
Copyright 1997 IEEE. Published in the Proceedings of VL’97, Sept. 23-26, 1997 in Capri, Italy. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and
Permissions, IEEE Service Center/445 Hoes Lane/PO Box 1331, Piscataway, NJ 08855-1331 USA.

Graphical Definitions: Making Spreadsheets Visual
through Direct Manipulation and Gestures

Herkimer J. Gottfried Margaret M. Burnett*

Hewlett-Packard Company Department of Computer Science
1000 NE Circle Blvd., Corvallis, OR 97330 Oregon State University, Corvallis, OR 97331

herkyg@cv.hp.com burnett@cs.orst.edu

Abstract
Until now, attempts to extend the one-way constraint

evaluation model of the spreadsheet paradigm to support
complex objects, such as colored circles or user-defined
types, have led to approaches featuring either a direct way
of creating objects graphically or strong compatibility with
the spreadsheet paradigm, but not both. This inability to
conveniently go beyond numbers and strings without
straying outside the spreadsheet paradigm has been a
limiting factor in the applicability of spreadsheets. In this
paper we present a technique that removes this limitation,
allowing complex objects to be programmed directly—and
in a manner that fits seamlessly within the spreadsheet
paradigm—using direct manipulation and gestures. An
empirical study has shown that programmers can use this
technique to program complex objects faster and with fewer
errors. We show that the graphical definitions technique
not only expands the applicability of spreadsheet
languages, it also adds to their support for exploratory
programming and to their scalability.

1: Introduction

In recent years, many new graphical techniques have
been developed to support the use of visual objects. Of
particular note are the contributions of demonstrational
programming research, which have brought straightfor-
ward, graphical techniques for creating and working with
visual objects to both end-users and programmers. Unfor-
tunately however, users of spreadsheets have been left out
of these advances, and still find themselves stranded in a
highly textual world with limited abilities to incorporate
visual objects into their computations.

We set out to correct this problem. Our goal was to
incorporate visual objects into spreadsheets in a way that
would fit seamlessly within the one-way constraint model
of the spreadsheet paradigm. Further, we wanted our ap-
proach, like most other features found in spreadsheets, to
be applicable to all users of spreadsheet languages. That is,
we wanted to support the simple, built-in graphical objects
likely to be used by ordinary end-users, in a way general

* This work was supported by Hewlett-Packard and by the
National Science Foundation under grants CCR-9308649,
ASC-9523629, and an NSF Young Investigator Award.

enough to also support the complex, user-defined objects
needed by programmers.

In this paper we present such an approach. It allows
both simple and complex objects to be defined graphically
in a spreadsheet language using direct manipulation and
gestures. We call these direct manipulations and gestures
graphical definitions to emphasize that they are a declara-
tive way to define formulas for cells in a graphical manner.
The contributions of the graphical definitions approach are
that (1) it is the first approach that fully supports working
directly and visually with objects in a way that fits
seamlessly within the spreadsheet paradigm; (2) it adds to
both the support for exploratory programming and to the
scalability of spreadsheet languages; and (3) it introduces
gesture spaces, a technique that takes a step forward in the
practicality of programming with gestures.

1.1: Design goals

We use the term spreadsheet languages to refer to all
systems that follow the spreadsheet paradigm, from com-
mercial spreadsheets to more sophisticated systems whose
computations are defined by one-way constraints in the
cells’ formulas. By “fitting seamlessly within the spread-
sheet paradigm,” we mean that the approach follows the
declarative, one-way constraint paradigm of spreadsheets,
emphasizing that it should follow the value rule for
spreadsheets, which states that a cell’s value is defined
solely by the formula explicitly given it by the user [9].
The characteristic of seamlessness within the spreadsheet
paradigm was one of our two primary design goals.

Our other primary design goal was directness, a term
we will use to mean following the principles advocated by
Shneiderman; by Hutchins, Hollan, and Norman; and by
Nardi. The term direct manipulation was coined by Shnei-
derman [16], who describes three principles of direct
manipulation systems: continuous representation of the
objects of interest, physical actions or presses of labeled
buttons instead of complex syntax, and rapid incremental
reversible operations whose effect on the object of interest
is immediately visible.

