Enhancing Iconic Program Reusability with Object Sharing

Yuichi Koike, Yasuyuki Maeda and Yoshiyuki Koseki
C& C Research Laboratories, NEC Corporation
4-1-1 Miyazaki Miyamae-ku Kawasaki 216, JAPAN
email: koike@mmp.cl.nec.co.jp

Abstract

This paper describes how to improve the reusability
of iconic program modules. In iconic programming
systems, the most important features for reuse are the
customization of a module and combination of multiple
modules without changing their definitions. In order to
realize these features, we propose an object sharing
technique, which allows components of multiple mod-
ules to represent the same object instance. Since a
component in @ module can be related to an object in
another module, by adding a new function to an object
in the latter module, the former module can be cus-
tomized without changing its own definition. In addition,
by relating a component to multiple objects in different
modules, different functions defined in each module,
can be combined easily. Finally, we show that the
proposed technique realizes a useful software develop-
ment style using templates, which will contribute to the
improvement of the productivity.

1 Introduction

Iconic programming is based on “node and wire’ rep-
resentation, in which program components are described
as nodes and connected together by wires. Iconic pro-
gramming languages are easy enough to read and
understand so that non-expert programmers can use them.
However, only a few practical applications have been
implemented with iconic programming systems. This is
because of scdahility [1] and reusability problems. To
solve the scalability problem, some techniques such as
hierarchica representation [2] and abstraction of iconic
programs [3] have been developed. However, there are
few ways of improving the reusability of visual lan-
guages. In order to improve productivity, the reuse of
iconic programming modules is necessary.

We think that customization of a module and combi-
nation of multiple modules are the most important
features for iconic program reusability. If an iconic
program module could be customized, it could be reused

in various situations. If modules cannot be combined,
there tends to be a number of modules with similar
functions. Thus, in this paper, we propose a technique
called object sharing which enables the customization
and combination of iconic program modules. The
mechanism to redize object sharing has three character-
istics: component information management, the user
interface to specify the object sharing relationship, and
the instance creation sequence. By this mechanism,
components in different modules can represent a com-
mon object instance. This object sharing technique plays
akey role in enabling module customization and combi-
nation.

This paper is organized as follows. Section 2 illus-
trates the kind of reusability we need. Section 3 de-
scribes the basic concept of object sharing. Section 4
illustrates details of object sharing. Section 5 describes
how to apply object sharing to improve software devel-
opment productivity. Section 6 compares the proposed
technique with related work and, section 7 gives some
conclusions.

2 Reusability of Iconic Program Modules

In iconic programming languages, scalability and
reusability problems are the most important from a
practical point of view. The scalability problem arises
when the application becomes large and complex, and
working with programs becomes difficult because of the
large number of nodes, wire intersections and wire loops.
Hierarchical representation is one of the most effective
techniques to scale up iconic programming languages. In
this technique, clusters of nodes and wires are repre-
sented as a figure. This technique enables a large scale
program to be divided into multiple modules so that the
number of figures included in one module is small.
Hierarchical representation is a technique used mainly
for large-scale programs. In addition, Koike proposes a
technique for complicated programs, which provides
layout flexibility by representing an object as multiple
nodes [4]. This flexibility allows a user to reduce the

wire loops and intersections of a complicated iconic
program, thereby simplifying it. By integrating this
technique with hierarchical representation, large and
complicated programs can be represented with multiple
modules each of whichis small and smple.

These techniques are effective in reducing the num-
ber of nodes included in one module. On the other hand,
in most cases, they do not reduce the total number of
nodes used in the whole application. This is because of
the reusability problem. When the reusability of iconic
program modules is low, there are many modules with
similar functions in a large application, and the number
of modulesis not reduced. This leadsto low productivity.
For textual languages, especialy object-oriented lan-
guages, there are a number of ways of improving reus-
ability, such as inheritance, delegation, and framework.
However, there have been few attempts to improve the
reusability of visua languages. Therefore, our target is
to propose a technique to enhance iconic program
module reusability.

Reusahility is a vague concept. For example, when a
program is flexible to changes in specifications or when
a program can be adapted with few aternations to
changed specifications, the program's reusability is said
to be high [5]. Also, when a function has many argu-
ments and can be customized, the function is said to be
reusable. In this section, we define desirable reusability
for iconic programming modules.

