
Header and Unit Inference for Spreadsheets Through Spatial Analyses?

Robin Abraham and Martin Erwig
School of Electrical Engineering and Computer Science

Oregon State University
Corvallis, OR 97331, USA

[abraharo|erwig]@cs.orst.edu

Abstract

This paper describes the design and implementation of
a unit and header inference system for spreadsheets. The
system is based on a formal model of units that we have de-
scribed in previous work. Since the unit inference depends
on information about headers in a spreadsheet, a realistic
unit inference system requires a method for automatically
determining headers. The present paper describes (1) sev-
eral spatial-analysis algorithms for header inference, (2) a
framework that facilitates the integration of different algo-
rithms, and (3) the implementation of the system.

The combined header and unit inference system is fully
integrated into Microsoft Excel and can be used to automat-
ically identify various kinds of errors in spreadsheets. Test
results show that the system works accurately and reliably.

1 Introduction

Spreadsheet systems are among the most used software
systems. It is estimated that each year tens of millions of
professionals and managers create hundreds of millions of
spreadsheets [1]. The significance of these numbers be-
comes clear when put into perspective: The number of end-
user programmers, which include spreadsheet users, in the
United States alone are expected to reach 55 million by
2005, as compared to only only 2.75 million professional
programmers [2].

Numerous studies have shown that existing spreadsheets
contain errors at an alarmingly high rate [3, 1, 4, 5]. Some
studies even report that 90% or more of real-world spread-
sheets contain errors [6]. Thus, due to the widespread use
of spreadsheets and their high error rates, there is a huge de-
mand for methods and tools that can improve the reliability
of spreadsheets.

Our goal is to enable end users to develop and maintain
reliable spreadsheets. To this end we have designed and im-
plemented aunit reasoningsystem that allows end users to
identify and correct errors in their spreadsheets. The general
idea behind the unit reasoning approach is to exploit infor-

∗This work is supported by the National Science Foundation under the
grant ITR-0325273 and by the EUSES Consortium.

mation in spreadsheets about labels and headers to check
the consistency of cell data and formulas.

In previous work, we have developed a formal reasoning
system for detecting unit errors [7]. The unit system uses
dependent units, multiple units, and unit generalization to
classify the contents of spreadsheets and to check the con-
sistent usage within formulas. Using units, which are based
on values in spreadsheets, allows content classification on
a more fine-grained level than types do. Moreover, we can
communicate with the users in terms of objects contained
in the spreadsheet, without having to resort to the abstract
concept of types. The advantage of this approach is that it
brings the strengths of static type checking to spreadsheets
without end users having to pay the cost of learning about
type systems.

The unit inference system critically depends onheader
informationas input. This information can be provided by
the user by means of the techniques discussed in our work
on visual customization of inference rules [8]. As an alter-
native, the related system described in [9] requires the user
to completely annotate the value cells with unit informa-
tion. A principal problem with both of these approaches is
that they essentially rely on the user to provide information
in addition to the created spreadsheet. However, the user
might not be willing to invest the necessary effort to do this
[10], especially in the case of larger spreadsheets, or with
tight time constraints, or when they extend existing spread-
sheets obtained from other users for which the header in-
formation might not be obvious. Moreover, the annotation
activity might also introduce errors into the spreadsheet.

Therefore,automatic header inferenceseems to be indis-
pensable to make unit inference work in practice. However,
the task of automatic header inference is complicated by
the fact that spreadsheet systems do not impose any restric-
tions on the user as far as spatial layout of data is concerned.
Moreover, users differ in their preference and style of plac-
ing label and header information in spreadsheets.

To solve this problem, we have designed a header-
inference framework, which allows us to use a combina-
tion of algorithms that infer the header information based on
different aspects of the spatial layout of spreadsheets. The
framework facilitates the easy extension by new algorithms,
and it also allows the adjustment of relative weights given

1



to information obtained by individual algorithms. We have
developed and implemented several spatial-analysis algo-
rithms and have assembled them with the help of the frame-
work into an effective header inference system. The system
is fully integrated into Excel and will be made available on
the Internet shortly. This research is part of the work into
end-user programming being performed by theEUSEScon-
sortium [11].