Hutchins, Hollan, and Norman [8] expand upon these
notions, suggesting that the degree to which a user inter-
face feels direct is inversely proportional to the cognitive

Permissions, IEEE Service Center/445 Hoes Lane/PO Box 1331, Piscataway, NJ 08855-1331 USA.

- 2 -

effort needed to use the interface. They describe directness
as having two aspects. The first aspect is the distance be-
tween one’s goals and the actions required by the system to
achieve those goals. In traditional spreadsheet program-
ming, this distance is fairly small because there is a well-
understood, one-one mapping from each operator and term
in the goal to the formula that must be specified (e.g.,
from the goal “add A and B” to the formula “A + B”). The
second aspect is a feeling of direct engagement, “the feeling
that one is directly manipulating the objects of interest.”
Nardi [15] sees direct engagement as a critical element in
spreadsheets, emphasizing freedom from low-level pro-
gramming minutiae in favor of task-specific operations.
Direct engagement has been largely absent from prior ap-
proaches to supporting graphics in spreadsheet languages.

2: Related work

Many commercial spreadsheets provide the capability
to display simple graphics and charts. However, these
visual objects are strictly output mechanisms: they cannot
be values of cells, other cells’ values cannot depend on
them, and only the charts (not the other kinds of graphics)
can be dependent on other cells. Furthermore, these
spreadsheets do not allow users to extend the set of visual
objects that are supported. In some spreadsheets, it is
possible to gain some graphical support for objects
through the use of macro languages and incorporation of
state-modifying programming languages, but these ap-
proaches violate the spreadsheet value rule. Macros violate
it because a macro stored in one group of cells actually
changes other cells’ formulas during execution—the
spreadsheet equivalent of self-modifying programs.

Although some research spreadsheet languages have
used graphical techniques, they have not achieved the
combination of generality and directness that we sought for
the spreadsheet paradigm. For example, the NoPumpII
spreadsheet language [19] includes some built-in graphical
types that may be instantiated using cells and formulas,
and supports limited (built-in) manipulations for these
objects, but does not support complex or user-defined
objects. Penguims [6] is an environment based on the
spreadsheet model for specifying user interfaces. It supports
complex objects by providing the capability to collect cells
together into objects, but it also introduces several new
concepts that violate the spreadsheet model, such as
interactor objects that can modify the formulas of other
cells, and imperative code similar to macros. Action
Graphics [7] is a spreadsheet language for graphics
animations. It also provides some support for complex
objects, but does not provide the directness we sought. A
version of Prograph incorporates user interface objects into
a spreadsheet in order to provide spreadsheet users with a
graphical interface for input and feedback [17]. However,

although the Prograph approach to spreadsheets adds the
ability to incorporate visual objects into spreadsheets, it
does not make programming them more direct.

Wilde’s WYSIWYC spreadsheet [20] aims to improve
traditional spreadsheet programming by making cell
formulas visible and by making the visible structure of the
spreadsheet match its computational structure. Although
this work is similar to ours in its attempt to emphasize the
task-specific operations of spreadsheet languages, Wilde
focuses on the resulting program rather than on the means
of specifying it, and does not address visual types.

C32 [14] uses graphical techniques along with infer-
ence to specify constraints in user interfaces. Unlike the
other spreadsheet languages described, C32 is not a full-
fledged spreadsheet language; rather, it is a front-end to the
underlying textual language Lisp used in the Garnet user
interface development environment [13]. C32 is a way of
viewing constraints, but does not itself feature the
graphical creation and manipulation of visual objects.
Instead, this function is performed by another part of the
Garnet package. Together C32 and the other portions of the
Garnet package feature strong support for direct manipu-
lation of built-in graphical user interface objects, but not
for any other kinds of objects, which must be written and
manipulated in Lisp.