We assume that customization of a module and com-
bination of multiple modules are the most important
features in enhancing reusability. Customization means
that in order to be able to use a module in various
situations, the behavior of the module needs to be able to
be changed. If a module cannot be customized, there will
be many modules with similar functions. To accomplish
customization, there are two conventional methods. The
first one is to use parameters. If a module has a public
method with many parameters with which module
behavior can be changed, its reusability becomes high.
However, it is difficult to use methods with many
parameters in iconic programming languages, because
such methods need many wires which make the program
complex. The second method is to copy and modify the
module (Figure 1). If a programmer wants to customize
a module, he can copy contents of the module into the
current gpplication. Then he can modify it by recon-
necting wires. However, when the module definition is
changed, the programmer has to adapt the program. If a

module is used in many applications, the cost of reflect-
ing the change would become excessively large.

Current Application

Module X

BHo]——s per2
Copy the

module
{7
V4

Figure 1 Conventional customization method:
copy and modify

Add new functions

Combination means that the functions of a number of
modules work together. If modules could not be com-
bined, it would be difficult to make a reusable module. If
a module had more functions than needed, situations, in
which the module could be reused, would be limited. On
the other hand, if a module had fewer functions than
needed, productivity could not be improved very much.
To accomplish combination, there are some conventional
methods. The first one is to copy and join modules
(Figure 2). If a programmer wants to combine modules,
he can copy the contents of modules into the current
application. Then he can relate components in both
modules by reconnecting wires. However, as described
above, change reflection cannot be achieved with this
method. By using textua language methods, such as
multiple inheritance or delegation, modules can be
combined. However, there are no standard ways of
realizing such methods in iconic programming languages.
In addition, since these techniques are based on textua
information, such as method and variable names, some
technical breakthrough is necessary to be able to redize
them in iconic programming languages.

Module X
E E Current Application

Module Y Copy the
modules

~Relate
N _ components

of each

module

Figure 2 Conventional combination method:
copy and join

3 Object Sharing

In order to accomplish module customization and

combination effectively, we propose a technique, called
object sharing. Object sharing is a technique which
allows a number of modules to share an object instance
as their component by changing the relationships be-
tween objects. Figure 3 shows how objects relate to each
other. Without using object sharing, each module has its
own components, and they are independent. With object
sharing, on the other hand, a number of modules can
share an object instance.

l/modules
re. e e [asD] v
@EE ol
shared
components object

a) Without object sharing b) With object sharing

Figure 3 Relationships between objects

Figure 4 shows how to customize a module with db-
ject sharing. Module X is placed on the current applica-
tion, and by using object sharing, component C of
module X and component C¢of the current application
can represent the same instance. If a programmer adds
some functions to C§ this means that the functions are
added to C of module X. That is, module X is customized.
Both applications in Figure 1 and 4 have the same
function. However, if the definition of module X is
changed, the change is reflected only to the current
application in Figure 4.

Module X Current Application

B \>

/
| ¥
Representing the/

same obiject instance

Figure 4 Customizing X with object sharing

Figure 5 shows how to combine modules with object
sharing. Module X and Y are placed on the current
application, and by using object sharing, component E of
module Y and E¢of the current application can represent
the same instance. C and C¢ aso represent the same
instance. If a programmer relates C¢and E¢ this means
that C and E are related. That is, functions of module X
and Y are combined. Both applicationsin Figure 2 and 5
have the same function. However, if definitions of
module X and Y are changed, the changes are reflected
only to the current application in Figure 5.

Current Application
D]\
= p[x]
4

Module Y =]

E \
&

Figure 5 Combining modules with object sharing

4 Object Sharing Details

In this section, object sharing technique details are
described. Object sharing is based on object-oriented
visual programming languages. Usualy, iconic pro-
gramming modules represent a set of nodes and wires,
and incorporate data and procedural abstraction. Before
we illustrate object sharing, we will briefly explain the
outline of an object-oriented iconic programming system
called HOLON/VP, to which the proposed technique has
been applied.

4.1 Object-oriented Iconic Programming

In HOLON/VP, an iconic program module is com-
posed of nodes which represent objects and wires which
represent control and data flow. The following types of
objects are defined in HOLON/VP:

1. Primitive objects, such as strings or numbers.

2. GUI window objects, constructed with a GUI
builder

3. DB access objects, constructed with a DB modeler
4. lconic program modules

On an iconic program editor, a node displays the
methods and subcomponents of the corresponding object.
To create a node, the programmer first selects an object
type. The programmer can then select some public
methods and subcomponents of the object that the
programmer wants to use. Also, selected methods and
components are shown in the node. By connecting them
with wires, the programmer can specify control and data
flows. An iconic programming module, defined in this
way, is aso an object, and it can be used in the same
way as other objects.