We present a quick overview of units in Section 2. In
Section 3 we demonstrate how units can assist in identifying
spreadsheet errors. The header inference framework and
the individual spatial-analysis algorithms are described in
Section 4. We discuss the system architecture in Section 5.
In Section 6 we present some test results for header and unit
inference. A discussion of related work follows in Section
7. Future work is outlined in Section 8, and conclusions
given in Section 9 complete this paper.

2 Units in Spreadsheets

Units are values in a spreadsheet that describe or label
collections of cells, typically (consecutive parts of) rows
and columns. Each value in a spreadsheet (except blanks)
potentially defines a unit. The unit of any cell is determined
by its headers. Intuitively, a header is a label that defines a
unit for a group of cells. For example, in Figure 3Apple is
a header for the values in the cellsB3, B4, andB5. Units
are not just flat entities, but exhibit a certain structure. We
essentially have the following kinds of units.

Dependent Units.Since units are values, they can them-
selves have units; hence, we can get chains of units called
dependent units. Fruit is a header forApple andOrange. This
hierarchical structure is reflected in our definition of units.
In this example, the unit of the cellB3 is not justApple, but
Fruit[Apple]. In general, if a cellc has a valuev as a unit
which itself has unitu, thenc’s unit is adependent unit u[v].
Dependent units are not limited to two levels. For example,
if we distinguished red and green apples, a cell containing
Green would have unitFruit[Apple], and a cell whose header
is Green would have the dependent unitFruit[Apple][Green],
which is the same asFruit[Apple[Green]].

And Units. Cells might have more than one unit. For
example, the number11 in cell C3 gives a number of or-
anges, but at the same time describes a number that is as-
sociated with the month May. Cases like this are mod-
eled with and units. In our example,C3 has the unit
Fruit[Orange]&Month[May].

Or Units. The dual toand units areor units. Or units
are inferred for cells that contain operations combining cells
of different, but related units. For example, cellD3’s for-
mula is B3 + C3. Although the units ofB3 and C3 are
not identical, they differ only in one part of theirand unit,
Fruit[Apple] andFruit[Orange]. Moreover, these units differ
only in the innermost part of their dependent units. In other
words, they share a common prefix that includes the com-
plete path of the dependency graph except the first node.

This fact makes the+ operation applicable. The unit ofD3

is then given as anor unit of the units ofB3 andC3, that is,
Fruit[Apple]&Month[May]|Fruit[Orange]&Month[May].

Not all unit expressions are meaningful. For example,
a number cannot represent applesand oranges at the same
time, although a number can represent applesor oranges,
that is, fruits. The rules of the unit system define the combi-
nation (and simplification) of unit expressions for formulas.
Those formulas for which the unit system cannot derive a
meaningful unit expression are considered to be incorrect
in the sense that they contain a unit error. The following
rules define all meaningful unit expressions.

1. Every value that does not have a header is a well-
formed unit. For example, in Figure 1,Fruit is a well-
formed unit.

2. If a cell has valuev and headeru, then itu[v] is a well-
formed unit. For example, in Figure 1,Fruit[Apple] is a
well-formed unit.

3. Where there is no common ancestor, it is legal to
and units. For example, in Figure 1, the unit of
B3, Fruit[Apple]&Month[May] is a well-formed unit be-
causeApple andMay have no common ancestor.

4. Where there is a common header ancestor, it is
legal to or units. For example, in Figure 1,
Fruit[Apple]|Fruit[Orange], which denotes the same unit
as Fruit[Apple|Orange], is well-formed. More pre-
cisely, we require that all the values except the most
nested ones agree. This is the reason why the unit
Fruit[Apple[Green]]|Fruit[Orange] is not well-formed.

A detailed description of units and unit inference can be
found in [7].

