
ETH Library

Montages/Gem-Mex: a meta visual
programming generator

Report

Author(s):
Anlauff, Matthias; Kutter, Philipp W.; Pierantonio, Alfonso

Publication date:
1998-02

Permanent link:
https://doi.org/10.3929/ethz-a-004290091

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
TIK Report 35

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-004290091
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Montages�Gem�Mex� a Meta Visual Programming Generator

M� Anlau� P�W� Kutter A� Pierantonio

GMD FIRST ETH Z�urich Universit�a di L�Aquila

Berlin� Germany Z�urich� Switzerland L�Aquila� Italy

ma��rst�gmd�de kutter�tik�ee�ethz�ch alfonso�univaq�it

Abstract

Last decade witnessed a disappointing lack in tech�
nology transfer from formal semantics to language de�
sign� Research in formal semantics has developed in�
creasingly complex concepts and notation� at the ex�
pense of calculational clarity and applicability in the
development of languages�

Montages is a visual domain�speci�c formalism for
specifying all the aspects of a programming language�
It is intelligible to a broad range of people involved in
the language life cycle� from design to programming�
Language descriptions are fed to a rapid prototyping
tool� called Gem�Mex� which generates a visual pro�
gramming environment for the given language�

Gem�Mex consists of a graphical front�end which
allows a comfortable editing of the visual components
of the speci�cation� Starting from these visual de�
scriptions the tool is able to generate in an auto�
matic way high�quality documents� type�checkers� in�
terpreters and a visual symbolic debugger� All these
products form a powerful suite where the programmer
can write� execute� animate and debug programs writ�
ten in the speci�ed language�

� Introduction

Over the last two decades� formal semantics of pro�
gramming languages followed considerably the trend
towards higher levels of specialization� at the ex�
pense of computational clarity� This situation gen�
erated more experts than general users and ham�
pered the technology transfer from semantics research
to mainstream computing� It is striking how pro�
gramming language designers make such little use of
formal methods� Most of the languages have been
speci�ed informally� Even if a formal speci�cation
is undertaken� semanticists are expected to play the
role of morticians in the community of programming
languages� e�g� analyzing an already designed type�
system� In other words� formal semantics have not
played the same central role in language design� imple�

mentation and understanding as have formal�syntax
techniques�

Of course� the situation is not uniform and often
semantics research in�uenced the design of procedu�
ral and type�checking mechanism or security aspects
in several projects� But still it is surprising and dis�
appointing that language design methods of the ���	s
and ��
	s are still being used in the ���	s� Formal
speci�cations of semantics are still uncommon and
tend to appear years after the corresponding informal
speci�cations� They are usually incomplete and�or in�
accurate� and considered as not de�nitive� Language
designers still rely in informal speci�cations which are
open to incompleteness� inconsistency and ambiguity�

In order to make the language designer reconsider
their attitude to formal methods� we proposed a for�
malism� called Montages �KP��b
� The main aim of
such a mathematical framework is to adopt a �user�
friendly� interface to the underlying mathematical
machinery� By mean of visual descriptions the de�
signer can map her�his intuitions to semantical de��
nitions� which can be fed to a rapid prototyping tool�
called Gem�Mex�

In this paper we describe the visual aspects of Mon�
tages and Gem�Mex� We show how the visual speci��
cation of control and data �ow of language constructs
are used to visualize the control and data��ow of pro�
grams� We highlight how a uniform visualization is
used for language speci�cation and for the generated
program animation tools� This allows to take advan�
tage of the visual speci�cation during program visual�
ization�

This paper is organized as follow� In the next sec�
tion� we illustrate the Montages formalism and its se�
mantics mainly informally and by means of a simple
example� Sect� � the Gem�Mex tool is present by giv�
ing an overall picture of the system and how it can
assist the user in editing the visual speci�cations and
generating program animation and debugging tools�

Finally� in Sect� � we draw some conclusions�

� Background� Montages

Montages �KP��b
 constitute a speci�cation for�
malism for describing all aspects of programming lan�
guages� Syntax� static analysis and semantics� and dy�
namic semantics are given in an unambiguous and co�
herent way by means of semi�visual descriptions� The
static aspects of Montages resemble control and data
�ow graphs� and the overall speci�cations are similar
in structure� length� and complexity to those found in
common language manuals� Montages are designed to
provide a theoretical basis for a number of activities
from initial language design to prototyping�

The mathematical semantics of Montages is given
with Abstract State Machines �formally called Evolv�
ing Algebras� �Gur��� ASM��
 In short� ASMs are a
state�based formalism in which a state is updated in
discrete time steps� Unlike most state based systems�
the state is given by an algebra� that is� a collection
of functions and universes� The state transitions are
given by rules that update functions pointwise and ex�
tend universes with new elements�

ASMs have already been used tomodel the dynamic
semantics of a number of programming languages�
such as Occam �BDR��
� C �GH��
� C�� �Wal��

and Oberon �Kut��
 to mention a few� At the risk
of oversimplifying somewhat� one de�nes the initial
state of the functions and speci�es how they evolve
by means of transition rules� The initial state is as�
sumed to include the results of a static analysis� After
this analysis the program�s control and data �ow is
represented in the form of functions between parts of
the program text� As usual the control �ow functions
specify the order in which statements are executed�
and the data �ow functions specify how values �ow
via variables through operations� The corresponding
transition rules update the system state and let the
control evolve through the control �ow�

The existing case studies showed that it is possi�
ble to model with ASMs the dynamic semantics of
realistic programming languages� but they have the
disadvantage that they do not formalize the static
aspects� Montages engineered the ASM�s approach
to programming language semantics showing how to
model consistently not only the dynamic semantics�
but the static analysis and semantics as well� In par�
ticular� we describe how to de�ne intensionally the
abstract syntax� i�e� the control and data �ow� start�
ing from the concrete one� This mapping is provided
by means of graphs which confer to the speci�cation
a great intelligibility�

A language speci�cation is given by a collection of
Montages� which is hierarchically structured according
to the rules of the corresponding context�free grammar
given in EBNF �Wir��
� Each Montage is a �BNF�
extension�to�semantics�� that is a self contained de�
scription in which all the properties of a given con�
struct are formally de�ned�

In Fig� � the Montage speci�cation of a �While�
construct is presented as it looks if edited with the
Gem�Mex tool� The topmost part in the working area
is the production rule de�ning the context�free syntax�
Below is a graphical representation of a pattern in the
parse tree� and of the control and data �ow

graph� Inner nodes of the parse tree are represented
with boxes and leaves with ovals� Nested boxes are
used to represent nodes on lover levels of the parse
trees� The solid and dotted arrows denote the data
and control �ow� respectively� Control �ow arrows are
labeled by means of boolean predicates which deter�
mine through which edges the control �ows from one
state to the next� e�g� the predicate Guard�Value in�
dicates that the control is passed from a �do��token
to the sequence of statements StatementSeq whenever
the value of the expression Expr� which is retrieved by
means of the data �ow Guard� is evaluated to true�
For the sake of simplicity� we allow to omit the label
in certain situations�

� If all outgoing control arrows of a node have the
label true� this label may be omitted�

� If two control arrows c� and c� leave a node� and
c� is labeled with the negation of c��s label� one
of the labels may be omitted�

� If several control arrows c�� � � � � cn leave a node�
the label of one arrow ci may be omitted� if it is
equal to

� l� � � � � � � li�� � � li�� � � � � � � ln

where lj is the label of cj � This is a generalization
of the second case�

The control �ow arrows I �initial� and T �terminal� are
special arrows which serve to plug together the local
�ow�information to the global one� The third part of
the While Montage contains the static semantics� that
is� the type of the While�condition must be Boolean�
The designer may make use of full �rst�order logic to
express context sensitive constraints� In this example�
the part containing explicit dynamic semantics rules
is missing� This is usual for most of the control state�
ments� but there are also cases in which an additional

