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Abstract 
Venn diagrams and Euler circles have long been used 

to express constraints on sets and their relationships with 
other sets. However, these notations can get very cluttered 
when we consider many closed curves or contours. In 
order to reduce this clutter, and to focus attention within 
the diagram appropriately, the notion of a projected 
contour, or projection, is introduced. Informally, a 
projected contour is a contour that describes a set of 
elements limited to a certain context. Through a series of 
examples, we develop a formal semantics of projections 
and discuss the issues involved in introducing these. 

Keywords Visual formalisms, diagrammatic notations 

1. Introduction 

Diagrammatic notations involving circles and other 
closed curves, which we will call contours, have been in 
use for the representation of classical syllogisms since at 
least the Middle Ages [ 113.  In the middle of the 181h 
century, the Swiss mathematician Leonhard Euler 
introduced the notation we now call Euler circles (or 
Euler diagrams) [ I ]  to illustrate relations between sets. 
This notation uses the topological properties of enclosure, 
exclusion and intersection to represent the set-theoretic 
notions of containment, disjointness, and intersection, 
respectively. The 191h century logician John Venn [16] 
modified this notation to represent logical propositions. In 
Venn diagrams all contours must intersect. Moreover, for 
each non-empty subset of the contours, there must be a 
single connected region of the diagram, such that the 
contours in this subset intersect at exactly that region. 
Shading is then used to show that a particular region 
represents the empty set. 

An indication of the popularity and intuitiveness of 
Venn and Euler diagrams is the fact that they are used in 
elementary schools for teaching set theory as an 
introduction to mathematics. However, as we will see 
next, both notations have their limitations. 

Venn diagrams are expressive as a visual notation for 
writing constraints on sets and their relationships with 
other sets, but difficult to draw because all possible 
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intersections have to be drawn and then some regions 
shaded. Although it may first seem impossible to draw a 
Venn diagram of more than three contours, there are in 
fact many ways of doing so. Venn himself developed a 
scheme for drawing such a diagram for any number of 
diagrams. Yet another such scheme is due to More [12]. 
Since then, there was a large body of research on the 
drawing of Venn diagrams, their topological properties, 
etc. The interested reader is referred to e.g., [5, 61 for 
more information on the topic, which involves some 
beautiful mathematics, which results in some very 
aesthetically pleasing drawing. For example, Figure 1 
shows a symmetrical Venn diagram of four contours, 
while Figure 2 is the only simple symmetric Venn 
diagram of five contours. 

Figure 1 - A simple and symmetrical Venn diagram of four 
contours 

Figure 2 - The simple symmetrical Venn diagram of five 
contours 

Examining these two figures, it is clear why it is so 
rare to see Venn diagrams of four or more contours used 
in visual formalisms. Most regions require a bit of 
pondering before it is clear which are the contours that 
contain it. As shown in Figure 3, the situation worsens 
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with the increase in the number of curves. 

-/ 
W 

Figure 3 - Adelaide, a symmetrical Venn diagram of seven 
contours 

On the other hand, Euler circles are intuitive and easier 
to draw, but are not as expressive as Venn diagrams 
because they lack provisions for shading. It is therefore 
the case that an informal hybrid of the two notations that 
is used for teaching purposes. We use the term Venn- 
Euler diagrams for the notation obtained by a relaxation 
of the demand that all curves in Venn-diagrams must 
intersect or conversely, by introducing shading into Euler 
diagrams. Gil, Howse and Kent [2] provided formalism 
for Venn-Euler diagrams as part of the more general 
spider diagrams notation. 

Rather informally, we use the following terminology: 
A contour is a simple closed plane curve. A boundary 
contour is not contained in and does not intersect with any 
other contour. A district (or basic region) is the set of 
points in the plane enclosed by a contour. A region is 
defined as follows: any district is a region; if rl and rz are 
regions, then the union, intersection, or difference, of r,  
and r2 (defined as sets of points of the plane) are regions 
provided these are non-empty. A zone (or minimal region) 
is a region having no other region contained within it. 
Contours and regions denote sets. 

Every region is a union of zones. A region is shaded if 
each of its component zones is shaded. A shaded region 
denotes the empty set. 