3 Error Detection with Unit Inference

In the spreadsheet shown in Figure 1, cellB4

contains a reference to cellC3, which has the unit
Fruit[Orange]&Month[May]. B4, by virtue of its row and
column headers, has the unitFruit[Apple]&Month[June].
Since B4 contains the reference to cellC3, the sys-
tem combines both the units and infers the unit forB4

as Fruit[Apple]&Month[June]&Fruit[Orange]&Month[May].
This unit cannot be simplified to a well-formed unit because
it violates the third rule for meaningful unit expressions be-
causeApple andOrange have the common ancestorFruit and
so it is illegal toandthem. Similarly,May andJune have the
common ancestorMonth. Therefore, the system marks cell
B4 red to flag a unit error in this cell. CellsB5, D4, andD5

have formulas that have references to cellB4. Since the unit
error propagates to these cells, they too are marked red.1

This example demonstrates how the unit inference sys-
tem can detect errors in a spreadsheet that result from wrong

1See Section 8 for a a discussion of how to improve the form of visual
feedback.

2



Figure 1. Identified reference errors.

user input, such as overwriting a value by accidentally click-
ing in a wrong cell.

In the spreadsheet shown in Figure 2, the user has com-
mitted an error while entering the formula inB5—instead of
finding the sum of cellsB3 andB4, the formula tries to com-
pute the sum of cellsB2 andB3. Excel ignores this error and
returns the result as 8 (the value in cellB3). Furthermore,
this error propagates, resulting in an incorrect value inD5

as well since it has a reference to cellB5.
When we run the unit checker on this spread-

sheet, the system infers the unit of cellB5 as
Fruit|Month[May]&Fruit[Apple] sinceB2 has the unitFruit

andB3 has the unitMonth[May]&Fruit[Apple]. The cell is
marked as the site of a unit error since its unit cannot be
further simplified to a well-formed unit becauseFruit and
Month[May]&Fruit[Apple] do not have a common ancestor.
So it is illegal toor them—violation of rule 4 discussed
above. Since the aggregation formula inD5 refers toB5,
the unit error propagates and causesD5 to be marked as an
error.

Figure 2. Identified range error.

Again, the unit inference system can identify an error in
the spreadsheet, this time a wrong range in a formula.

4 Header Inference

The information about which cells are headers for other
cells is crucial for the unit inference. The development of
automatic header inference therefore provides the missing
link for an automated unit inference system.

The identification of header information is based on the
spatial layout of a spreadsheet. Since spreadsheets differ
greatly in their layout, it is unlikely that a single algorithm
works equally well in all cases. Therefore, we have devel-
oped a framework, described in Section 4.1, that allows the
integration of different algorithms for spatial analyses. In
particular, there are complementary ways of classifying the
roles of cells in a spreadsheet. We describe these algorithms
briefly in Section 4.2. Based on these cell classifications,
the headers are assigned in a multi-level process. These
algorithms are explained in Section 4.3. We complete the
description of header inference in Section 4.4 with a small
case study that demonstrates how the framework helped us
to integrate different algorithms.

4.1 Analysis Framework

Header inference is based on the view that a spreadsheet
is essentially composed of one or moretables. We use the
information about the spatial arrangement of cells to clas-
sify the cells in a spreadsheet into the following groups.

1. Header: The user uses these to label the data.
2. Footer: These are typically placed at the end of rows or

columns and contain some sort of aggregation formula.
3. Core: These are the data cells.
4. Filler: These can be blank cells or cells with some spe-

cial formatting used to separate tables within the sheet.

We have defined several algorithms that classify spread-
sheet cells into the categories mentioned above. Since the
algorithms are not equally accurate at identifying the roles
of the cells, we assign levels of confidence to the classifi-
cations depending on the algorithm used. The confidence
levels can range from 1 (minimum confidence) to 10 (max-
imum confidence). The header inference framework has
been designed to allow the easy selection of any combina-
tion of algorithms and the weights used by them. Whenever
a cell is classified in multiple categories, we sum the confi-
dence levels for each of the categories and pick the classi-
fication with the highest sum. This flexibility has allowed
us to study the performance and effectiveness of the indi-
vidual algorithms and in tuning the confidence parameters
associated with the algorithms.