Our work is also related to pen-based computing [4]
and to programming by demonstration [3]. Of the latter,
the most closely related to our work are systems featuring
declarative approaches to programming. KidSim [18] is a
demonstrational system that uses direct manipulation to
specify declarative graphical rewrite rules. Although
KidSim’s approach is similar to ours in its emphasis on
directness, it does not provide the kind of flexible,
declarative specification of objects and attributes that we
sought for a full-featured, spreadsheet-based approach. The
multi-way constraint-based systems TRIP3 [11] and
IMAGE [12] use direct manipulation as a means of speci-
fying relations declaratively; in these systems a visual
example defines a relationship between the application data
and its visual representation. However, our interest was in
finding a declarative approach that would work with the
one-way constraints of spreadsheet languages.

3: Programming visual objects directly

We have prototyped our approach in the spreadsheet
language Forms/3 [1, 2], and the examples in this paper
are presented in that language. Forms/3 has long supported
both built-in graphical types and user-defined graphical
types. (Built-in types are provided in the language
implementation but are otherwise identical to user-defined
types.) Attributes of a type are defined by formulas in
groups of cells, and an instance of a type is the value of an
ordinary cell that can be referenced just like any other cell.

Permissions, IEEE Service Center/445 Hoes Lane/PO Box 1331, Piscataway, NJ 08855-1331 USA.

- 3 -

For example, the built-in circle object shown in Figure 1
is defined by cells defining its radius, line thickness, color,
and other attributes. In this paper we show how this
approach can be extended to support the direct style that
characterizes spreadsheets.

3.1: How are graphical definitions used?

To introduce graphical definitions, we consider tasks
that a traditional spreadsheet user might be interested in
performing, but that are difficult to do or are beyond the
capabilities of current spreadsheets. One such task is
displaying a graphical representation of data, using domain-
specific visualization rules. Figure 2 shows such a
visualization that a population analyst might wish to
specify in a spreadsheet language. The program categorizes
population data into cities, towns, and villages, and
represents each with a differently sized black circle. The
population analyst can use our approach to define these
graphical objects using direct manipulation and gestures.

Simple graphical objects such as circles can be defined
by drawing a gesture in the shape of the object, and can be
sized by directly manipulating the object. To define the
large city circle for the program, the population analyst
first draws a circle gesture (Figure 3a). This defines the
cell’s formula to be a reference to cell newCircle on a copy

of the built-in circle definition form whose radius formula
is defined to be the radius of the drawn circle gesture.
However, the circles in the program are to be solid black.
Because there are no gestures to specify fill color, the
population analyst clicks on the circle to display its
definition form, and then defines the formula for cell
fillForeColor (Figure 3b).

One way to define the circles for cells town and village
is by using direct manipulation to specify how they are
different from the city circle. For example, to define the
town circle, the population analyst clicks on cell city
instead of drawing a new circle. This displays the circle in
the formula edit window so that it can be manipulated
(Figure 4). The population analyst then resizes the circle in
the formula window to define the town circle, which has
all of the attributes of the city circle except its radius.

3.2: Graphical definitions and the value rule

That graphical definitions are consistent with the value
rule follows from the fact that they have the same
semantics as Forms/3’s previous, textual-spreadsheet-
formula mechanism, which is consistent with the value
rule. For example, cell town would have been specified in

Figure 2: A visualization of population data.

Figure 1: A portion of a Forms/3 form that defines a circle. The
circle in cell newCircle is defined by the other cells, which
define its attributes. A user can view and specify spreadsheet
formulas by clicking on the formula tabs (); radio buttons
and popup menus can be used to specify constant formulas.

(a)

(b)
Figure 3: Defining the circle for cell city. (a) The population
analyst first draws a circle gesture to define the circle. (b) After
clicking on the circle to display its definition form, the
population analyst defines the fillForeColor formula via a
popup menu.

Permissions, IEEE Service Center/445 Hoes Lane/PO Box 1331, Piscataway, NJ 08855-1331 USA.

- 4 -

the previous approach by copying the built-in primitive-
Circle form (Figure 1), entering new radius and fillFore-
Color formulas, and referring to the copy’s cell newCircle.

