 37, No. 7, July 1994, pp.
55-67.

[21] S. L. Tanimoto, “Towards a Theory of Progressive Operators
for Life Visual Programming Environments,”Proceedings of
the 1990 IEEE Computer Society Workshop on Visual
Languages, Skokie, IL, 1990, pp. 80-85.

[22] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J.
Whitehead, Jr., J. E. Robbins, K. A. Nies, P. Oreizy, D. L.
Dubrow. “A Component and Message-based architectural
style for GUI Software,”IEEE Transactions on Software
Engineering, to appear in 1996.

[23] D. Ungar and R. B. Smith, “Self: The Power of Simplicity,”
in OOPSLA’87 Conference Proceedings, published as
SIGPLAN Notices, Vol. 22, No. 2. pp. 227-241.