4.2 Cell Classification

The following strategies are employed to classify spread-
sheet cells.

Fence Identification. A fenceis a row or a column of
cells that form a boundary (upper, lower, left, or right) of

3



a table. If the fence consists of blank cells, we treat it as a
hard fence, otherwise, we treat it as asoft fence (which is
typically the case when the fence consists of repeated head-
ers). Hard fences are classified with a high level of con-
fidence and soft fences are classified with a lower level of
confidence.

Content-Based Cell Classification. This algorithm
classifies cells as headers, footers, and core simply based on
their content. For example, cells with aggregation formulas
are classified as footer cells, cells with numerical values are
classified as core cells, and cells with string values are clas-
sified as header cells. The classification performed by this
algorithm is assigned a low level of confidence.

Region-Based Cell Classification.In cases where we
have knowledge about the extent of a table (this can be in-
ferred once we have identified fences), we can classify some
roles with a higher level of confidence. For example, if the
top row or leftmost column of a table is composed of strings,
we classify them as headers with a high level of confidence.
Similarly, if the last row or rightmost column of a table has
aggregation formulas, we classify these as footers.

Footer-to-Core Expansion. In a first step we identify
the cells that have aggregation formulas. Such cells are clas-
sified as footers with a low level of confidence. We then
look at the cells that are referenced by the aggregation for-
mulas (these are theseedcells). These are classified as core
cells with a high level of confidence. We look at the im-
mediate neighbors of the seed cells. If they are of the same
type as the seed cells, they are classified as core cells too. In
this way, we use the identified seed cells to grow the core re-
gions. Once we have identified the core and footer cells, we
can mark the rest of the cells as header or filler depending
on whether or not they have content. This algorithm allows
us to identify core cells, headers, and footers.

4.3 Header Assignment

For every core cell, we assign as first-level headers the
nearest row (to the left) and column (above) header cells.
For example, this would result in cellB4 being assigned
Apple andJune as headers, see Figure 3.

Figure 3. Inferred headers.

Once the first-level headers have been assigned, we can
partition the original set of headers into two sets depending
on whether or not they have already been assigned to a core
cell. Let A be the headers that have been assigned to core
cells andU be the set of headers that have not been assigned
to any cell yet. Some of the elements of setU might be
candidates for higher-level headers whereas others might be
just comments.

We impose the following restrictions while inferring
higher-level headers.

1. First-level headers cannot act across fences. Higher-
level headers can act across fences.

2. An n-level header cannot be assigned as a header for
another header at leveln.

3. A header at leveln can only have one header at level
n+ 1. If this rule is violated, the resulting dependent
unit would not be well-formed.

4. If two cells are headers for a core cell, they cannot have
a common header assigned to them. For example, in
Figure 3, the core cellB4 has been assignedApple (cell
B2) and June (cell A4) as headers. IfB2 andA4 are
assigned a common header,B4 would already have a
unit error (violation of Rule 3 in Section 2).

Constraints 3 and 4 essentially limit headers to trees and
prevents DAGs.

In addition to the above, we impose the following spatial
constraints to exclude user comments from being inferred
as headers. Elements of setU that fail the constraints are
excluded from the set.

1. We do not assign a higher-level header with only one
child since such an assignment would not be of any use
from a unit inference point of view.

2. Because of the previous condition, if there arek head-
ers at leveln, leveln+1 can have at mostk/2 headers.
We also require that the headers at leveln+1 be sepa-
rated by at least the average distance between the head-
ers at leveln. (We will discuss this distance measure
in more detail below.)

The headers in setA are either row headers or column head-
ers. Any elementu ∈ U can potentially be a higher-level
column header for a subset of column headers{ai |ai ∈A} if
the row number ofu is less than the row numbers of allai ’s.
In other words, a higher-level column header has to be lo-
cated at the same row level or above the cells it is the header
of. Similarly, for higher-level row headers, we require that
they are at the same column level or to the left of the cells
they are a header of.