Figure 6 is a sample HOLON/VP iconic program
module. There are two nodes, Windowl and Window2,
where Window is the class name and 1 and 2 are in-
stance IDs. This program defines that two instances of
the same type GUI window are created when the pro-

gram is executed. The wire between Windowl and
Window?2 represents control flow, and indicates that the
click event on Buttonl, a subcomponent of Windowl,
invokes the hide method of Window?2.

Since one node corresponds to one object instance, if
a programmer places two nodes of the same class, two
different object instances will be created when executing
the program.

B Sample'vLB6% — AP Composer — =101 %]
File(E? Edit®> View() Box(B) DebuglR) Qptieni®? HelpH)

=
! g
& Window! W Window2 1

* = Button! T

4,—‘{>‘ hide [»
o ok D+

Innode > o *| 50t node

KN

subcomponent of]
Window1l [

Window?2

] method of

Figure 6 HOLON/VP sample program

An iconic program module in HOLON/VP is defined
as a class and represents data and procedures, and it has
the following characteristics.

Data abstraction: A node placed in a module represents
a component of a module. Each component is defined as
a dot of the class. When module instance is created,
instances of components are created, and when module
instance is destroyed, component instances are destroyed.
Thus, a module abstracts its components. For example,
the module shown in Figure 6 has two components,
Windowl and Window2. An iconic program module also
can be a component of another module. Therefore,
hierarchical representation is possible.

Procedural abstraction: Modules contain both control
and data wires. A chain of control wires is defined as a
method. Specia nodes, caled In and Out nodes, define
public methods of the module which can be invoked from
outside the module. Asthe module shown in Figure 6 has
an In node, named Popup, the module has one public
method named Popup.

4.2 Object Sharing Mechanism
In order to realize object sharing, the following ele-
ments are essential.
1. Component information management
2. User interface to specify shared object
3. Instance creation sequence

These mechanisms are related to each other as shown in
Figure7.

Object Structure

Modulel
Information about|| | Componentl
components[[Component2] Module2
I [Componenti]
Module3
IComponentl
User specifies object
sharing relationship
Modulel
IComponentl Module2
. [Component2] odule
Instance creation ¢ Component Componentt
according to the Vioduies 1
object structure odules }4—— opject sharing
| relationship

Figure 7 Object Sharing Mechanism

These elements are explained below based on the sample
module Sample, shown in Figure 8.

B Sample LS8+ — AP Composer — =lox]
File(F) EditlE) Viewd) Box(@E» DebuglR) Option(d) HelpH)

1=
=

E Windowl E Window? B

® 3 Buttont [

4,—&- hide [
= click [

KON ;lﬂ
] mple/ LGk — AP poser — =lal x|
FileXyy EditiE> i) Box(B) DebuglR) Option{Q) HelpH)
1=
|
Window! 1 Window2 1
@ [Button1 [Heo hide [
= click l>-——I
i [Top level module| o

Figure 8 Sample module

Component information management:

To reuse an iconic programming module, it should be
placed on another module. Here we cdl the former the
child module, and the latter the parent module. When the
child module is placed on the parent module, the child
module gives the names and the types (class) of all
components to the parent module. Therefore, the parent
module has information about all components of all child
modules. In Figure 8, one Sample module and an in-
stance of Window, a GUI window class, are placed on
the top level module Main. Then, Main has the following
information:

component class | component name
Sample Samplel

Window Samplel.Window1
Window Samplel.Window?2
Window Window4

User interface to specify shared object:
To specify the sharing object, the programmer uses the
component editor shown in Figure 9, as follows:

1. Sdectsamodule

2. All components of the module are shown in the list
on the component editor

3. Select acomponent from the list

4. All objects which can be shared as the component
are shown in the drop down list on the component
editor.

5. Select an object to share

For example, when the programmer selects Samplel
module, Window4 and Samplel.Window2 are shown in
the drop down ligt. If the programmer selects Window4,
Samplel module and Main module would share the same
object.

To share the same object, class of Window4 and
Samplel.Windowl must be the same class or have a
super-subclass relationship. Otherwise, invalid method
cals may occur in the execution phase. Since only such
objects as belong to the valid classes are displayed in the
drop down list, the programmer cannot select invalid
objects.

Conflicts may occur when sharing an object. In such
cases, the programmer will be informed of them. For
example, there are two modules which include a GUI
window, and both of them use the same event handler.
Since an event handler is an exclusive resource, a
conflict occurs when a programmer wants to make the
two modules share the same GUI window object. In such
cases, the conflict is notified and the user is asked to
determine which oneto invadidate.

Companent Editar Xl
Ohject
Samplel [
Cancel

Components Ok

Components|| [#indowz

Objects which
of the module|

can be shared

List

Class | Wincow

Figure 9 Component editor

Instance creation sequence:

The two steps above are done in the definition phase. To
realize object sharing, the instance creation sequence in
the program execution phase is aso important. Without
object sharing, object instances are created as follows:

1. Main module, the top level module, is created by
the system.

2. Main creates Window4 and Samplel.
3. Samplel creates Windowl and Window?2.

Since each module creates object instances as its own
components, modules cannot share a common object. On
the other hand, with object sharing, when a shared object
is created in a module, it is exported to the related
modules. Therefore the modules can share a common
object. With object sharing, object instances are created
asfollows:

1. Main module, the top level module, is created by
the system.

2. Main creates Window4 and Samplel.

3. Since Window4 and Samplel.Windowl are the
same instance, Main sets Window4 to Sam-
plel.Windowl.

4. Samplel does not create Windowl, because it has
already been set.

5. Samplel creates Window?2.

With this sequence, several modules can share the same
object as their components.

5 Applying Object Sharing

This section describes how to apply object sharing to
customize a module and to combine modules, using some
examples.

Figure 10 shows a module which defines the GUI
window transition process. TransitWin is a GUI window
which has a Prev and Next button on it. Four instances
of TransitWin are placed in the module TransitModule,
and control wires define that the click event on the Prev
button opens the previous window, and the click event on
the Next button opens the next window. By using this
module as an application template, it would be possible
to construct an application without defining the GUI
windows transition process.

B TransitModuleYL98 — AP Composer — =leix
FilelF} Editl® Viewl) BoxB DebuglR) Option(Q) HelplH)
=
=
Transit T it .
E n [Transit. B Transit
Wind Winz B g © Wing "
e show [> e show [He® show [= show [>
® O Mext [® = Next I ® [Next [® O hext [
® click [© click [= click [* click [>
<le show < <J® show Q <J® show <] <® shaw <]
® & Prav [* & Prev ’— lDPrevV’ ® &= Prev I
<= glick r<l= click r<]® click r<l® click
i \ V
B Transititiin
Prev Mext |

Figure 10 GUI window transition module

5.1 Customizing a Module

This section explains steps to customize the module
TransitModule by placing a picture on one of the GUI
windows (Figure 11).

1. Place TransitModule on the current application to
reuse the module.

2. Define a GUI window class PictureWin which is a
subclass of TransitWin. PictureWin has a picture
onit.

3. Place PictureWin on the current application

4. Specify object sharing relationship between
component TransitWin4 of module TransitModulel
and component PictureWinl.

5. Since PictureWin is a subclass of TransitWin, an
instance of PictureWin class will appear in the ex-
ecution phase.

B TransitModule:vL96 - AP Comy T]
File® Edit® Viewl Box(B) Debug(R) Option(@ _ Help(H)

Ll

g Transit = Transit
' o Transit o Trasit
Wind win2 " wing " Wind "

[>® show [> * sho H>e show [> -
osiean
* &= Next F ® & Mext I ® = Next .
* click * click [> ® click [> * clicl

< show <l e chow <k <Je chow <k e showpd
[boolean] [bootean] [boolean

° = Prev I © D= Prev I ° @ Prey © = Prev

e click <l click <J® click * cic

|1. Place TransitModule 4. Specify as two

File(EN, EditE} v Box(B} Debu; (R)
N o / components
3 representing the

same instance

KIN]

Plctu;’e\Nm "

- Picture [
& click [

o 3. Place PictureWin
=4 TransitWin ;lﬂlﬂ}
o 2. Define PictureWin

(subclass of TransitWin)

Frev | Next |

Figure 11 Customizing a module using subclass

Then, another customization is done by connecting
wires to the PictureWinl component of the current
application (Figure 12). Using this customization, a
message window opens when the picture on PictureWinl
isclicked,

