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Abstract
Until now, attemptsto extendthe one-wayconstraint
evaluationmodel of the spreadsheeparadigmto support
complexobjects, such as colored circles or user-defined
types, havded to approachedeaturing either a direct way

of creating objects graphically or strong compatibility with

the spreadshegparadigm,but not both. This inability to
conveniently go beyond numbers and strings without
straying outside the spreadsheetparadigm has been a
limiting factor in the applicability of spreadsheetsn this
paper we preserd techniquethat removeshis limitation,
allowing complex objectt be programmeddirectly—and
in a mannerthat fits seamlesslywithin the spreadsheet
paradigm—usingdirect manipulation and gestures.An
empirical study has shownthat programmerscan usethis

technique to program complex objects faster and with fewe

errors. We show that the graphical definitions technique
not only expands the applicability of spreadsheet
languages,it also addsto their support for exploratory
programming and to their scalability.

1: Introduction

In recentyears, many new graphical techniqueshave
beendevelopedto supportthe use of visual objects. Of
particular note are the contributions of demonstrational
progamming research,which have brought straightfor-
ward, graphical techniquesfor creatingand working with
visual objectsto both end-usersand progammers.Unfor-
tunately howeverysersof spreadsheetsavebeenleft out
of theseadvancesandstill find themselvesstrandedin a
highly textualworld with limited abilities to incorporate
visual objects into their computations.

We setout to correctthis problem.Our goal was to
incorporatevisual objectsinto spreadsheetsn a way that
would fit seamlesslywithin the one-wayconstraintmodel
of the spreadshegparadigm.Further, we wantedour ap-
proach,like most otherfeaturesfoundin spreadsheetgp

be applicable tall users of spreadsheet languages. That

we wanted to support the simple, builtgraphicalobjects
likely to be usedby ordinaryend-usersin a way general
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enoughto also supportthe complex, user-definedobjects
needed by pregmmers.

In this paperwe presentsuchan approach.t allows
both simple ancdcomplexobjectsto be definedgraphically
in a spreadsheelanguageusing direct manipulation and
gesturesWe call thesedirect manipulationsand gestures
graphical definitionsto emphasizehat they are a declara-
tive way todefine fomulasfor cells ina graphical manner.
The contributions othe gaphicaldefinitions approacheare
that (1) it is the first approach that fulsupportsworking
directly and visually with objects in a way that fits
seamlessly withirthe spreadshegtaradigm;(2) it addsto
both the supportfor exploratoryprogamming and to the
scalability of spreadshedanguagesand (3) it introduces
gesture spaces, a technique tlakesa stepforwardin the
practicality of proppmming with gestures.

1.1: Design goals

We usethe term spreadshedfanguagego referto all
systemsthat follow the spreadshegtaradigm,from com-
mercial spreadsheet® more sophisticatedsystemswhose
computationsare defined by one-way constraintsin the
cells formulas.By “fitting seamlesslywithin the spread-
sheetparadigm,”we meanthat the approachfollows the
declarative,one-way constraintparadigmof spreadsheets,
emphasizingthat it should follow the value rule for
spreadsheetsyhich statesthat a cell’'s value is defined
solely by the formula explicitly givenit by the user[9].
The characteristicof seamlessneswithin the spreadsheet
paradigm was one of our two primary design goals.

Our other primary designgoal was directnessa term
we will use to mean followinghe principlesadvocatedhy
Shneidermanby Hutchins, Hollan, and Norman; and by
Nardi. The terndirect manipulationwas coinedby Shnei-
derman [16], who describesthree principles of direct
manipulation systems: continuous representatiorof the
objectsof interest,physical actionsor pressesof labeled
buttonsinsteadof complexsyntax, and rapid incremental
reversible operations whosfiect on the object of interest
is immediately visible.