In addition to the above conditions, we have acostasso-
ciated with every assignment of someai to u. For column
headers, the cost is the column distance betweenu andai
and in the case of row headers, the cost is the row distance
betweenu and ai . Unassigned elements inU receive an

4



Figure 4. Car exports.

infinite cost to encourage the assignment of all valid higher-
level headers. Once the system has generated all the possi-
ble combinations, it tries to minimize the overall cost. We
first demonstrate how this works using the simple example
in Figure 3 and then look at a more complicated case and
discuss an extension to our algorithm.

In the example in Figure 3,Apple, Orange, andTotal (in
D2) are assigned as column headers andMay, June, andTo-

tal (in A5) are assigned as row headers by the nearest-header
algorithm discussed above. This leavesFruit andMonth as
the only elements of setU . Fruit cannot be assigned as a
row header for cellsA3, A4, andA5 because of the spatial
constraints discussed above. The cost for assigningFruit

as header forApple, Orange, andTotal is 0+ 1+ 2 = 3. In
contrast, the cost for assigningMonth as the column header
for Apple, Orange, andTotal is 6. Only one of these assign-
ments (eitherFruit or Month) can be selected. If the assign-
ment for Month is selected,Fruit will remain unassigned
and this would result in an overall infinite cost for the as-
signment. On the other hand, the cost in assigningMonth as
row header forMay, June, andTotal is also 6. This assign-
ment results in an overall cost of 9 since it does not conflict
with the assignment ofFruit as column header. Therefore
the systems assigns the headers as shown in Figure 3.

We consider a more complicated spreadsheet shown in
Figure 4. The spreadsheet contains data for the number of
cars exported to North & South America (Americas), Eu-
rope and Asia, broken down by makers and years. After the
cell classification and the identification of first-level head-
ers,Models is assigned as the second-level row header for
the first-level headers under it in columnsA, F, andL. To as-
sign the column headers, we exploit the fact that a label can
be expected to be in the proximity of (some of) the cells it
is describing, because otherwise, it would not serve its pur-
pose. Moreover, people have their own preferences in how
they position higher-level headers. For example, in the case
of column headers, some people might prefer to position the
higher-level header above the first column of subheaders (as
we have done in Figure 3 withFruit), whereas others might
prefer to position the higher-level header centered above its

subheaders. In the current example,Europe andAsia have
been positioned as per the first convention whereasAmer-

icas has been more or less centered above its subheaders.
The system takes advantage of the spatial information, even
when it is not fully consistent, and fences to come up with
the correct header inference shown in the figure in the fol-
lowing way.

1. First, we compute the column distance betweenAmer-

icas andEurope. Let this distance bed1 (4 in this case).
Starting at cellB32 we traverse distanced1 to the right
and reach cellF3. Based on our discussion above, we
considerd1±1 as a good metric for the level 1 headers
that should be made subheaders ofAmericas. Similarly,
we compute the column distance betweenEurope and
Asia, sayd2 (6 in this case). We start atG4 and traverse
distanced2 to the right and reach cellM3. In this case,
d2±1 is a good metric for the level 1 headers that fall
underEurope.

2. We have additional clues from the soft fences that are
inferred. Since columnE is composed of footer cells
and columnF is composed of header cells, we can infer
these as soft fences. Similarly, we can infer soft fences
for columnsK andL. This information also helps us to
correctly assign the higher-level column headers.

The resulting headers are as shown in Figure 4.

4.4 Optimizing Header Inference

While testing the header inference system with the
footer-to-core expansion algorithm running at confidence
rating 4 and the content-based classification algorithm run-
ning at confidence rating 2 we could observe that the sys-
tem inferred incorrect/insufficient headers for the example
spreadsheet shown in Figure 2, as shown in Figure 5.

Because of the incorrect header inference, the system did
not detect any unit errors in that case. Since cellB2 partic-
ipates in the aggregation formula inB5, the footer-to-core

2Models in A3 is ignored since it has already been assigned as a
second-level header for the other cells in columnA. The same is the case
with columnsF andL.