Note that with graphical definitions, what the user
directly manipulates is a cell’s formula, not its value. If
graphical definitions operated on cell values instead, the
spreadsheet value rule would be violated. For example, if a
cell x’s formula is “newCircle”, then manipulating x’s
value instead of its formula would have to contradict x’s
formula or change newCircle’s formula, neither of which
would be consistent with the value rule. Our system makes
explicit the fact that the user is manipulating formulas by
supporting graphical definitions in the formula edit
window instead of in the main part of the spreadsheet.

3.3: Using gestures with user-defined types

Even traditionally abstract types are visual if a pro-
grammer chooses to think of them as such. To demonstrate
the generality of the approach, we show in this section
how graphical definitions can be used even in a traditional
data processing example, such as a search.

Suppose the programmer wants to develop a binary
search algorithm using a binary tree that was previously

implemented by some other programmer. The user-defined
tree type contains operations to insert a new element into a
tree, report the top element of the tree, and report the left
and right subtrees. The tree implementor has also defined
gestures, which are automatically displayed, to perform
these operations (Figure 5(3)). The gestures allow the low-
level details of the tree implementation to be abstracted
away, letting the programmer of the search algorithm
perform tree operations without explicitly copying the tree
definition form, defining new formulas for cells on the
definition form, or explicitly referencing those cells.

To program a standard recursive search algorithm
given such a tree, the programmer can use graphical
definitions to access different elements of the search tree.
For instance, if the search element is smaller than the top
element of the tree, the search algorithm is called
recursively on the left subtree. (Recursion is supported in
Forms/3 by referencing cells on copies of the form being
defined, which are then automatically generalized using a
deductive technique [21].) The programmer can define a
formula to access the left subtree by clicking on the search
tree cell and drawing the left gesture—a line pointing down
to the left (Figure 5). This direct action defines a formula
that is equivalent to that defined by copying the tree
definition form, defining the formula for cell inputTree on
that form to be a reference to the search tree, and
referencing cell left. (The tree definition form will be
discussed in detail in the next section.) However, unlike
the actions of copying the form and writing textual
formulas, this gesture corresponds directly to the pro-
grammer’s intent: “I want that tree’s left subtree.”

4: Defining new visual objects

A programmer defines a new type with a type defini-
tion form [2] containing an abstraction box, which defines
an instance of the type as the composition of its attributes;
an image cell, whose formula defines the type’s appear-
ance(s); and other cells and abstraction boxes to specify the
type’s operations.

For example, a tree definition form (Figure 6) might
contain input abstraction box inputTree intended to contain
an incoming tree, input cell newElement for an element to
be inserted into the tree, and output abstraction box
newTree to define a tree into which the new element has
been inserted. Other cells providing operations for the tree
(such as the predicate reporting whether the incoming tree
is empty, and a cell reporting the root element) are also
usually present. Multiple instances of a tree can be
instantiated using multiple copies of the form, which are
the underlying equivalent of the graphical definitions
shown in the example of the previous section.

For graphical definitions to be possible with such a
type, a programmer needs a way to specify the set of

(a) (b)
Figure 4: Defining the circle for cell town. (a) The population
analyst clicks on cell city to display the large city circle. (b)
The population analyst directly manipulates the circle to
define the smaller town circle, which has the black color and
other attributes of the original circle.

3

2

4

1

Figure 5: The programmer clicks on the (1) search tree to set
the (2) context for the gesture. (3) Iconic representations of the
tree gestures are automatically displayed. The programmer (4)
then draws a gesture to reference the left subtree.

Permissions, IEEE Service Center/445 Hoes Lane/PO Box 1331, Piscataway, NJ 08855-1331 USA.

- 5 -

graphical definitions for the type, enabling their use for
purposes such as the binary search algorithm of the pre-
vious section.

4.1: How do programmers define new gestures?