Hutchins, Hollan,andNorman([8] expandupon these
notions, suggestinghat the degeeto which a userinter-
facefeelsdirectis inverselyproportionalto the cognitive



efort neededo usethe interface.They describedirectness
as havingtwo aspectsThe first aspectis the distancebe-

tween one’s goals and the actions required by the sytstem

achievethose goals. In traditional spreadsheeprogam-
ming, this distance ifirly small becausahereis a well-
understood, one-onaappingfrom eachoperatorandterm
in the goal to the formula that must be specified(e.g.,
from the goal “add A&nd B"to the formula“A + B"). The
second aspect is a feelingdifect engagementihe feeling
that oneis directly manipulatingthe objects of interest.”
Nardi [15] seesdirect engagemends a critical elementin
spreadsheetemphasizingfreedom from low-level pro-
gamming minutiae in favor of task-specificoperations.
Direct engagemeniasbeenlargely absentfrom prior ap-

proaches to supportingagphics in spreadsheet languages.

2: Related work

Many commercialspreadsheetsrovide the capability
to display simple gaphics and charts. However, these
visual objects are strictlputput mechanismsthey cannot
be valuesof cells, other cells valuescannot dependon
them, and only the char{gsot the otherkinds of graphics)
can be dependenton other cells. Furthermore, these
spreadsheets do not allavgersto extendthe set of visual
objects that are supported.In some spreadsheetst is
possible to gain some gaphical support for objects
throughthe use of macro languagesand incorporationof
state-modifying progamming languages,but these ap-
proaches violate the spreadshegtie rule. Macrosviolate
it becausea macro storedin one group of cells actually
changes other cells formulas during execution-the
spreadsheet equivalent of self-modifying jpangs.

Although some researchspreadsheetanguageshave
used graphical technigues,they have not achieved the

combination of generality and directness that we sofaght

the spreadsheeparadigm.For example, the NoPumpll
spreadshedanguagg19] includessomebuilt-in graphical
typesthat may be instantiatedusing cells and formulas,
and supportslimited (built-in) manipulations for these
objects, but does not support complex or user-defined
objects. Penguims[6] is an environmentbasedon the

althoughthe Progaph approachto spreadsheetadds the
ability to incorporatevisual objectsinto spreadsheetst
does not make progmming them more direct.

Wilde's WYSIWYC spreadsheet [2@ims to improve
traditional spreadsheetprogamming by making cell
formulas visible and by making the visible structofethe
spreadsheetatch its computationalstructure. Although

this work is similar to ours in its attempt to emphasize the

task-specificoperationsof spreadsheetanguages,Wilde
focuses on the resultingrogam ratherthan on the means
of specifying it, and does not address visual types.
C32 [14] usesgaphical techniquesalong with infer-

enceto specify constraintsin user interfaces.Unlike the
other spreadshedanguagesdescribed,C32 is not a full-
fledged spreadsheet language; rather,atfiont-endto the
underlyingtextuallanguagelisp usedin the Garnetuser
interfacedevelopmenenvironmenf13]. C32 is a way of
viewing constraints, but does not itself feature the
graphical creation and manipulation of visual objects.
Instead this function is performedby anotherpart of the

Garnet package. Together C32 and the other portions of the

Garnetpackagefeature strong supportfor direct manipu-
lation of built-in graphicaluserinterface objects, but not
for any otherkinds of objects,which must be written and
manipulated in Lisp.

Our work is alsorelatedto pen-basedcomputing [4]
andto progammingby demonstratiorf3]. Of the latter,
the most closely relatetd our work are systemsfeaturing
declarativeapproacheso progamming.KidSim [18] is a
demonstrationabystemthat usesdirect manipulation to
specify declarative graphical rewrite rules. Although
KidSim’s approachis similar to oursin its emphasison
directness,it does not provide the kind of flexible,
declarativespecificationof objectsand attributesthat we
soughtfor a full-featured,spreadsheet-basegproach.The
multi-way constraint-basedsystems TRIP3 [11] and
IMAGE [12] usedirect manipulationas a meansof speci-
fying relations declaratively;in these systemsa visual
example defines a relationship betweenapplicationdata
and its visual representatioHowever,our interestwasin
finding a declarativeapproachthat would work with the

spreadsheet model for specifying user interfaces. It support@n@way constraints of spreadsheet languages.

complex objects by providing the capability to collect cells

togetherinto objects but it also introducesseveralnew
conceptsthat violate the spreadsheetmodel, such as
interactor objectsthat can modify the formulas of other
cells, and imperative code similar to macros. Action
Graphics [7] is a spreadsheetlanguage for gaphics
animations.It also provides some support for complex
objects,but doesnot provide the directnessve sought. A
version of Progph incorporates usérterfaceobjectsinto
a spreadsheeéh orderto provide spreadsheetiserswith a
gaphicalinterfacefor input and feedback[17]. However,

3. Programming visual objects directly

We have prototypedour approachin the spreadsheet
languageForms/3[1, 2], andthe examplesin this paper
are presented in that language. Forms/3ltwag supported
both built-in graphical types and user-definedgraphical
types. (Built-in types are provided in the language
implementationbut are otherwiseidenticalto user-defined
types.) Attributes of a type are defined by formulas in
goups of cells, and an instance of a type isvélele of an
ordinary cell that can be referengedt like any othercell.
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Figure 1: A portion of a Forms/3 form that defines a circle.
circle in cell newCircleis defined by the other cells, which
defineits attributes. A usercanview andspecify spreadshe
formulasby clicking on the formula tabs (); radio button:
and popup menus can be used to specify constant formul:

For examplethe built-in circle objectshownin Figure 1
is defined by cells defining its radius, litleickness,color,
and other attributes. In this paperwe show how this
approachcanbe extendedto supportthe direct style that
characterizes spreadsheets.

3.1: How are graphical definitions used?

To introduce graphical definitions, we considertasks
that a traditional spreadsheetiser might be interestedin
performing,but that aredifficult to do or are beyondthe
capabilities of current spreadsheetsOne such task is
displaying a gaphical representation of data, usthgmain-
specific visualization rules. Figure 2 shows such a
visualization that a population analyst might wish to
specify in a spreadsheleinguage The progam categorizes
population data into cities, towns, and villages, and
representeachwith a differently sized black circle. The
population analystcan use our approachto define these
gaphical objects using direct manipulation and gestures.

Simple gaphical objects such as circlean be defined
by drawing a gesture in the shape of tiigect, and canbe
sized by directly manipulatingthe object. To define the
large city circle for the progam, the population analyst
first drawsa circle gesture(Figure 3a). This definesthe
cell's formula to be a reference to cedlwCircleon a copy
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Figure 2: A visualization of population data.

of the built-in circle definition form whoseradiusformula
is definedto be the radius of the drawn circle gesture.
However, thecirclesin the progam areto be solid black.
Becausethere are no gesturesto specify fill color, the
population analyst clicks on the circle to display its
definition form, and then defines the formula for cell
fillForeCola (Figure 3b).

One way to define the circles for ceitsvnandvillage
is by using direct manipulationto specify how they are
differentfrom the city circle. For example,to define the
town circle, the population analyst clicks on cell city
instead of drawing a newircle. This displaysthe circle in
the formula edit window so that it can be manipulated

(Figure 4). The population analyst then resizes the circle in

the formula window to definethe town circle, which has
all of the attributes of theity circle except its radius.

3.2: Graphical definitions and the value rule

That gaphical definitions are consistent with thaue
rule follows from the fact that they have the same
semanticsas Forms/3’s previous, textual-spreadsheet-
formula mechanismwhich is consistentwith the value
rule. For example, celbwnwould havebeenspecifiedin
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Figure 3:Defining the circle for cell city. (a) The populatior
analyst first draws aircle gesture to define the circle. (Bfter
clicking on the circle to display its definition form, the
population analyst definesthe fillForeColor formula via a
popup menu.
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Figure 4: Defining the circle focell town. (a) The populatior
analyst clicks on celtity to display the large city circle. (b)
The population analyst directly manipulatesthe circle to
define thesmallertown circle, which hasthe black color anc
other attributes of the original circle.