5



Figure 5. A range error.

expansion algorithm marks it as a core cell. Furthermore,
it checks the neighbors ofB2 that have the same type and
marks the cellsA2, A3, B1, andC2 as core cells (with a con-
fidence level of 4). Since these cells have string values, the
content-based classification algorithm marks them as head-
ers with a confidence level of 2. Running only these two
algorithms results in the incorrect header inference shown
in Figure 5. Increasing the confidence rating of the content-
based classification algorithm to a value higher than that
of the footer-to-core expansion algorithm would resolve the
problem in this particular case, but it would be incorrect in
general since the system would then always classify string
values as headers.

When the region-based classification algorithm is also
enabled, it classifies the first row as a soft fence (one non-
blank cell) and the sixth row and columnE as hard fences.
This results in all the cells in the second row being classified
as headers with a confidence rating of 3, the cells in first col-
umn being classified as headers with a confidence rating of
5, the cells with formulas in row 5 and columnD being clas-
sified as footers with a confidence rating of 5. When these
classifications are combined with those discussed above, the
system comes up with the correct header inference as shown
in Figure 3.

5 System Architecture

The header/unit inference engine has been implemented
in Haskell. The information from the Excel sheet being ma-
nipulated by the end user is captured by a VBA program
and sent to the backend server. The VBA system is shipped
as an Excel add-in, see Figure 6.

The toolbar has two buttons as shown in the figures.
Clicking the “Headers” button displays the header infor-
mation as inferred by the system. In this view, the system
displays arrows directed from the header cells to the target
cells as shown in Figure 3. We have enabled this representa-
tion for testing purposes so that we can verify the accuracy
of the header inference system. In the final version of our
system, the user will only see the button for unit checking.
When the user clicks the “Units” button, the unit checker is

Frontend Backend

Message
Dispatcher

Formula
Parser

Header
Inference

Unit
Inference

Message
DispatcherSpreadsheet

Excel VBA Haskell

Figure 6. System architecture.

run and the system marks the cells with unit errors with a
red background. To communicate from VBA (in Excel) to
the server, we use two classes of messages.

1. To send cell data to the server, we use messages of the
form cell row col fml wherecell is the keyword
recognized by the parser,row andcol have the row
and column information respectively, andfml is the
actual cell content.

2. To send cell formatting information to the server, we
use messages of the formcellF row col fmt where
cellF is the keyword that tells the server that the mes-
sage carries formatting information,row andcol are
the row and column information respectively, andfmt
is the formatting information.

When either the “Units” or the “Headers” button is clicked,
the VBA module generates messages for each used cell in
the worksheet and sends the messages to the backend engine
using a socket connection. The engine parses the messages
and builds an internal representation of the Excel worksheet
on which it then runs the inference algorithms.

The VBA program receives two classes of messages
from the server.

1. Paint messages which control display and appearance
of the sheet.

2. Debugmessages which control the display of the infor-
mation that can be requested while the system is being
run in the debug mode. This information helps the de-
velopers troubleshoot the system and is not available
in the user mode.

6 Evaluation of the System

We have tested our system on two sets of spreadsheets.
The first set (set A) consisted of 10 spreadsheet examples
from a book by Filby [12] on spreadsheets in science and
engineering. The second set (set B) consisted of 18 spread-
sheets developed by undergraduate Computer Science stu-
dents.

6



Since the output from the header inference algorithms
is fed to the unit system, incorrect header inference might
result in the system reporting unit errors incorrectly. How-
ever, this did not happen with our system. Even in the few
cases in which the system came up with slightly incorrect
headers, the unit inference did not report any illegal unit
errors, because the header inaccuracies occurred for unim-
portant labels.

Regarding the accuracy of header inference, in set A our
system incorrectly reported 4 headers in 1 sheet. In set B,
the system reported 3 wrong headers in one sheet and 2
wrong headers in another sheet. As we have mentioned, in
no case did an incorrectly inferred header lead to an illegal
unit error.