Figure �� The While Montage

transition rule is needed to de�ne the complete dy�
namic semantics as illustrate� for instance� in Fig� ��
With respect to earlier works �KP��b� AKP��
 the im�
plicit control �ow is a recent enhancement of the visual
formalism of Montages�

The semantics of a Montages speci�cation of a pro�
gramming language is the following� given a program

� the context�free grammar obtained by collecting
all the EBNF�rules in each Montage de�nes the
concrete syntax�

� the visual part of the Montages is the mapping
between the concrete and abstract syntax� i�e� it
de�nes an inductive decoration of the parse tree�
in other words the control and data �ow arrows
are mapped to pointwise de�nition of functions in
the resulting ASM� This information is needed� in
turn� by the dynamic semantics�

� the condition part is a �rst�order logic predi�
cate which is evaluated while traversing the parse
tree� i�e� for each internal node the corresponding
predicate is checked� In general� di�erent traver�
sal strategies can be speci�ed� predicates can be
checked before or after the analysis of subtrees� or
maybe the designer may prefer to de�ne several
passes� e�g� one additional pass to check declara�
tions before the other fragments� A more leisured
and detailed discussion can be found in �KP��b
�

� the dynamic semantics part is a transition rules
which is �red whenever the control reach that
given construct� For instance� in �g � whenever
the control reaches the node denoted by ���� the
following rule is enabled

��������

Variable�Decl�Value �� RHS�Value

end

which updates locally the value of the declaration
of the left�hand�side variable to the value of the
right�hand�side expression�

The logical and formal aspects of Montages are not
supposed to be illustrated deeply in this work� a more
detailed discussion can be found in �KP��b
� Never�
theless� it should be stressed how Montages represents
a rigorous and formal instrument providing a mathe�
matical framework which can be used by the designer
to record unambiguously decisions about a particular
language and obtaining new insight into the nature of
the language developing description of it� In any case
the long�term aim to generate complete� correct and
e�cient implementations automatically from language
description rely heavily on a robust tool support and
on the satisfaction of the general user�

Program::= "begin" ...

condition DefTab[I]=undef

@":=":
 CT:=CT.NT

Expression::= X "+" E

condition DefTab[I]=undef

@":=":
 CT:=CT.NT

Evaluation::= "?" E

condition DefTab[I]=undef

@":=":
 CT:=CT.NT

Assignment::= I ":=" E

condition DefTab[I]=undef

@":=":
 CT:=CT.NT

HTML

LaTeX

gl
ob

al
.a

sm

Mex

Gem

Generated
 Montages
executable

Mex Debugger

Figure �� The General Structure of the Gem�Mex System

� Gem�Mex� The Development Envi�

ronment for Montages
The development environment for Montages is

given by the Gem�Mex tool �Anl��
� whose architec�
ture is depicted in �gure �� It is a complex system
which assists the designer in a number of activities re�
lated with the language life cycle� from early design to
routine programmer usage�

It consists of a number of interconnected compo�
nents

� the Graphical Editor for Montages �Gem� is a so�
phisticated graphical editor in which Montages
can be entered� furthermore high�quality docu�
mentation can be generated�

� the Montages executable generator �Mex� which
automatically generates correct and e�cient im�
plementations of the language�

� the generic animation and debugger tool visu�
alizes the static and dynamical behavior of the
speci�ed language at a symbolic level� source pro�
grams written in the speci�ed language can be
animated and inspected in a visual environment�

A broad range of professionals may �nd interest�
ing and convenient to use Gem�Mex� The whole de�
velopment of a programming language can be sup�
ported with an e�ective impact on the productivity
and robustness of the design� The designer can en�
ter the speci�cation� browse it and especially maintain
it� Speci�cations may evolve in time even in a non�
monotonic way since modi�cations can be localized
within very neat boundaries� By doing so� di�erent
experimentation can take place with di�erent versions
of the syntax and semantics of the speci�ed language
in a very short time�

Besides the pure editing functionality� Gem can be
used to generate documents suitable for speci�cation
presentation� Experience suggests how lack in doc�
umentation is a dangerous bottleneck for the consis�
tency and coherence of a project� Both� paper and
online presentation of the language speci�cation are
automatically generated by Gem�

� LATEX documents illustrate the Montages and the
grammar� such documents are easily customizable
for the non�specialist user�

� HTML versions of the language speci�cation al�
lows to browse the speci�cation and retrieve
pieces of speci�cation�

Moreover� intelligibility is enhanced by means of
�literate speci�cation� techniques directly supported
by Gem� Formal parts of the speci�cation can be sub�
stituted with textual elements by means of a �literate
programming� tool integrated in the system� �Liter�
ate speci�cation� means that the Montages text �elds
may contain references to other parts of the formaliza�
tion speci�ed outside of the Montages modules� Thus�
the readability and comprehension of a Montages spec�
i�cation results very much similar to those of language
manuals which are open to misunderstanding�
��� Visual Editing

As already mentioned the Graphical Editor for
Montages �Gem� is a specialized drawing tool for Mon�
tages� The Gem user interface is divided into several
sub�windows� corresponding to the four components
of a Montage� The user can enter the several parts�
writing the production rule� drawing the graphs in the
drawing area� writing the �rst�order predicate for the
context sensitive constraint� and �nally writing the
transition rule corresponding to the dynamic seman�
tics�

Figure �� Editing the Assignment Montages

Not all the sub�windows must be present at the
same time� Montages which have some missing com�
ponents are not unusual� Thus di�erent sub�windows
can be hidden� and their size is automatically adjusted
to the text respectively the drawing� The drawing
area contains a visual editor� allowing to create non�
terminal and terminal nodes� respectively� Eventually
textual static analysis rules can also be added� Nodes
and edges can be moved or modi�ed�

The control and data �ow arrows are entered by
connecting nodes� using the mouse� For the conve�
nience of the user� node labels can be placed at sev�
eral positions� nested nodes can be moved as a unit�
and the type of arrows can be toggled between �solid�
blue� data and �red� dotted� control �ow�

On top of the editor area some icons indicate short�
cuts the user may use instead of the menu� such as

� storing� closing� and deleting the current Mon�
tage�

� opening another Gem with a Montages either se�
lected in the grammar rule or in a list of all Mon�
tages in the working directory�

� regenerating the HTML and LATEX document as�
sociated to the current Montage�

An example of the graphical user interface is shown in
Figure ��
��� The Derived Program Visualization

As described in Section �� the control�data��ow
graphs of the single constructs induce a global dec�
oration of the parse tree� A larger example is given in

Figure �� The Gem�Mex animation and debugging
tool�

Figure �� This corresponds to a global control�data�
�ow graph which is used by the static and dynamic
semantics� Thus� it can be used for animation and de�
bugging purposes while execution� The main advan�
tage of this technique is to use the local control�data�
�ow graph within each Montage to visualize the global
�ow� The user recognizes the abstract speci�cation of
the programming language construct graphically in a
concrete program� since the same visual terminology
is used� She�he can immediately understand the be�
havior of a construct by instantiating the rules in the
current context�

Another advantage is given by the possibility to vi�
sualize non local arrows� e�g� an arrow connecting the
occurrence of a variable within a block to its de�nition�
Although such link must be given textually since it is
global with respect to a single Montage� it can still be
visualized in the global �ow graph� The Decl arrow
depicted in �gure � illustrate such a situation

In order to enhance the improve the e�ectiveness�
we did not base the animation on the abstract�syntax
but Gem�Mex regenerate the program text by means
of an internal pretty printer� The nodes of the graph
are identi�ed with the tokens of the program text� and
the arrows are drawn between the tokens representing
their source and target� In �gure � the animation
session based on the above example is shown�

� Conclusions
In Section � we introduce a new way of speci�

fying control �ow� which enhances the visualization

and simpli�es existing Montages speci�cations consid�
erably� If applied to the Montages speci�cation of
Oberon �KP��a
� most dynamic rules are simpli�ed
to about three lines�

We showed how Montages can be used to generate
program animation tools� In contrast to other work
in program animation our tool is based on an abstract
speci�cation of the programming language� and can
thus be considered as more reliable from a correctness
point of view� Of course� we cannot compete with
systems specially tailored for one speci�c language� let
alone those tuned for a speci�c application area� But
our approach invents to build an animation technique
based on programming language concepts� rather than
based on speci�c instances of this construct in di�erent
languages� The use of our animation tool� will thus
deliver similar results� if applied to the same algorithm
coded in di�erent programming languages�

An interesting question is how the Montages ap�
proach can be extended from textual languages to vi�
sual ones� A problem is� that the intuitions and graph�
ical components of a speci�ed visual language may in�
terfere with the intuitions and graphical components
used in Montages� Like this� a main advantage of
Montages may be lost� if applied to visual languages�
Our style of animation applied to visual languagesmay
lead to an overloaded and unintuitive use of graphics�

References
�AKP��
 M� Anlau�� P�W� Kutter� and A� Pieranto�

nio� Formal aspects and development envi�
ronments of montages� �����

�Anl��
 M� Anlau�� GemMex�Homepage� �����
http���www��rst�gmd�de��ma�gemmex��

�ASM��
 ASM�Homepage� �����
http���www�eecs�umich�edu�gasm��

�BDR��
 E� B�orger� I� Durdanovi�c� and D� Rosen�
zweig� Occam� Speci�cation and Com�
piler Correctness� Part I� Simple Math�
ematical Interpreters� In U� Montanari
and E� R� Olderog� editors� Proc� PRO�
COMET��� �IFIP Working Conference on
Programming Concepts� Methods and Cal�
culi	� pages �
���	
� North�Holland� �����

�GH��
 Y� Gurevich and J� Huggins� The Seman�
tics of the C Programming Language� In
E� B�orger� H� Kleine B�uning� G� J�ager�
S� Martini� and M� M� Richter� editors�
Computer Science Logic� volume �	� of
LNCS� pages �����	�� Springer� �����

�Gur��
 Y� Gurevich� Evolving Algebras ����� Li�
pari Guide� In E� B�orger� editor� Speci��
cation and Validation Methods� pages ��� �
Oxford University Press� �����

�KP��a
 P�W� Kutter and A� Pierantonio� The formal
speci�cation of oberon� Journal of Universal
Computer Science� ����� �����

�KP��b
 P�W� Kutter and A� Pierantonio� Montages
speci�cations of realistic programming lan�
guages� Journal of Universal Computer Sci�
ence� ����� �����

�Kut��
 P�W� Kutter� Dynamic semantics of the pro�
gramming language oberon� Technical re�
port� ETH Z�urich� �����

�Wal��
 C� Wallace� The Semantics of the C�� Pro�
gramming Language� In E� B�orger� editor�
Speci�cation and Validation Methods� pages
����� �� Oxford University Press� �����

�Wir��
 N� Wirth� What can we do about the un�
necessary diversity of notation for syntactic
de�nitions! Communications of the ACM�
�	����� �����

var x�Integer

begin

while x � � do

x �� x � �

od

end

While ��� �while� Expression �do�

Stm f��� Stmg
�od�

S�Expression S��do�

LIST

S�Stm

I T

Cond�Value

Guard

Relation ��� SimpleExpr RelOp

SimpleExpr

RelOp � ��� j��� j���

S��SimpleExpr

S��SimpleExpr

S�RelOp T

Right

LeftI

�����
Value �� Left�Value � Right�Value

Simple � Ident

Decl �� SymTable�Name�

�Simple�
Value �� Decl�Value

x Integer

x

�

�

Left Right

do

Cond

x �� x � 	

Cond�Value

T

I

Decl

Figure �� The local �ow graphs of the Montages and the global �ow graph of an example program�

