mzuriCh ETH Library

Montages/Gem-Mex: a meta visual
programming generator

Report

Author(s):
Anlauff, Matthias; Kutter, Philipp W.; Pierantonio, Alfonso

Publication date:
1998-02

Permanent link:
https://doi.org/10.3929/ethz-a-004290091

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
TIK Report 35

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-004290091
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Montages/Gem-Mex: a Meta Visual Programming Generator

M. Anlauff

GMD FIRST
Berlin, Germany
maQfirst.gmd.de

Abstract

Last decade witnessed a disappointing lack in tech-
nology transfer from formal semantics to language de-
stgn. Research in formal semantics has developed in-
creasingly complex concepts and notation, at the ex-
pense of calculational clarity and applicability in the
development of languages.

Montages is a visual domain-specific formalism for
specifying all the aspects of a programming language.
1t 15 intelligible to a broad range of people involved in
the language life cycle, from design to programming.
Language descriptions are fed to a rapid prototyping
tool, called Gem-Mex, which generates a wvisual pro-
grammang environment for the giwen language.

Gem-Mezx consists of a graphical front-end which
allows a comfortable editing of the visual components
of the specification. Starting from these visual de-
scriptions the tool is able to generate in an auto-
matic way high-quality documents, type-checkers, in-
terpreters and a visual symbolic debugger. All these
products form a powerful suite where the programmer
can write, execute, animate and debug programs writ-
ten wn the specified language.

1 Introduction

Over the last two decades, formal semantics of pro-
gramming languages followed considerably the trend
towards higher levels of specialization, at the ex-
pense of computational clarity. This situation gen-
erated more experts than general users and ham-
pered the technology transfer from semantics research
to mainstream computing. It is striking how pro-
gramming language designers make such little use of
formal methods. Most of the languages have been
specified informally. FEven if a formal specification
is undertaken, semanticists are expected to play the
role of morticians in the community of programming
languages, e.g. analyzing an already designed type-
system. In other words, formal semantics have not
played the same central role in language design, imple-

P.W. Kutter

ETH Zirich
Zurich. Switzerland
kutterQtik.ee.ethz.ch

A. Pierantonio

Universita di L’Aquila
L’Aquila, Italy
alfonso@univaq.it

mentation and understanding as have formal-syntax
techniques.

Of course, the situation is not uniform and often
semantics research influenced the design of procedu-
ral and type-checking mechanism or security aspects
in several projects. But still it is surprising and dis-
appointing that language design methods of the 1970s
and 1980s are still being used in the 1990s. Formal
specifications of semantics are still uncommon and
tend to appear years after the corresponding informal
specifications. They are usually incomplete and/or in-
accurate, and considered as not definitive. Language
designers still rely in informal specifications which are
open to incompleteness, inconsistency and ambiguity.

In order to make the language designer reconsider
their attitude to formal methods, we proposed a for-
malism, called Montages [KP97b]. The main aim of
such a mathematical framework is to adopt a “user-
friendly” interface to the underlying mathematical
machinery. By mean of visual descriptions the de-
signer can map her/his intuitions to semantical defi-
nitions, which can be fed to a rapid prototyping tool,
called Gem-Mex.

In this paper we describe the visual aspects of Mon-
tages and Gem-Mex. We show how the visual specifi-
cation of control and data flow of language constructs
are used to visualize the control and data-flow of pro-
grams. We highlight how a uniform visualization is
used for language specification and for the generated
program animation tools. This allows to take advan-
tage of the visual specification during program visual-
ization.

This paper is organized as follow. In the next sec-
tion, we illustrate the Montages formalism and its se-
mantics mainly informally and by means of a simple
example. Sect. 3 the Gem-Mex tool is present by giv-
ing an overall picture of the system and how it can
assist the user in editing the visual specifications and
generating program animation and debugging tools.

Finally, in Sect. 4 we draw some conclusions.