Figure 4 - A Venn-Euler diagram 

The Venn-Euler diagram D in Figure 4 has four non- 
boundary contours A, B, C, D and the boundary is 
omitted. Its interpretation includes D c (C - B) - A and 
A n B n C = O .  

However, even Venn-Euler diagrams can get very 

cluttered when many contours are involved. The issue of 
clutter becomes even more crucial when such diagrams 
are used as foundation for other, more advanced visual 
formalism. A case in point is the constraint diagrams 
notation [3, 101 which uses arrows and other 
diagrammatic elements to model constraints not only on 
simple sets, but also on mathematical relations. 
Constraint diagrams can be used in conjunction with the 
lJnified Modeling Language (UML) [ 141, which has 
become the Object Management Group’s (OMG) standard 
for object-oriented modelling notations, and the Object 
Constraint Language (OCL) [ 171, a textual notation for 
expressing constraints that is part of UML. 

In order to reduce this clutter, and to focus attention 
within the diagram appropriately, the notion of a 
projected contour, or projection, can be used as an 
addition to the Venn-Euler based notation. In Figure 5 for 
example, the set Women is projected into the set of 
employees. The projected contour represents the set of 
‘women employees; i t  doesn’t say that all women are 
employees. 

Employees 

(Women) (I-- .... ------ ........- -.-> 
__-- .- ............... -.- ..._ 

Figure 5 - Example projection 

As a slightly more interesting example, consider the 
constraint diagram in Figure 6.  This diagram states 
(among other things) that the sets Kings and Queens are 
disjoint, that the set Kings has an element named Henry 
VIII, that all women that Henry Vll l married were queens 
and that there was at least one queen he married who was 
executed. The dotted contour is a projection of the set 
Executed; it is the set of all executed people projected 
into the set of people married to Henry VIII, that is, it 
gives all the queens who were married to Henry VI11 and 
executed. 

Figure 6 - A constraint diagram with projection 

Thus, a projection, denoted by a dotted contour can be 
thought of as a notation for intersection. In the example, 
the inner most circle labelled “(Executed)” denotes the 
intersection of the set Executed with the set of women 
who were married to Henry VIII. The notation is intuitive 
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and more concise than the alternative, which would have 
been drawing a large ellipse that intersects the Queens 
contour. As shown in Figure 7, this ellipse must also 
intersect with the Kings contour, or otherwise the 
diagram would imply that no kings were ever executed. 

married 

Figure 7 - The constraint diagram of Figure 6 redrawn 
without projections. 

Moreover, Figure 6 does not specify whether Henry 
VI11 was executed or not. Eliminating the projections 
from the figure requires delving into a history book and 
explicitly specifying this point as shown in Figure 7. 
Alternatively, one could use what is known as a spider to 
refrain from stating whether or not Henry VI11 was 
executed. As shown in Figure 8, this alternative is even 
more cumbersome, and will probably draw the attention 
of the reader to an irrelevant point. 

Execuled 

Figure 8 - Using a spider notation to preserve the semantics 
of Figure 6 while eliminating projections from it. 

There are non-trivial issues in dealing with this 
seemingly neat idea. For example, the notation must have 
a well-defined semantics when a projection intersects 
with a contour, and not only when it is disjoint to it, or 
contained in it. A diagram may contain more than one 
projection that may interact in subtle ways. Moreover, the 
same set may be projected several times into the same 
diagrams, and these projections might interact as well. 

The projection concept was first suggested as part of 
the constraint diagram language. However, these 
complicating matters were not dealt with. Instead, there 
was a tacit understanding that only “simple” use of 
projections, which avoided these issues, was allowed. The 
work reported in here represents the first attempt to 
systematically deal with the semantics of projections. 

The discourse of the presentation is structured as 
follows. Section 2 briefly sketches the formal semantics 
of Venn-Euler diagrams. Section 3 gives an informal 

definition of projections. The formal semantics is given in 
Section 4. In Section 5 we consider interacting projections 
and give a further syntactic constraint to the notation. 
Finally, Section 6 gives a conclusion and discusses related 
work. 

2. Semantics of Venn-Euler Diagrams 

In this section we sketch the main definitions used in 
giving semantics to an Venn-Euler diagram. A Venn- 
Euler diagram is a finite collection of contours and a list 
of shaded zones,,where each zone is a non-empty subset 
of the contours. Exactly one of the contours must be 
denoted as boundary contour. (We frequently omit the 
boundary contour from drawings.) For any diagram D, we 
use C =  C(D), R=R(D) ,  Z = Z ( D ) ,  and Z*=Z*(D) to 
denote the sets of contours, regions, zones, and shaded 
zones of D, respectively. 

The semantics of a Venn-Euler diagram D is given in 
terms of the semantic function 

Y : C c p U ,  
where U is a given universal set of D and p U  denotes the 
power set of U. Contours are interpreted as subsets of U, 
and the boundary contour is interpreted as U. 

A zone is uniquely defined by the contours containing 
it and the contours not containing it; its interpretation is 
the intersection of the sets denoted by the contours 
containing i t  and the complements of the sets denoted by 
those contours not containing it. We extend the domain of 
Y to interpret regions as subsets of U. First define 
Y :  Z+ @U by 

YW= nY(.) n n.(.) 
C € C + ( Z )  c€c-(z) 

where C+(z) is the set of contours containing the zone z, 
C ( z )  is the set of contours not containing z and 
Y ( c )  = U  - Y(c), the complement of Y(c) .  Since any 
region is a union of zones, we may define Y :  R + @U 

- 

by 

Y ( r >  = UWZ) 
z d X r )  

where, for any region r, Z(r )  is the set of zones contained 
in r. 

The semantics of a diagram D is the conjunction of the 
following conditions. 

Plane Tiling Condition: All elements fall within sets 
denoted by zones: 

UY(4 = U  
Z € Z  
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Shading Condition: The set denoted by a shaded zone is 
empty 

3. Projections 

Sometimes it is necessary to show a set in a certain 
context. Intersection can be used for just this purpose: an 
intersection of A and B shows the set A in the context of B 
and vice-versa. However, intersections also introduce 
regions that may not be of interest. Projections are 
equivalent to taking the intersection of sets, except that 
they introduce fewer regions, with the effect that regions 
which are not the focus of attention are not shown, 
resulting in less cluttered diagrams. 

A projection is a contour, which is used to denote an 
intersection of a set with a “context”. By convention, we 
use dashed iconic representation to make the distinction 
between projections and other contours. 

A determining label, denoted by A@), must be 
associated with any projection p .  This label is used to 
denote the set which is being projected. The convention is 
that determining labels are rendered within parenthesis 
when drawn in a diagram. A projection can also have a 
contour label. 

Definition 1 The context of a projection p ,  denoted K@), 
is the smallest region, defined in terms of non-projected 
contours, that contains the district of p .  

The set denoted by the context of a projection is 
calculated from the sets denoted by non-projected 
contours. A projection p denotes the set obtained by 
intersecting the set denoted by its determining label A@) 
with the set denoted by its context K@). 

Figure 9 shows a simple example. The dashed contour 
labelled X denotes the set obtained by “projecting” the set 
A onto the context D - B,  i.e., X = A n ( D  - B )  . 

Figure 9 - Simple projection 

The same semantics could have been obtaified by using 
More’s algorithm [ 121 to draw the Venn diagram with 
four contours, as in Figure 10, in which 
X = X - l u X J = A n ( D - B ) ,  where x_l. and denote 

evident. 

Figure 10 - Semantics of Figure 9 

‘Thus, a projection gives another way of showing the 
intersection of sets. This gives a clue to its value, given 
the notorious difficulty of showing the intersection of 
more than three sets on a Venn diagram: Figure 11 shows 
how all the regions obtained by intersecting six sets can 
be obtained using projections. This is an extreme case. 
More often than not, one is only interested in some of the 
intersections and not the others: projections provide the 
freedom to show only those intersections of interest. 

Figure 1 1  - Six sets 

4. Semantics of Projections 

Let P be the set of all projections and L be the set of all 
determining labels. We extend the domain of the semantic 
furiction ‘-I‘ to interpret projections and determining labels 
as subsets of U: 

Y : P -+ @U, Y : L -+ gu. 
Let p be a projection with determining label A@) and 

context K@). Then we have: 

W P )  = ‘ Y ( 4 P ) )  n WO)) 
Also, we must update the Plane Tiling Condition so 

that projections are included with ordinary contours in 
defining zones. Let P ( D )  be the set of all projections in 
diagram D. Then the semantics of a diagram D is the 
conjunction of the (updated) Plane Tiling Condition, the 
Shading Condition and the Projection Condition. 

the zones in which the labels appear. The simplicity of 
Figure 3, when compared to that of Figure 4, is self- 
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Projection Condition: The set denoted by a projection is 
the intersection of the set denoted by its determining label 
and the set denoted by its context: 

A W P )  = Y ( ~ ( P ) ) ~ ~ ( K ( P ) )  
p F ' ( D )  

5. Interacting Projections 

In this section we consider examples of interacting 
projections and highlight some problems. The solution of 
these problems requires a syntactic constraint on 
projections. There are two main cases to consider: disjoint 
projections and intersecting projections. The case of 
projections contained in each other is similar to that of 
intersection projections. 

5.1. Disjoint Projections 
The intuitive interpretation of the diagram in Figure 12 

is that X = A n B  and Y = A n C  and that A n B  and 
A n  C are disjoint. 

Figure 12 - Disjoint projections 

We will interpret " ( A )  as A, etc., for simplicity (and, 
of course, this will almost always be the intention of the 
producer of the diagram). 

Now, K ( X ) =  A and K ( Y ) = A .  The Projection 
Condition gives X = A n  B and Y = A  n C  and the 
Plane Tiling Condition says that X and Y are disjoint, 
which is the intuitive interpretation. Note that this 
specifies that A n B  and A n C  are disjoint, so even 
though we are not explicitly showing the contours B and 
C, we can still constrain the sets that they represent. 

Figure 13- An illegal diagram 

Now, consider the diagram in Figure 13. We have 
K ( X )  = A and K ( Y )  = A . The Projection Condition gives 
X = A n B  and Y = A n B  and the Plane Tiling 
Condition says that X and Y are disjoint. So, we have 
A n  B = 0 .  We could have said the same thing by 

shading a single projection of B in A as in Figure 14. 

Figure 14 -Empty projection 

There are various extensions of Venn-Euler diagrams 
in which elements of sets can be shown diagrammatically; 
these include Peirce diagrams [7, 13, 151, spider diagrams 
[2, 8,9]  and constraint diagrams [3, IO]. If a diagram such 
as that in Figure 13 occurred in such a system, then the 
diagram could be made inconsistent by placing an 
element icon in one of the projections; the set represented 
by the projection would have at least one element by the 
presence of the icon, but would be empty by the above 
argument, a contradiction. In spider diagrams, for 
instance, all well-formed diagrams are consistent. 
Because of this and other similar problems, this situation 
is not allowed. We have the following syntactic constraint 
on projections: 

i f  two projections have the same context, then they 
must have different determining labels. 

More formally, the requirement is that for any two 
projections p1 and p2 

K ( P , )  = K(P2)  =3 4 P ,  1 + 4 P 2 ) .  

Figure 15 - Another illegal diagram 

The diagram in Figure 15 is illegal because Y and 2 
have the same context and the same determining label. 

Figure 16 - Yet another illegal diagram 

In fact, this syntactic constraint is not strong enough. 
Consider the diagram in Figure 16. The context of X is A ,  
the context of  Y is B.  The Projection Condition gives 
X = A n C  and Y = B n C  and the Plane Tiling 

Condition says that X and Yare disjoint. Hence, we have 
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A n B n C = 0 , which, again, is problematic and could 
lead to inconsistent diagrams in some systems. The 
complete (syntactic) constraint that prevents these 
situations is the following: 

Projection Label Constraint: if two projections 
have the same determining label, then they must 
have disjoint contexts. 

Formally: let p ,  and p 2  be projections, then 

Theorem 1 Imposing the Projection Label Constraint 
does not limit expressiveness. 

Proof Suppose that projections pI and p 2  do not satisfy 
the constraint: 

h(p1) = h(P2) = h and K@1) n K(p2) = K # 0 

as illustrated in Figure 17. 

Figure 17  - Intersecting contexts 

Suppose that p 1  and p2 are disjoint (if not, p 1  and p2 
should be replaced by a single projection). Then, the 
Plane Tiling Condition gives 

W p  1 ) n w P 2 )  = 0 

y C a l > = w h ( p l ) ) n w K ( p l ) )  

w-9) = "(2)) f-7 W ( P 2 ) )  

W @ l ) )  n W ( P 1 ) )  n Wh@2)) n W ( p 2 ) )  = 0 

Wh)  n W @ 1 ) >  n WK(P2) )  = 0 

The Projection Condition gives 

Therefore, 

hence, 

i.e., 
Y(h) n Y(K) = 0. 

So, p 1  and p2 can be replaced by a single projection p 
whose intersection with K is shaded. This is expressed by 
the legal diagram in Figure 18. 

Figure 18 - Legal version of Figure 17  

5.2 Containing and Intersecting Projections 

Consider the diagram in Figure 19. The intuitive 
interpretation is that A n C c A n B , or, in the context of 
A, c' is a subset of B. 

Figure 19 - A containing projection 

E3y the projection condition X = A n  B and 
Y =: A n  C . By the plane tiling condition Y X . So, 
A n C E A n B , the intuitive interpretation. Note, again, 
that the sets B and C have been constrained. In fact, we 
can obtain precise expressions for X and Y X = A n B 
and Y = A n B n C , b e c a u s e  A n B n C = 0 .  

Figure 20 - Intersecting projections 

In Figure 20, the two projections intersect in the same 
context. In this case there are no constraints on the sets B 
or C (or A ) .  
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Figure 21 - lnteracting projections 

In Figure 21 there is a more complicated intersection 
of projections. The context of both projections X and Y is 
C u D . S o  X = ( C u D ) n A  and Y = ( C u D ) n B . B u t  
in this case X and Y are constrained: X c C v Y and 
Y E D U X . Putting all this together, we have 

X E C v Y = C v (C  u D )  n B = C u D n B .  
so, 

X = (C v D )  n A n (C u D n B )  = A n (C u D n B )  

and further, 
( C u  D ) n  A n C G D n B = 0  

A n D n C n B = 0 .  

We can obtain similar expressions for Y by symmetry. So 
we have precise expressions for X and Y: 

X = A n ( C u B n D )  and Y = B n ( D u A n C )  

A n D n C n B = 0  and B n C n D n A = 0 .  

hence, 

with 

After much investigation of interacting projections, we 
conjecture that the only problematic cases occur when 
disjoint projections with the same determining label have 
intersecting contexts. This is the situation explicitly 
excluded by the Projection Label Constraint. We do not 
have a formal proof of this conjecture. In the case of 
spider diagrams, if this conjecture holds, then any spider 
diagram involving projections has a compliant model. 

6. Conclusion and Related Work 

We have introduced the concept of projections into 
Venn-Euler and related diagrammatic systems and have 
given them simple formal and intuitive semantics. 
Projections form an integral part of spider diagrams and 
constraint diagrams. Constraint diagrams have been used, 
in conjunction with UML, in the modelling of 
telecommunications systems for industry and projections 
have proved invaluable in allowing complicated 
invariants to be expressed with clarity. Formal semantics 
have been given for spider diagrams [2] and are currently 

being produced for constraint diagrams. Diagrammatic 
reasoning rules have been developed for spider diagrams 
[9] and these have been proved sound and complete for a 
large subset of the notation [8]. Reasoning rules involving 
projections are currently being developed. 

There is an alternative possibility for the semantics of 
projections, which is to include projections in the context 
of a projection. This interpretation of interacting 
projections involves the solution of simultaneous set 
equations. In general, these equations have many 
solutions, but there is usually a “minimal” solution. This 
minimal solution frequently agrees with the intuitive 
interpretation. However, there are some cases in which 
the solution might give counter-intuitive semantics. In [4], 
this alternative semantics is developed; it  is a more direct 
semantics than that given in this paper and there are 
fascinating mathematical intricacies in this alternative 
approach to the semantics. 
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