Regarding unit inference, our system detected an omis-
sion error in one of the sheets of set A (in the worksheet “P-
Cleavage” in workbook “ERTHSCI.XLS”). The same error
was detected by the system developed by [9]. This shows
that our automatic header inference system works as well
as their system, which requires users to manually annotate
the cells with unit information. Since this set consists of
published spreadsheets, it is not surprising that there are not
any more unit errors. In set B, the unit inference system
detected errors in 7 sheets. A total of 19 instances of unit
errors were detected in set B.

7 Related Work

The pervasiveness of errors in spreadsheets has moti-
vated research into spreadsheet design [13, 14, 15], code
inspection [16], quality control [4], testing [17], and consis-
tency checking [7, 8, 18, 9]. Recently, there has also been
work on improving the programming capabilities of spread-
sheets [19]. This approach follows the guidelines offered by
the Cognitive Dimensions of Notations [20] and the Atten-
tion Investment model [10].

The use of assertions to identify erroneous formulas is
presented in [18]. In this system, the system generates its
set of assertions based on the assertions entered by the user.
It then warns the user if there is a conflict between the value
in the cell and the cell’s assertion or when there is a con-
flict between the system-generated assertion and the user-
specified assertion for a cell with a formula. In this context,
units can also be considered as a class of system-generated
assertions. The main differences between the approaches is
that units are automatically inferred and do not constrain the
values in the cells.

The system presented in [21] carries out unit checking
based on the actual physical or monetary units of the data
in the spreadsheet. This approach requires the user to anno-
tate the cells with the unit information, which is then used
in the subsequent analysis to flag formulas that violate unit
correctness.

The work reported in [9] is most closely related to ours
(since it builds on our original work in [7]). Their system
supports two kinds of relationships between headers—is-a

relationship links instances and subcategories whereashas-
a relationship describes properties of items or sets. Al-
though has-a relationships provide more fine-grained in-
formation about the headers, they significantly complicate
automatic header inference. Accordingly, the approach of
[9] requires the user to manually annotate spreadsheets with
header information, which is a big drawback. The described
unit inference rules are also different from ours, and in try-
ing to be more flexible, the system fails to detect some er-
rors. For example, our system requires all subunits of a unit
to be present in anor unit expression to be able to gener-
alize. This constraint prevents, for example, the compar-
ison of a number representing apples or oranges with one
that represents oranges or bananas. However, the rules de-
scribed in [9] do not use this constraint and allow the gen-
eralization of eitheror unit to fruits and thus also allow the
illegal comparison.

8 Future Work

First, we can add more analysis algorithms to further im-
prove the accuracy of cell classification. In this context, all
kinds of formatting information provides a valuable source
of input since it is often used to emphasize semantically rel-
evant spatial arrangements. The existing framework allows
the easy extension by algorithms that exploit formatting in-
formation.

In the current implementation, all cells with unit errors
are marked with a red background as shown in Figure 1.
This can be further refined when we consider the fact that a
cell can be assigned an invalid unit in two ways.

1. Local unit error: The unit of the cell under considera-
tion is itself incorrect.

2. Propagation unit error: The cell contains a unit error
because it references a cell containing a unit error.

The system can provide the end user with more feedback
for fault localization if the cells with local unit errors are
marked with a dark red background and the cells with prop-
agation unit errors are marked with a lighter shade of red as
shown in Figure 7.

Figure 7. Fault localization feedback.

7



This would make it easier for to isolate the cause of the
unit error. We are also exploring better ways to communi-
cate with the end user based on the SER framework [22].

In the current version of the system users need to click
the “Units” button to run the unit inference system. The
system can be easily extended (using cell and worksheet-
level events available in Excel VBA) to detect changes to
the spreadsheet and report those changes to the inference
engine. This would enable the system to provide the user
with immediate feedback. We are also looking at ways to
support incremental header/unit inference. This requires a
dependency analysis, but could speed up the response time,
which is currently quite fast (subsecond response times for
sheets with up to 300 cells). However, giving the user im-
mediate feedback after every action might be too intrusive.
We are currently exploring ways by which we can prevent
the system from being “too eager” and giving feedback only
when the user has completed all the actions involved in a
“transaction”.