2 Background: Montages

Montages [KP97b] constitute a specification for-
malism for describing all aspects of programming lan-
guages. Syntax, static analysis and semantics, and dy-
namic semantics are given in an unambiguous and co-
herent way by means of semi—visual descriptions. The
static aspects of Montages resemble control and data
flow graphs, and the overall specifications are similar
in structure, length, and complexity to those found in
common language manuals. Montages are designed to
provide a theoretical basis for a number of activities
from initial language design to prototyping.

The mathematical semantics of Montages is given
with Abstract State Machines (formally called Evolv-
ing Algebras) [Gur95, ASM95] In short, ASMs are a
state—based formalism in which a state is updated in
discrete time steps. Unlike most state based systems,
the state is given by an algebra, that is, a collection
of functions and universes. The state transitions are
given by rules that update functions pointwise and ex-
tend universes with new elements.

ASMs have already been used to model the dynamic
semantics of a number of programming languages,
such as Occam [BDR94], C [GH93], C++ [Wal95]
and Oberon [Kut97] to mention a few. At the risk
of oversimplifying somewhat, one defines the initial
state of the functions and specifies how they evolve
by means of transition rules. The wnitial state is as-
sumed to include the results of a static analysis. After
this analysis the program’s control and data flow is
represented in the form of functions between parts of
the program text. As usual the control flow functions
specify the order in which statements are executed,
and the data flow functions specify how values flow
via variables through operations. The corresponding
transition rules update the system state and let the
control evolve through the control flow.

The existing case studies showed that it is possi-
ble to model with ASMs the dynamic semantics of
realistic programming languages, but they have the
disadvantage that they do not formalize the static
aspects. Montages engineered the ASM’s approach
to programiming language semantics showing how to
model consistently not only the dynamic semantics,
but the static analysis and semantics as well. In par-
ticular, we describe how to define intensionally the
abstract syntax, i.e. the control and data flow, start-
ing from the concrete one. This mapping is provided
by means of graphs which confer to the specification
a great intelligibility.

A language specification is given by a collection of
Montages, which is hierarchically structured according
to the rules of the corresponding context-free grammar
given in EBNF [Wir77]. Each Montage is a “BNF-
extension-to-semantics”, that is a self contained de-
scription in which all the properties of a given con-
struct are formally defined.

In Fig. 1 the Montage specification of a “While”
construct is presented as it looks if edited with the
Gem-Mex tool. The topmost part in the working area
is the production rule defining the context—free syntax.
Below is a graphical representation of a pattern in the
parse tree, and of the control and data flow

graph. Inner nodes of the parse tree are represented
with boxes and leaves with ovals. Nested boxes are
used to represent nodes on lover levels of the parse
trees. The solid and dotted arrows denote the data
and control flow, respectively. Control flow arrows are
labeled by means of boolean predicates which deter-
mine through which edges the control flows from one
state to the next, e.g. the predicate Guard. Value in-
dicates that the control is passed from a “do”-token
to the sequence of statements StatementSeq whenever
the value of the expression Ezpr, which is retrieved by
means of the data flow Guard, is evaluated to true.
For the sake of simplicity, we allow to omit the label
in certain situations:

o If all outgoing control arrows of a node have the
label true, this label may be omitted.

o If two control arrows ¢; and ¢ leave a node, and
c1 is labeled with the negation of ¢y’s label, one
of the labels may be omitted.

e If several control arrows cq,...,¢, leave a node,
the label of one arrow ¢; may be omitted, if it is
equal to

=LA AN S A alipe AL A S,
where /; is the label of ¢;. This is a generalization
of the second case.

The control flow arrows I (initial) and T (terminal) are
special arrows which serve to plug together the local
flow-information to the global one. The third part of
the While Montage contains the static semantics, that
is, the type of the While-condition must be Boolean.
The designer may make use of full first-order logic to
express context sensitive constraints. In this example,
the part containing explicit dynamic semantics rules
is missing. This is usual for most of the control state-
ments, but there are also cases in which an additional

File | Edit | Windows |

4 HNontemminal - Terminal - List Hode .- Transition Rule

K
%
%
5

Hhile ::= "while" Expr "do"
AtatementSedq
Ilendll
Guard
oe SoFepe oot L e

S Grard. Valie

7
#

S—StatementSeq ‘

condition 5-Expr.StaticType = Boolean

Figure 1: The While Montage

transition rule is needed to define the complete dy-
namic semantics as illustrate, for instance, in Fig. 3.
With respect to earlier works [KP97b, AKP97] the im-
plicit control flow is a recent enhancement of the visual
formalism of Montages.

The semantics of a Montages specification of a pro-
gramming language is the following, given a program

e the context-free grammar obtained by collecting
all the EBNF-rules in each Montage defines the
concrete syntax;

e the visual part of the Montages is the mapping
between the concrete and abstract syntax, i.e. it
defines an inductive decoration of the parse tree;
in other words the control and data flow arrows
are mapped to pointwise definition of functions in
the resulting ASM. This information is needed, in
turn, by the dynamic semantics;

e the condition part is a first-order logic predi-
cate which is evaluated while traversing the parse
tree, i.e. for each internal node the corresponding
predicate is checked. In general, different traver-
sal strategies can be specified, predicates can be
checked before or after the analysis of subtrees, or
maybe the designer may prefer to define several
passes, e.g. oue additional pass to check declara-
tions before the other fragments. A more leisured
and detailed discussion can be found in [KP97h].

e the dynamic semantics part is a transition rules
which is fired whenever the control reach that
given construct. For instance, in fig 3 whenever
the control reaches the node denoted by “:=” the
following rule is enabled

Q¢¢.=27.
Variable.Decl.Value := RHS.Value
end

which updates locally the value of the declaration
of the left-hand-side variable to the value of the
right-hand-side expression.

The logical and formal aspects of Montages are not
supposed to be illustrated deeply in this work, a more
detailed discussion can be found in [KP97b]. Never-
theless, it should be stressed how Montages represents
a rigorous and formal instrument providing a mathe-
matical framework which can be used by the designer
to record unambiguously decisions about a particular
language and obtaining new insight into the nature of
the language developing description of it. In any case
the long-term aim to generate complete, correct and
efficient implementations automatically from language
description rely heavily on a robust tool support and
on the satisfaction of the general user.

Gem

Program:= "begin

Exprosson= X+ £]

[ef= | [F—O

o] condiion_DefTabij=under

L]e=
CT:=CTNT

Mex

global

asm

a7 e]
E

HTML

LaTeX

Generated <«—» | Mex Debugger

Montages
executable

Figure 2: The General Structure of the Gem-Mex System

3 Gem-Mex: The Development Envi-
ronment for Montages

The development environment for Montages is
given by the Gem-Mex tool [Anl97], whose architec-
ture is depicted in figure 2. It is a complex system
which assists the designer in a number of activities re-
lated with the language life cycle, from early design to
routine prograriner usage.

It consists of a number of interconnected compo-
nents

o the Graphical Editor for Montages (Gem) is a so-
phisticated graphical editor in which Montages
can be entered; furthermore high-quality docu-
mentation can be generated;

e the Montages executable generator (Mex) which
automatically generates correct and efficient im-
plementations of the language;

e the generic animation and debugger tool visu-
alizes the static and dynamical behavior of the
specified language at a symbolic level; source pro-
grams written in the specified language can be
animated and inspected in a visual environment.

A broad range of professionals may find interest-
ing and convenient to use Gem-Mex. The whole de-
velopment of a programming language can be sup-
ported with an effective impact on the productivity
and robustness of the design. The designer can en-
ter the specification, browse it and especially maintain
it. Specifications may evolve in time even in a non-
monotonic way since modifications can be localized
within very neat boundaries. By doing so, different
experimentation can take place with different versions
of the syntax and semantics of the specified language
in a very short time.

Besides the pure editing functionality, Gem can be
used to generate documents suitable for specification
presentation. Experience suggests how lack in doc-
umentation is a dangerous bottleneck for the consis-
tency and coherence of a project. Both, paper and
online presentation of the language specification are
automatically generated by Gem:

o IXTEX documents illustrate the Montages and the
gramiar; such documents are easily customizable
for the non-specialist user;

e HTML versions of the language specification al-
lows to browse the specification and retrieve
pieces of specification.

Moreover, intelligibility is enhanced by means of
“literate specification” techniques directly supported
by Gem. Formal parts of the specification can be sub-
stituted with textual elements by means of a “literate
programming” tool integrated in the system. “Liter-
ate specification” means that the Montages text fields
may contain references to other parts of the formaliza-
tion specified outside of the Montages modules. Thus,
the readability and comprehension of a Moutages spec-
ification results very much similar to those of language
manuals which are open to misunderstanding,.

3.1 Visual Editing

As already mentioned the Graphical Editor for
Montages (Gem) is a specialized drawing tool for Mon-
tages. The Gem user interface is divided into several
sub-windows, corresponding to the four components
of a Montage. The user can enter the several parts:
writing the production rule; drawing the graphs in the
drawing area; writing the first-order predicate for the
context sensitive constraint; and finally writing the
transition rule corresponding to the dynamic seman-
tics.

Bk Montage "8ssigrment”

NOE

4% HNonterminal .. Temminal . List Node . Transition Rule

énssiqnment 1= VarName ":=" Expression
WVarName = Ident

N ‘

edit edge labe
delete edge
toggle edge type

[SBression | -

RHS

condition S-varMName.Decl.S3taticTIvpe =
S-Expression.StaticType

ANy
WVariable.Decl.Value := RHE.Value

Figure 3: Editing the Assignment Montages

Not all the sub-windows must be present at the
same time: Montages which have some missing com-
ponents are not unusual. Thus different sub-windows
can be hidden, and their size is automatically adjusted
to the text respectively the drawing. The drawing
area contains a visual editor, allowing to create non-
terminal and terminal nodes, respectively. Eventually
textual static analysis rules can also be added. Nodes
and edges can be moved or modified.

The control and data flow arrows are entered by
connecting nodes, using the mouse. For the conve-
nience of the user, node labels can be placed at sev-
eral positions, nested nodes can be moved as a unit,
and the type of arrows can be toggled between (solid,
blue) data and (red, dotted) control flow.

On top of the editor area some icons indicate short-
cuts the user may use instead of the menu, such as

e storing, closing, and deleting the current Mon-
tage;

e opening another Gem with a Montages either se-
lected in the grammar rule or in a list of all Mon-
tages in the working directory;

e regenerating the HTML and IATEX document as-
sociated to the current Montage.

An example of the graphical user interface is shown in

Figure 3.

3.2 The Derived Program Visualization
As described in Section 2, the control/data-flow

graphs of the single constructs induce a global dec-

oration of the parse tree. A larger example is given in

[¢] mexdby

E Actions

var % Integer StaticType
Right
begin Terminal
®x 1= 20 NT
i Left
hil .0 Id
. #9) Initial
® o= ox - 1 Yalue
od
end N
#19 J
¥ 7
=

| Step | Animate | Continue |

Set Breakpoint | Set Mode Breakpoint | Remove Breakpoint |Node Bl

Figure 5: The Gem-Mex animation and debugging
tool.

Figure 4. This corresponds to a global control/data-
flow graph which is used by the static and dynamic
semantics. Thus, it can be used for animation and de-
bugging purposes while execution. The main advan-
tage of this technique is to use the local control/data-
flow graph within each Montage to visualize the global
flow. The user recognizes the abstract specification of
the programming language construct graphically in a
concrete program, since the same visual terminology
is used. She/he can immediately understand the be-
havior of a construct by instantiating the rules in the
current context.

Another advantage is given by the possibility to vi-
sualize non local arrows, e.g. an arrow connecting the
occurrence of a variable within a block to its definition.
Although such link must be given textually since it is
global with respect to a single Montage, it can still be
visualized in the global flow graph. The Decl arrow
depicted in figure 4 illustrate such a situation

In order to enhance the improve the effectiveness,
we did not base the animation on the abstract-syntax
but Gem-Mex regenerate the program text by means
of an internal pretty printer. The nodes of the graph
are identified with the tokens of the program text, and
the arrows are drawn between the tokens representing
their source and target. In figure 5 the animation
session based on the above example is shown.

4 Conclusions

In Section 2 we introduce a new way of speci-
fying control flow, which enhances the visualization

and simplifies existing Montages specifications consid-
erably. If applied to the Montages specification of
Oberon [KP97a], most dynamic rules are simplified
to about three lines.

We showed how Montages can be used to generate
program animation tools. In contrast to other work
in program animation our tool is based on an abstract
specification of the programming language, and can
thus be considered as more reliable from a correctness
point of view. Of course, we cannot compete with
systems specially tailored for one specific language, let
alone those tuned for a specific application area. But
our approach invents to build an animation technique
based on programming language concepts, rather than
based on specific instances of this construct in different
languages. The use of our animation tool, will thus
deliver similar results, if applied to the same algorithm
coded in different programming languages.

An interesting question is how the Montages ap-
proach can be extended from textual languages to vi-
sual ones. A problem is, that the intuitions and graph-
ical components of a specified visual language may in-
terfere with the intuitions and graphical components
used in Montages. Like this, a main advantage of
Montages may be lost, if applied to visual languages.
Our style of animation applied to visual languages may
lead to an overloaded and unintuitive use of graphics.

References

[AKP97] M. Anlauff, P.W. Kutter, and A. Pieranto-
nio. Formal aspects and development envi-
ronments of montages. 1997.

[Anl97] M. Anlauff. GemMex-Homepage, 1997.

http://www first.gmd.de/~ma/gemmex/.

[ASM95] ASM-Homepage. 1995.

http://www.eecs.umich.edu/gasm/.

[BDR94] E. Borger, I. Durdanovi¢, and D. Rosen-
zweig. Occam: Specification and Com-
piler Correctness. Part I. Simple Math-
ematical Interpreters. In U. Montanari
and E. R. Olderog, editors, Proc. PRO-
COMET’94 (IFIP Working Conference on
Programming Concepts, Methods and Cal-
culi), pages 489-508. North-Holland, 1994.

[GH93] Y. Gurevich and J. Huggins. The Seman-
tics of the C Programming Language. In
E. Borger, H. Kleine Biining, G. Jager,
S. Martini, and M. M. Richter, editors,
Computer Science Logic, volume 702 of
LNCS, pages 274-309. Springer, 1993.

[Gur95]

[KP97a]

[KP97h]

[Kut97]

[Wal95]

[Wir77]

Y. Gurevich. Evolving Algebras 1993: Li-
pari Guide. In E. Borger, editor, Specifi-
cation and Validation Methods, pages 9-36.
Oxford University Press, 1995.

P.W. Kutter and A. Pierantonio. The formal
specification of oberon. Journal of Universal
Computer Science, 3(5), 1997.

P.W. Kutter and A. Pierantonio. Montages
specifications of realistic programming lan-
guages. Journal of Universal Computer Sci-
ence, 3(5), 1997.

P.W. Kutter. Dynamic semantics of the pro-
gramming language oberon. Technical re-
port, ETH Ziirich, 1997.

C. Wallace. The Semantics of the C++ Pro-
gramming Language. In E. Borger, editor,
Specification and Validation Methods, pages
131 164. Oxford University Press, 1995.

N. Wirth. What can we do about the un-
necessary diversity of notation for syntactic
definitions? Communications of the ACM,
20(11), 1977.

var X.'Illt()g()l" Relation == SimpleExpr RelOp

begin SimpleExpr
while x > 0 do RelOp = > =
x:=x-1 I— —[S1-SimpleExpr
od

end

]
While := »while” Expression ”do” S2-SimpleExpr

Stm {”;” Stm}
’70d”

Q@”>";
Guard Value := Left. Value > Right. Value
Fee e e s s e e e e e — =T
Simple = Ident

ral ARV

— T ORG—VETHE

@Simple: I
Value := Decl. V;L?uc

Cond

|
|
|
|
\

x:=x-1

Figure 4: The local flow graphs of the Montages and the global flow graph of an example program.