B MainProgramvL96% — AP Composer — =laix]
FileF} EditE} Viewld) Box(B) DebugE) OptiontQ) HelptH)

1=
=l
Ficturaiin hMessage
| B it "
& Transit "
hodulel - Picture [_,—-|>' show [
s olick [
K| Y _>I—I

New function for PictureWinl

Figure 12 Customizing a module by adding new fu
nctions

5.2 Combining Modules

To add a new function to the window, not only cus-
tomization but also module combination can be used.
The BeepWhenUnload module defines that a beep emits
when a window is closed (use unload event which
occurs when a window is closed). To combine the
BeepWhenUnload module with the TransitWin module,
the programmer should:

1. Pace the BeepWhenUnload module on the current
application

2. Specify the object sharing relationship between the
component TransitWin3 of module TransitModulel
and the component Window of module BeepWhe-
nUnload1.

The function defined in BeepWhenUnload is added to
the MainProgram by these steps. As a result, the two
modules TransitModule and BeepWhenUnload are
combined.

B TransitModule VL96 - AP Composer — =1l
Fie® FEdit® Viewd) Box® Debug® Option@ Help(Hh

Transit Transit T T
" warsity | [g Transt t
L B e " Lo B e "

D> show [> ® show [> ® show D> H>e show D>
® = Next. ® &= Next ® = Next | ® = Next I
* click > ® click [> * clicl * click
<J® show <J: <Je show < <qe show < <J® show <
o]
® = Prev T ® = Prev [® = Prev I ® = Prev '

<J® click r<d® click +<1® click <l click

el o

ainPrograp/fL96% - AP Gompaser — ST=[ES]

FINE) EghE) Viewl) Box(® Dsbug(R» OptiontQ) Heln(H)
\‘\/l/ H
|

The same instance

Plotralling Vezmase y

© [Picture © H>e show [
oo b | e

B BespihknUnloadVL86 — AP Composar — =lox|
Fle®) E\i® Viewd) Box® Debug®
Option(@ \ielo(H)

|
Ir|

Window3 |
® unload [Beep [

a4 ol

Figure 13 Combining two modules

5.3 Characteristics of Object Sharing

The examples of customization and combination
shown in 5.1 and 5.2, indicate some characteristics of
object sharing.

The customization achieved by object sharing is
flexible, because it not only allows the customization of
some attributes, but also the replacement of a component
with a subclass instance or the addition of new functions
to acomponent from outside the module.

Figure 14 is an application described without using
object sharing. Though it has the same function as Figure
13, module definitions have been modified to construct
the application. In contrast with this, modules can be
customized without modifying the definition in Figure 13.
This means that the same module can be reused in
several situations. Moreover, it also means that the

definition change of TransitWin will be reflected to all
applications using TransitWin. Therefore, the application
using object sharing has flexibility to the definition
change of modules.

B TransitMocule2VL96k — AP Composer — =laix|
File(E) Edit®) Viewl) Box(B) Debug® Option{Q} HelpH»

= Transit = Transit = Transit
= Transit g " ransi
Wint Win2 Wind "

[show 0> =® show [» > e show [> Hoe show [
© = Next [® = Mext I ® = hext [® Enext [
® click [® olick [

re Transit
-
Win3

® click > ® click [>
<% show < <J= show <k <& show < e show [
lDPrevr—L-DPrEvr © = Frev Il © EPrev I
<J® click r<l® click = click —l= oclick

Message
o |

=@ Picture 1 Wini
= glick [——>® show [»

» unioad [>]
:

11 o
Figure 14 Application without object sharing

The capability of module combination means that a
useful software development style is achieved with
object sharing. That is, when constructing an application,
the programmer can select modules, combine them, and
customize them so as to satisfy the target application
specification.

6 Comparison with Related Work

There are many GUI builder systems, in which GUI
windows are designed visually, and functions attached to
the GUI windows are described with textual languages.
Some of them have a GUI window inheritance mecha-
nism. The programmer can define a subclass of a GUI
window with a graphical editor. Though they are not
iconic programming systems, making a GUI window
subclass with a GUI builder is much easier than with
norma textual languages, and it leads to reusability
improvements. In these systems, a GUI window and
functions are tied together. Thus, though suitable for
reusing a function related with only one GUI window, it
is difficult to reuse a function which spreads over
multiple GUI windows. In contrast with these systems,
object sharing is suitable for such functions.

Vista [6] uses replaceable subcomponents as part of
the modul€'s interface. The programmer can customize
the module by replacing new subcomponents. “Vigta”
shows replaceable subcomponents on the node, so that
the programmer can easily understand which subcompo-
nents need to be replaced. This technique is similar to
ours when customizing a module. However, our tech-
nique also enables the combination of a number of
module functions.

An Artist's Studio [7] is an iconic programming
system which can improve program reusability through
the use of a layer mechanism. Common functions are
defined in a particular layer and specific functions are
defined in other layers. Then the user selects and piles
the necessary layers. Since a layer mechanism has been
used, the combined functions are displayed as if dl
functions had been defined in one layer. Compared with
our approach, it is easier for the user to understand how
a number of functions combines. However, module
combination in An Artist’s Studio is restricted to layout,
while our technique alows flexible combinations of
modules.

Yang [8] proposes a technique which makes a reus-
able and abstract program by anayzing the logica
relationships of concrete programs. This technique
focuses on making reusable modules, while we focus on
reusing existing modules. In object-oriented iconic
programming languages, such as HOLON/VP, our
technique is more suitable, because the programmer has
to describe somewhat abstract programs. In contrast with
Yang's technique, our technique is not suitable for
systems in which the programmer uses concrete data
interactively.

7 Conclusion and Future Work

In iconic programming systems, customization of a
module and combination of multiple modules are the
most important features for reuse. In order to make
program modules more reusable, we proposed an object
sharing technique, which allows multiple modules to
share the same object instance as their component. Since
a component in amodule is shared by another module as
its component, it is possible to customize the module
without changing the definition by adding some function
to the component of the latter module. In addition, if a
number of modules share an object, functions defined in
each module will be added to the object. This means that
functions of modules are combined. To redize object
sharing, three mechanism are important. They are,
component information management, the user interface
to specify the object sharing relationship, and the
instance creation sequence. Findly, we showed how
iconic programming productivity can be improved with
our technique.

An important future work is to improve the user in-

terface. In the current system, the programmer needs to
combine multiple modules by specifying which compo-

nents of which modules share the same object instance
with one another. Therefore, some mechanism to visually
indicate the component sharing relationships among the
multiple modules will help the programmer to understand
program structures.

Another topic for future study is capability check and
the navigation of module combination. As described in
4.2, when combining multiple modules, some functions
may conflict. Therefore, it is necessary to show the
programmer what kind of conflicts occur when combin-
ing modules. In addition, to identify multiple module
components, the components must either be the same
class or have a super-subclass relationship. This means
that, not all modules can be combined. Therefore, we
should develop away of searching for a module from the
module library which can be combined with the module
in question.

References

[1] Burnett M., Baker M.J., Bohus C., Carlson P, Yang
S. and Zee P, “Scaling Up Visua Programming
Languages,” IEEE Computer, pp. 45-54, March,
1995

[2] Gorlick M. and Quilici A., “Visua Programming-
in-the-Large and Visua Programming-in-the-
Small,” Proceedings of the 1994 IEEE symposium
on Visual Languages, pp. 137-144, 1994.

[3] Ford L. and Talis D., “Interacting Visual Abstrac-
tions of Programs,” Proceedings of the 1993 IEEE
symposium on Visual Languages, pp. 93-97, 1993.

[4] Koike Y., Maeda Y., and Koseki Y., “Improving
Readability of Iconic Programs with Multiple View
Object Representation,” Proceedings of the 1995
IEEE Symposium on Visual Languages, pp. 37-44,
1995.

[5] Gamma E., Helm R., Johnson R. and Vlissides J.,
“Design Patterns,” Addison-Wedey, 1995

[6] Schiffer S. and Frohlich J., “Visual Programming
and Software Engineering with Vista,” Visual Ob-
ject-Oriented Programming: Concepts and Envi-
ronments, Prentice Hall, Englewood Cliffs, N.J.,
1995.

[7] SenguptaS., KimuraT.D., and Apte A., “An Artist’s
Studio : A Metaphor for Modularity and Abstraction
in a Graphical Diagramming Environment,” Pro-
ceedings of the 1994 IEEE Symposium on Visual
Languages, pp. 128-136, 1994.

[8] Sherry Y. and Burnett M., “From Concrete Forms to

Generalized Abstractions through Perspective-
Oriented Analysis Of Logical Relationships,” Pro-
ceedings of the 1994 IEEE Symposium on Visual
Languages, pp. 6-14, 1994.