the previousapproachby copying the built-in primitive-
Circle form (Figure 1), enteringnew radius and fillFore-
Cola formulas, and referring to the copy’s ae#lwCircle
Note that with graphical definitions, what the user
directly manipulatess a cell's formula, not its value. If
gaphical definitions operatedon cell values instead, the
spreadsheet value rule would be violated. &ample,if a
cell x's formula is “newCirclé, then manipulating xX's
valueinsteadof its formulawould haveto contradictx’s
formula or changenewCirclés formula, neither of which

implementedoy someother progammer.The user-defined
tree type contains operations to insenes/element intoa
tree, reporthe top elementof the tree,andreportthe left
andright subtreesThe treeimplementorhas also defined
gestureswhich are automatically displayed,to perform
these operations (Figureshy, The gestureallow the low-
level details of the tree implementationto be abstracted
away, letting the progammer of the search algorithm
perform tree operations without explicittppying the tree
definition form, defining new formulasfor cells on the
definition form, or explicitly referencing those cells.

To progam a standardrecursive search algorithm
given such a tree, the progammer can use gaphical
definitionsto accesdifferentelementsof the searchtree.
For instance, if thesearchelementis smallerthan the top
element of the tree, the search algorithm is called
recursivelyon the left subtree.(Recursionis supportedn
Forms/3by referencingcells on copiesof the form being
defined,which arethen automaticallygeneralizedusing a
deductivetechnique[21].) The progammer can define a
formula to access the left subtree by clickomgthe search
tree cell and drawing tHeft gesture—a line pointindown
to theleft (Figure5). This direct action definesa formula
that is equivalentto that defined by copying the tree

would be consistent with the value rule. Our system makesjefinition form, defining théormula for cell inputTreeon

explicit the fact thathe useris manipulatingformulasby
supporting gaphical definitions in the formula edit
window instead of in the main part of the spreadsheet.

3.3: Using gestures with user-defined types

Eventraditionally abstracttypes are visual if a pro-
gammer chooses to think of them as suchd@émonstrate
the generality of the approach,we show in this section
how gaphical definitionscanbe usedevenin a traditional
data processing example, such as a search.

Supposethe progammerwantsto developa binary
searchalgorithm using a binary tree that was previously
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Figure 5: The programmerclicks on the (1) searchtreeto se
the @) context for the gestures)(lconic representations of 1
tree gesturesre automatically displayed. The programmer(4)
then draws a gesture to reference the left subtree.

that form to be a referenceto the search tree, and
referencingcell left. (The tree definition form will be
discussedn detail in the next section.) However, unlike
the actions of copying the form and writing textual
formulas, this gesture correspondsdirectly to the pro-
gammer’s intent: “I wanthattree’sleft subtree.”

4. Defining new visual objects

A progammerdefinesa new type with a type defini-
tion fam [2] containingan abstractionbox, which defines
an instance of the type as the composition odftsbutes;
an image cell, whoseformula definesthe type’s appear-
ance(s); and other cells and abstraction boxapéaify the
type’s operations.

For example,a tree definition form (Figure 6) might
contain input abstraction bamputTreeintended tocontain
an incoming tree, input callewElementor an elementto
be inserted into the tree, and output abstractionbox
newreeto definea treeinto which the new elementhas
been inserted. Otheells providing operationsfor the tree
(such aghe predicatereportingwhetherthe incoming tree
is empty, anda cell reporting the root element)are also
usually present. Multiple instancesof a tree can be
instantiatedusing multiple copiesof the form, which are
the underlying equivalent of the gaphical definitions
shown in the example of the previous section.

For graphicaldefinitions to be possiblewith sucha
type, a progammer needsa way to specify the set of
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attributes ofinputTree The formula tabs on cells newElement
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gaphical definitions for the type, enablingtheir use for
purposessuchasthe binary searchalgorithm of the pre-
vious section.

4.1: How do programmers define new gestures?