The first step in specifying the set of graphical defi-
nitions for a user-defined type is to specify the set of ges-
tures that are applicable to the type. In our implementa-
tion, gestures are defined and trained using the Agate
gesture recognizer [10], which is part of the Garnet envi-
ronment [13]. The programmer presses a button on the
type definition form to start Agate, and then types the
name of a gesture and draws a few examples of the gesture.
Our implementation automatically displays miniature
gesture icons at the top of the type definition form when
Agate is exited.

After demonstrating the gesture, the programmer
specifies the gesture’s semantics—the formulas that will
be defined when the gesture is drawn. For instance, the new
tree gesture at the top of Figure 6 specifies a reference to
cell newTree on a copy of the tree definition form, in
which the formula for cell newElement is the element to
be inserted into the tree, and the formula for the abstraction
box inputTree is a reference to the tree being manipulated.

As this example shows, the gesture’s semantics are
specified by two things: a cell to be referenced, and formula
specifications for each of the definition form’s input cells.
(Because the formula for the input abstraction box is
always a reference to the object being manipulated, its
formula is defined automatically.) There are four ways a
formula can be specified by a gesture:

• A gesture attribute formula specification for a cell
says that the formula is defined by some attribute of
the gesture itself, such as its height, width or radius.
For example, a programmer defining a gesture for
formatting text might define cell size’s formula to be
defined as the gesture’s height (Figure 7a(1)).

• A same formula specification says that this cell’s
formula on the new object’s definition form is the
same as on the original object’s definition form
(Figure 7a(2)).

• A constant formula specification says that this cell’s
formula is simply the name of the gesture (Figure
7a(3)).

• An askUser formula specification says that the user
will be asked to specify the formula for the cell after
the gesture is drawn. The new tree gesture (Figure 7b)
defines an askUser formula specification for cell
newElement. When the gesture is drawn, a dialog box
will be opened asking the user to enter a formula for
cell newElement (Figure 8).

In addition to specifying gestures that derive one
object from another, the programmer can specify a gesture
to create an object not derived from any other object. To
specify such a gesture, the programmer presses the “top-
level gesture” button on the type’s definition form, and
specifies a new gesture (whose name is the name of the
type). This gesture is automatically added to the set of
gestures understood by the top-level gesture recognizer.

Top-level gestures are important to the consistency of
the approach for two reasons. First, they allow user-defined
types to be instantiated with the same directness that is
provided for built-in types. Second, they provide the same
interface for instantiating a new visual object “from
scratch” as for deriving one object from another object.

Figure 6: A tree definition form. The cells inside the (1)
abstraction boxes are by definition “hidden,” and cannot be
accessed by cells outside this form. The implementor of the
tree has provided (2) access cells such as empty? to report
attributes of inputTree. The formula tabs on cells newElement
and inputTree signify that these cells are intended for input.
(The formulas are not shown.)

1

2

3

(a)

(b)
Figure 7: Defining gesture semantics. (a) The bold gesture
defines a reference to cell formattedText on a copy of the
sectionHeading definition form in which (1) the formula for
cell size is defined to be the height of the drawn gesture,
(2) string is defined to be the same as the string formula for
the sectionHeading object being manipulated, and (3) style is
the constant “Bold”. (b) The new tree gesture defines a
reference to cell newTree on a copy of the tree definition form
whose newElement formula is to be entered by the user.

Permissions, IEEE Service Center/445 Hoes Lane/PO Box 1331, Piscataway, NJ 08855-1331 USA.

- 6 -

5: Other contributions of the approach

5.1: Gesture spaces

Landay and Myers [10] mention the desirability of
supporting context-dependent gestures: “The system needs
a way to map the same gesture into multiple meanings
based on the context.” Our approach solves this problem
by making the set of gestures recognized by the gesture
classifier depend on the context of the formula being edited.
Recall from Figure 5 that the programmer clicks on a
value of the desired type to set the context.

By partitioning the gestures into different gesture
spaces (a concept similar to name spaces in programming
languages), gestures need only be distinct within a specific
context. For example, the top-level gestures and type-
specific gestures may overlap. This allows a gesture to be
reused in different contexts, while eliminating possible
ambiguities over the gesture’s meaning. Thus, the set of
allowable gestures for any context remains relatively small
and recognizable even for large programs.