Thefirst stepin specifyingthe set of gaphical defi-
nitions for a user-definetype is to specifythe setof ges-
turesthat are applicableto the type. In our implementa-
tion, gesturesare defined and trained using the Agate
gesturerecognizeff10], which is part of the Garnetenvi-
ronment[13]. The progammerpressesa button on the
type definition form to start Agate, and then types the
name of a gesture and draws a few exampléiseofiesture.
Our implementation automatically displays miniature
gestureicons at the top of the type definition form when
Agate is exited.

After demonstratingthe gesture, the progammer
specifiesthe gesture’ssemantics—thdormulas that will
be defined when the gesture is drawn. For instancegtie
tree gestureat the top of Figure 6 specifiesa referenceto
cell newree on a copy of the tree definition form, in
which the formula for cell newElements the elementto
be inserted into the tree, and the formula forahstraction
boxinputTreeis a reference to the tree being manipulate

As this exampleshows, the gesture’ssemanticsare

specified by two things: a cell to be referenced, and formul

specifications for each dhe definition form’s input cells.
(Becausethe formula for the input abstractionbox is
always a referenceto the object being manipulated,its
formulais defined automatically.) There are four ways a
formula can be specified by a gesture:

a

* A gestureattribute formula specificationfor a cell
saysthat the formulais defined by some attribute of
the gestureitself, suchasits height, width or radius.
For example,a progammer defining a gesture for
formatting text might definecell sizés formulato be
defined as the gesture’s height (Figurew)ja(

* A sameformula specification says that this cell's
formula on the new objects definition form is the
same as on the original objects definition form
(Figure 7&f)).

< A constantformula specificationsaysthat this cell's
formula is simply the name of the gesture (Figure
7a@)).

¢ An askUse formula specificationsaysthat the user
will be askedto specifythe formulafor the cell after
the gesture is drawihe new tree gesture(Figure 7b)
defines an askUse formula specification for cell
newElementWhen thegestureis drawn,a dialog box
will be openedaskingthe userto entera formula for
cell newElemen(Figure 8).

In addition to specifying gesturesthat derive one
object from anotherthe progammercan specify a gesture
to createan objectnot derivedfrom any other object. To
specify sucha gesture,the progammerpresseshe “top-
level gesture”button on the type’s definition form, and
specifiesa new gesture(whose nameis the nameof the
type). This gestureis automaticallyaddedto the set of
gestures understood by the top-level gesture recognizer.

Top-level gestures are importawot the consistencyof
the approach for two reasons. First, they allsgr-defined
typesto be instantiatedwith the samedirectnessthat is
provided for built-intypes. Secondthey provide the same
interface for instantiating a new visual object “from
scratch” as for deriving one object from another object.

E 0K E E Apply H ECanceli
cell to be referenced:
2 PSIZE: height
=—STRING: same
bSTYLE: Bold

Cell to be referenced:

NEWELEMENT: ask "Enter the new element"

(b)

d. Figure 7: Defining gesturesemantics.(a) The bold gestur:

defines a referenceto cell formattedTexton a copy of the
sectionHeadingdefinition form in which (1) the formula for
cell sizeis definedto be the height of the drawn gesture
(2) string is definedto be the sameasthe string formula for
the sectionHeading objedteing manipulated,and (3) styleis
the constant “Bold”. (b) The new tree gesture defines a
reference to celhewTreeon a copyof the tree definition form
whosenewElemenformula is to be entered by the user.
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Figure 8: Usinggraphical definitions to insert a new elemen
into a tree. (a) The programmer draws iieevgesture. (b) Afte
drawing the gesture, the programmeris prompted for the
element to be inserted. (¢) Thesulting formulais a referenc
to a new copy of the tree definition form in whickll newEle
menthas the formula 3 ancell inputTreeis a referenceto the
original tree.

5: Other contributions of the approach
5.1: Gesture spaces

Landay and Myers [10] mention the desirability of
supportingcontext-dependergestures:The systemneeds
a way to map the samegestureinto multiple meanings
basedon the context.” Our approachsolves this problem
by making the set of gesturesrecognizedby the gesture

classifier depend on the context of the formula being edited.

Recall from Figure 5 that the progammer clicks on a
value of the desired type to set the context.

By partitioning the gesturesinto different gesture
spacegqa conceptsimilar to namespacesn progamming
languages), gestures need only be distvithin a specific
context. For example, the top-level gesturesand type-
specific gestures may overlaphis allows a gestureto be
reusedin different contexts, while eliminating possible
ambiguitiesover the gesture’smeaning.Thus, the set of
allowable gestures for any context remaiekgtively small
and recognizable even for large peogs.

The scoperules usedin our approachto determine
which gestures are applicableany contextare simple. If
the formula being editedis a referenceto an instanceof a
user-definedtype or to a cell on a user-definedtype

definition form, then the set afesturedor that type—and
only those gestures—willbe recognized.Otherwise, the
recognized gestures are the set of top-level gestures.
One problem that progammersin any progamming
languagefaceis that of rememberinghe permissibleop-

erations on an object, and this problem is exacerbated if the

operationsareinvisible gestureghat must be memorized.
Our approach addressesthis problem by displaying
miniature icons of the allowable gestures (dmeir names)
for the currentcontext. Theseicons documentthe set of

allowable operations, and can even be used as an alternative

meansof specifying gesturesratherthan drawing a ges-
ture, a progammercan click on a gestureicon. (This

technique has fewer degees of freedom than an actual
gesture,but communicatesequivalentinformation as a

gesturewhosesize and orientation are unimportant.) The

partitioning of the gesturesinto different gesture spaces
along with the automatic displayf the allowablegestures
contributes to the practicality of oapproachkeepingthe

set of operationgpermissibleat any one time small, rec-

ognizable, and visible.

5.2: Exploratory programming

One popular use of spreadsheets in investigating
“what-if” scenariosjn which usersexperimentwith dif-
ferentformulasfor cells to seewhat valuesthey produce
for other cells. Our approachextendsthis support for
exploratory projmmmming to visual objectBy exploratory
progamming, we mean allowing the progammer to
interactively gesture and directly manipulate objects,
immediately see thefetts of these manipulationanduse
this feedbackto perform further manipulations.This is
supported by our approach @anumberof ways that work
togetherto satisfy Shneiderman’shird principle of direct
manipulation: rapid inaemental revesible opeations
whose effect on the object of intgest is immediately
visible [16].

Because the result of applyingraghicaldefinition to

an objectis a new objectto which further manipulations
may be applied, our approach provides incremental
operations.The new object defined by a graphical defini-

tion is immediatelydisplayedand manipulable,so the ef-

fectsof suchmanipulationsareimmediatelyvisible. And

becausergphical definitions define declaratifermulasfor

cells ratherthan performing any state modification, it is

trivial to providereversibleoperations—justevert to the

previous formula for the cell. We have addedio andredo

buttonsin the formula edit window that allow the pro-

gammer to easily anduickly undo (or redo)the effects of

any gaphical definition.

Exploratory protamming can aid irunderstandingnd
debugging complex data structures. For instance, a
progammermight test the correctnesof the implemen-
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Figure 9: Using gestures to explore a binary t{eg The pro-
grammer draws keft gesture toshow the left subtree.(b) The
subtreeis immediately displayed, and the programmercan
draw another gesture to shatw left subtree. (cJThe resulting
subtree (the single element 3) is now shown. (d) The progr:
mer has pressed thedo button torevertto the previous for-
mula, and can now explortée right subtreeor perform other
manipulations.

tation of the binary treby creatinga tree, insertinga few
new elements, anthen accessinghe top elementand left
and rightsubtreegdo ensurethat they are correct. Without
gaphical definitions, this processis straightforwardbut
somewhatedious:define formulasfor cells inputTreeand
newElement,create another tree, define its inputTree
formula to referencecell newlree on the previousform,

and so on. With gaphical definitions, the progammer
simply drawsa tree gesture a few new gesturesandthen
exploresthe tree by drawing top, left, and right gestures
(Figure 9). Explorationslike this for evena small tree
with only a few elementswould requirethe creation of

several forms and the definition of several formulas,
whereas gesturesprovide the same functionality more
quickly, more directly, and with more flexibility.

5.3: Scalability

Another practicakontributionof our approachis that
it allows the screenreal estateand memory usageof a
spreadsheeprogam to be reduced significantly, thus
helping make spreadsheetanguagesmore suitable for
building large applications.Perhapsven more important
to the progammeris that graphical definitions reducethe
amountof work requiredto create progams containing
visual objects(Table 1). To considera small example,
building the population visualization progam shown in
Figure 2 withoutgraphicaldefinitions would haverequired
the progammer to copy the circldefinition form 3 times,
to define theadiusformulaon eachcopy, andto reference
eachcircle from the population form; whereasgaphical
definitions requiredonly a single copy of the definition
form to definethe first circle’s fill color. Although each
visual object specified with aaphical definitionis defined
by a definition form behind the scenesonly the visual
object itselfis explicitly displayedonscreenits definition
form is shownonly if the progammerelectsto displayit
by clicking on the object. Becauseso many fewer visual
components need to be constructed, displagedredrawn,
supportingthe progammer’s manipulationsrequires less

screen real estate, less memory, and less computation time

Actions needed to aeate visual objects without graphical definitions

To ceate these # famulas # gestures # cells # off-fom cells | # type definition
visual objects defined refeenced refeenced farms copied
3 circles (population progm) 9 N/A 3 3 3
n circles (population progm) 3n N/A n n n
3-element search tree 6 N/A 3 3 3
n-element search tree 2n N/A n n n

Actions needed to aeate visual objects with graphical definitions

To ceate these # famulas # gestures # cells # off-fom cells | # type definition
visual objects defined refeenced refeenced farms copied
3 circles (population progm) 4 3 2 0 1
n circles (population progm) n+1 n n-1 0 1
3-element search tree 1 4 0 0 0
n-element search tree 1 n+1 0 0 0

Table 1: Programmers perform fewer actions using graphical definitions; in some cases the reduction isaas fiatbr of
n. Of particularimportanceis the reductionin the more complex programmingactions; that is, those that requiremultiple
forms (linked spreadsheets), shown in the two rightmost columns.



6: Empirical study

We conducted an empirical study which 20 gaduate
students wrote two small Forms/3 progams, using
gaphical definitions on one and on the other explicitly

copying forms and entering textual formulas. The details of[g]

the study are given in [5]; its primary results were that
significantly more pragims werecompletedcorrectly with
gaphicaldefinitionsthan with the copyingtechniqueand
that the progams were completed significantigsterusing
gaphical definitions.

7: Conclusion

Spreadsheethave traditionally beenlimited to sup-
porting only the simplestof textual types, namely num-
bersandstrings. Prior attemptsto removethis limitation
haveresultedin a numberof interestingapproachesbut
none ofthem havefeatureda seamlesdit within the one-
way constraintmodel of the spreadshegpbaradigm while
still satisfying the principles of directnessadvocatedby
Shneidermanby Hutchins, Hollan, and Norman; and by
Nardi.

Graphical definitions solve this  problem,
demonstrating that direct manipulatiand gesturescanbe

used to specify formulas in a spreadsheet language in a weg 3] Myers, B., et al., “Garnet: Comprehensive Support for

that is entirely compatible witthe spreadsheetaluerule.
By integating modern techniques from visual
progamming and direct manipulation progamming
seamlessly into spreadsheet languages, gaphical
definitions increase not only the applicability of
spreadsheetlanguages, but also their support for
exploratory progamming and their scalability.

8: References

[1] Atwood, J.,M. Burnett,R. Walpole, E. Wilcox, and
S. Yang,"“SteeringProgamsvia Time Travel,” 1996
IEEE Symp. on Visual Languages Boulder, CO,
Sept. 3-6, 1996, 411

[2] Burnett,M. andA. Ambler, “Interactive Visual Data
Abstraction in a Declarative Visual Progamming
Language,”Journal of Visual Languagesand Com-
puting, March 1994, 29-60.

[3] Cypher, A. (ed, WatchWhat| Do: Progammingby
DemonstrationMIT Press, Cambridge, M@993).