The scope rules used in our approach to determine
which gestures are applicable in any context are simple. If
the formula being edited is a reference to an instance of a
user-defined type or to a cell on a user-defined type

definition form, then the set of gestures for that type—and
only those gestures—will be recognized. Otherwise, the
recognized gestures are the set of top-level gestures.

One problem that programmers in any programming
language face is that of remembering the permissible op-
erations on an object, and this problem is exacerbated if the
operations are invisible gestures that must be memorized.
Our approach addresses this problem by displaying
miniature icons of the allowable gestures (and their names)
for the current context. These icons document the set of
allowable operations, and can even be used as an alternative
means of specifying gestures: rather than drawing a ges-
ture, a programmer can click on a gesture icon. (This
technique has fewer degrees of freedom than an actual
gesture, but communicates equivalent information as a
gesture whose size and orientation are unimportant.) The
partitioning of the gestures into different gesture spaces
along with the automatic display of the allowable gestures
contributes to the practicality of our approach, keeping the
set of operations permissible at any one time small, rec-
ognizable, and visible.

5.2: Exploratory programming

One popular use of spreadsheets is in investigating
“what-if” scenarios, in which users experiment with dif-
ferent formulas for cells to see what values they produce
for other cells. Our approach extends this support for
exploratory programming to visual objects. By exploratory
programming, we mean allowing the programmer to
interactively gesture and directly manipulate objects,
immediately see the effects of these manipulations, and use
this feedback to perform further manipulations. This is
supported by our approach in a number of ways that work
together to satisfy Shneiderman’s third principle of direct
manipulation: rapid incremental reversible operations
whose effect on the object of interest is immediately
visible [16].

Because the result of applying a graphical definition to
an object is a new object to which further manipulations
may be applied, our approach provides incremental
operations. The new object defined by a graphical defini-
tion is immediately displayed and manipulable, so the ef-
fects of such manipulations are immediately visible. And
because graphical definitions define declarative formulas for
cells rather than performing any state modification, it is
trivial to provide reversible operations—just revert to the
previous formula for the cell. We have added undo and redo
buttons in the formula edit window that allow the pro-
grammer to easily and quickly undo (or redo) the effects of
any graphical definition.

Exploratory programming can aid in understanding and
debugging complex data structures. For instance, a
programmer might test the correctness of the implemen-

(a) (b)

(c)
Figure 8: Using graphical definitions to insert a new element
into a tree. (a) The programmer draws the new gesture. (b) After
drawing the gesture, the programmer is prompted for the
element to be inserted. (c) The resulting formula is a reference
to a new copy of the tree definition form in which cell newEle-
ment has the formula 3 and cell inputTree is a reference to the
original tree.

Permissions, IEEE Service Center/445 Hoes Lane/PO Box 1331, Piscataway, NJ 08855-1331 USA.

- 7 -

tation of the binary tree by creating a tree, inserting a few
new elements, and then accessing the top element and left
and right subtrees to ensure that they are correct. Without
graphical definitions, this process is straightforward but
somewhat tedious: define formulas for cells inputTree and
newElement, create another tree, define its inputTree
formula to reference cell newTree on the previous form,

and so on. With graphical definitions, the programmer
simply draws a tree gesture, a few new gestures, and then
explores the tree by drawing top, left, and right gestures
(Figure 9). Explorations like this for even a small tree
with only a few elements would require the creation of
several forms and the definition of several formulas,
whereas gestures provide the same functionality more
quickly, more directly, and with more flexibility.