[4] Egenhofer, M., “Spatial-Query-by-Sketch,” 1996
IEEE Symp. on Visual Languages Boulder, CO,
Sept. 3-6, 1996, 60-67.

[5] Gottfried, H. and M. Burnett, “Progmming Complex
Objects in Spreadsheets:An  Empirical Study
Comparing Textual Formula Entry with Direct
Manipulationand Gestures,"Proc. Empirical Studies
of Progammes, Washington DC, Oct. 1997.

[6] Hudson,S., “User Interface Specification Using an
Enhanced SpreadsheetModel,” ACM Trans. on
Graphics July 1994, 209-239.

[71 Hughes,C. and J. Moshell, “Action Graphics: A

Spreadsheet-Basetanguage for Animated Simula-

tion,” in Visual Languagesand Applications(T. Ichi-

kawa, E. Jungert,R. Korfhage, eds.), Plenum Pub-

lishing, New York, NY(1990), 203-235.

Hutchins, E., J. Hollan, and D. Norman, “Direct

Manipulation Interfaces,”in Use Centeed System

Design: New Pespectiveson Human-Computelnta-

action (D. Norman, S. Draper, eds.), Lawrence Erl-

baum Assoc., Hillsdale, NJ (1986), 87-124.

[9] Kay, A., “Computer Software,” Scientific Ameican,
Sept. 1984, 53-59.

[10] Landay, J. and B. Myers, “Extending Bmisting User
Interface Toolkit to Support Gesture Recognition,”
Adjunct Proc. INTERCHI 93, Amsterdam, The
Netherlands, Apr. 24-29, 1993, 91-92.

[11] Miyashita, K., S. Matsuoka,S. Takahashi,A. Yo-
nezawa, and TKamada,"Declarative Progamming of
Graphical Interfaces by Visual Examples,” ACM
Symp. on Use Intaface Software and Technology,
Monterey, CA, Nov. 15-18, 1992, 1074

[12] Miyashita, K., S. Matsuoka,S. Takahashi,and A.
Yonezawa, “lterative Generationof Graphical User
Interfaces by Multiple Visual Examples,” ACM
Symp. on Use Inteface Software and Technology,
Marina del Rey, CA, Nov. 2-4, 1994, 85-94.
Graphical, Highly Interactive User Interfaces,”
Compute Nov. 1990, 71-85.

[14] Myers, B., “Graphical Techniques aSpreadshedbr
Specifying User Interfaces,”CHI '91, New Orleans,
LA, Apr. 28 - May 2, 1991, 243-249.

[15] Nardi, B., A Small Matte of Progamming: Pespec-
tives on End Use Computing, MIT Press, Cam-
bridge, MA(1993).

[16] Shneiderman, B., Designing the Use Intaface:
Strategiesfar Effective Human-Computelnteraction,
AddisonWesley, Reading, MA1992).

[17] Smedley,T., P. Cox, andS. Byrne, “Expanding the
Utility of Spreadsheet§hrough the Integation of
Visual Progamming and User Interface Objects’
AdvancedVisual Intafaces’96, Gubbio, Italy, May
27-29, 1996, 148-155.

[18] Smith, D., A. Cypher, and Spohrer,“KidSim: Pro-
gamming Agents Without A Progamming Lan-
guage,”Comm. ACMJuly 1994, 55-67.

[19] Wilde, N. and C. Lewis, “Spreadsheet-Basedterac-
tive Graphics:From Prototypeto Tool,” CHI '90,
Seattle, V&, Apr. 1-5, 1990, 153-159.

[20] Wilde, N., “A WYSIWYC (What You Seels What
You Compute) Spreadsheet,1993 IEEE Symp. on
Visual Languages Bergen, Norway, Aug. 24-27,
1993 72-76.

[21] Yang, S. andM. Burnett,“From ConcreteForms to
GeneralizedAbstractionsthrough Perspective-Oriented
Analysis of Logical Relationships,” 1994 |EEE
Symp. on Visual LanguageSt. Louis, MO, Oct. 4-
7, 1994, 6-14.