5.3: Scalability

Another practical contribution of our approach is that
it allows the screen real estate and memory usage of a
spreadsheet program to be reduced significantly, thus
helping make spreadsheet languages more suitable for
building large applications. Perhaps even more important
to the programmer is that graphical definitions reduce the
amount of work required to create programs containing
visual objects (Table 1). To consider a small example,
building the population visualization program shown in
Figure 2 without graphical definitions would have required
the programmer to copy the circle definition form 3 times,
to define the radius formula on each copy, and to reference
each circle from the population form; whereas graphical
definitions required only a single copy of the definition
form to define the first circle’s fill color. Although each
visual object specified with a graphical definition is defined
by a definition form behind the scenes, only the visual
object itself is explicitly displayed onscreen; its definition
form is shown only if the programmer elects to display it
by clicking on the object. Because so many fewer visual
components need to be constructed, displayed, and redrawn,
supporting the programmer’s manipulations requires less
screen real estate, less memory, and less computation time.

(a) (b)

(c) (d)
Figure 9: Using gestures to explore a binary tree. (a) The pro-
grammer draws a left gesture to show the left subtree. (b) The
subtree is immediately displayed, and the programmer can
draw another gesture to show its left subtree. (c) The resulting
subtree (the single element 3) is now shown. (d) The program-
mer has pressed the undo button to revert to the previous for-
mula, and can now explore the right subtree or perform other
manipulations.

Actions needed to create visual objects without graphical definitions
To create these
visual objects

formulas
defined

gestures # cells
referenced

off-form cells
referenced

type definition
forms copied

3 circles (population program) 9 N/A 3 3 3

n circles (population program) 3n N/A n n n

 3-element search tree 6 N/A 3 3 3

n-element search tree 2n N/A n n n

Actions needed to create visual objects with graphical definitions

To create these
visual objects

formulas
defined

gestures # cells
referenced

off-form cells
referenced

type definition
forms copied

3 circles (population program) 4 3 2 0 1

n circles (population program) n + 1 n n - 1 0 1

 3-element search tree 1 4 0 0 0

n-element search tree 1 n + 1 0 0 0
Table 1: Programmers perform fewer actions using graphical definitions; in some cases the reduction is as much as a factor of
n. Of particular importance is the reduction in the more complex programming actions; that is, those that require multiple
forms (linked spreadsheets), shown in the two rightmost columns.

Permissions, IEEE Service Center/445 Hoes Lane/PO Box 1331, Piscataway, NJ 08855-1331 USA.

- 8 -

6: Empirical study

We conducted an empirical study in which 20 graduate
students wrote two small Forms/3 programs, using
graphical definitions on one and on the other explicitly
copying forms and entering textual formulas. The details of
the study are given in [5]; its primary results were that
significantly more programs were completed correctly with
graphical definitions than with the copying technique, and
that the programs were completed significantly faster using
graphical definitions.

7: Conclusion

Spreadsheets have traditionally been limited to sup-
porting only the simplest of textual types, namely num-
bers and strings. Prior attempts to remove this limitation
have resulted in a number of interesting approaches, but
none of them have featured a seamless fit within the one-
way constraint model of the spreadsheet paradigm while
still satisfying the principles of directness advocated by
Shneiderman; by Hutchins, Hollan, and Norman; and by
Nardi.

Graphical definitions solve this problem,
demonstrating that direct manipulation and gestures can be
used to specify formulas in a spreadsheet language in a way
that is entirely compatible with the spreadsheet value rule.
By integrating modern techniques from visual
programming and direct manipulation programming
seamlessly into spreadsheet languages, graphical
definitions increase not only the applicability of
spreadsheet languages, but also their support for
exploratory programming and their scalability.

8: References

[1] Atwood, J., M. Burnett, R. Walpole, E. Wilcox, and
S. Yang, “Steering Programs via Time Travel,” 1996
IEEE Symp. on Visual Languages, Boulder, CO,
Sept. 3-6, 1996, 4-11.

[2] Burnett, M. and A. Ambler, “Interactive Visual Data
Abstraction in a Declarative Visual Programming
Language,” Journal of Visual Languages and Com-
puting, March 1994, 29-60.

[3] Cypher, A. (ed.), Watch What I Do: Programming by
Demonstration, MIT Press, Cambridge, MA (1993).

[4] Egenhofer, M., “Spatial-Query-by-Sketch,” 1996
IEEE Symp. on Visual Languages, Boulder, CO,
Sept. 3-6, 1996, 60-67.

[5] Gottfried, H. and M. Burnett, “Programming Complex
Objects in Spreadsheets: An Empirical Study
Comparing Textual Formula Entry with Direct
Manipulation and Gestures,” Proc. Empirical Studies
of Programmers, Washington DC, Oct. 1997.

[6] Hudson, S., “User Interface Specification Using an
Enhanced Spreadsheet Model,” ACM Trans. on
Graphics, July 1994, 209-239.

[7] Hughes, C. and J. Moshell, “Action Graphics: A
Spreadsheet-Based Language for Animated Simula-
tion,” in Visual Languages and Applications (T. Ichi-
kawa, E. Jungert, R. Korfhage, eds.), Plenum Pub-
lishing, New York, NY (1990), 203-235.

[8] Hutchins, E., J. Hollan, and D. Norman, “Direct
Manipulation Interfaces,” in User Centered System
Design: New Perspectives on Human-Computer Inter-
action (D. Norman, S. Draper, eds.), Lawrence Erl-
baum Assoc., Hillsdale, NJ (1986), 87-124.

[9] Kay, A., “Computer Software,” Scientific American,
Sept. 1984, 53-59.

[10] Landay, J. and B. Myers, “Extending an Existing User
Interface Toolkit to Support Gesture Recognition,”
Adjunct Proc. INTERCHI ’93, Amsterdam, The
Netherlands, Apr. 24-29, 1993, 91-92.

[11] Miyashita, K., S. Matsuoka, S. Takahashi, A. Yo-
nezawa, and T. Kamada, “Declarative Programming of
Graphical Interfaces by Visual Examples,” ACM
Symp. on User Interface Software and Technology,
Monterey, CA, Nov. 15-18, 1992, 107-116.

[12] Miyashita, K., S. Matsuoka, S. Takahashi, and A.
Yonezawa, “Iterative Generation of Graphical User
Interfaces by Multiple Visual Examples,” ACM
Symp. on User Interface Software and Technology,
Marina del Rey, CA, Nov. 2-4, 1994, 85-94.

[13] Myers, B., et al., “Garnet: Comprehensive Support for
Graphical, Highly Interactive User Interfaces,”
Computer, Nov. 1990, 71-85.

[14] Myers, B., “Graphical Techniques in a Spreadsheet for
Specifying User Interfaces,” CHI ’91, New Orleans,
LA, Apr. 28 - May 2, 1991, 243-249.

[15] Nardi, B., A Small Matter of Programming: Perspec-
tives on End User Computing, MIT Press, Cam-
bridge, MA (1993).

[16] Shneiderman, B., Designing the User Interface:
Strategies for Effective Human-Computer Interaction,
Addison-Wesley, Reading, MA (1992).

[17] Smedley, T., P. Cox, and S. Byrne, “Expanding the
Utility of Spreadsheets Through the Integration of
Visual Programming and User Interface Objects,”
Advanced Visual Interfaces ’96, Gubbio, Italy, May
27-29, 1996, 148-155.

[18] Smith, D., A. Cypher, and J. Spohrer, “KidSim: Pro-
gramming Agents Without A Programming Lan-
guage,” Comm. ACM, July 1994, 55-67.

[19] Wilde, N. and C. Lewis, “Spreadsheet-Based Interac-
tive Graphics: From Prototype to Tool,” CHI ’90,
Seattle, WA, Apr. 1-5, 1990, 153-159.

[20] Wilde, N., “A WYSIWYC (What You See Is What
You Compute) Spreadsheet,” 1993 IEEE Symp. on
Visual Languages, Bergen, Norway, Aug. 24-27,
1993, 72-76.

[21] Yang, S. and M. Burnett, “From Concrete Forms to
Generalized Abstractions through Perspective-Oriented
Analysis of Logical Relationships,” 1994 IEEE
Symp. on Visual Languages, St. Louis, MO, Oct. 4-
7, 1994, 6-14.