9 Conclusions

We have designed and implemented a system that au-
tomatically infers header information in spreadsheets, per-
forms a unit analysis, and informs the user when unit errors
are detected. A very important feature of the system is that
it does not require the user to provide any extra information,
and it runs on any spreadsheet. We have tested our system
on spreadsheets collected from two sources of very differ-
ent expertise level and found that it is working accurately:
It has successfully detected the unit errors that are present
in the sheets and did not reports any false unit errors.

References
[1] R. R. Panko. Spreadsheet Errors: What We Know. What

We Think We Can Do. Proceedings of the Spreadsheet
Risk Symposium, European Spreadsheet Risks Interest Group
(EuSpRIG), 2000.

[2] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, K. C.
Bradford, E. Horowitz, R. Madachy, D. J. Reifer, and
B. Steece, editors.Software Cost Estimation with COCOMO
II . Prentice-Hall International, Upper Saddle River, NJ,
2000.

[3] T. Teo and M. Tan. Quantitative and Qualitative Errors in
Spreadsheet Development. In30th Hawaii Int. Conf. on Sys-
tem Sciences, pages 25–38, 1997.

[4] K. Rajalingham, D. Chadwick, B. Knight, and D. Edwards.
Quality Control in Spreadsheets: A Software Engineering-
Based Approach to Spreadsheet Development.33rd Hawaii
International Conference on System Sciences, pages 1–9,
2000.

[5] M. Tukiainen. Uncovering Effects of Programming
Paradigms: Errors in Two Spreadsheet Systems.12th Work-
shop of the Psychology of Programming Interest Group
(PPIG), pages 247–266, 2000.

[6] K. Rajalingham, D. R. Chadwick, and B. Knight. Classifi-
cation of Spreadsheet Errors.European Spreadsheet Risks
Interest Group (EuSpRIG), 2001.

[7] M. Erwig and M. M. Burnett. Adding Apples and Oranges.
In 4th Int. Symp. on Practical Aspects of Declarative Lan-
guages, LNCS 2257, pages 173–191, 2002.

[8] M. M. Burnett and M. Erwig. Visually Customizing Infer-
ence Rules About Apples and Oranges. In2nd IEEE Int.
Symp. on Human-Centric Computing Languages and Envi-
ronments, pages 140–148, 2002.

[9] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi.
A Type System for Statically Detecting Spreadsheet Errors.
In 8th IEEE Int. Conf. on Automated Software Engineering,
pages 174–183, 2003.

[10] A. Blackwell. First Steps in Programming: A Rationale
for Attention Investment Models.IEEE Symp. on Human-
Centric Computing Languages and Environments, pages 2–
10, 2002.

[11] M. M. Burnett, M. Erwig, M. Niess, and G. Rother-
mel. EUSES: End Users Shaping Effective Software.
http://eecs.oregonstate.edu/EUSES/.

[12] G. Filby.Spreadsheets in Science and Engineering. Springer,
1995.

[13] T. Isakowitz, S. Schocken, and H. C. Lucas, Jr. Toward a
Logical/Physical Theory of Spreadsheet Modelling.ACM
Transactions on Information Systems, 13(1):1–37, 1995.

[14] A. G. Yoder and D. L. Cohn. Real Spreadsheets for Real Pro-
grammers.Int. Conference on Computer Languages, pages
20–30, 1994.

[15] B. Ronen, M. A. Palley, and H. C. Lucas, Jr. Spread-
sheet Analysis and Design.Communications of the ACM,
32(1):84–93, 1989.

[16] R. R. Panko. Applying Code Inspection to Spreadsheet
Testing. Journal of Management Information Systems,
16(2):159–176, 1999.

[17] G. Rothermel, M. M. Burnett, L. Li, C. DuPuis, and
A. Sheretov. A Methodology for Testing Spreadsheets.ACM
Transactions on Software Engineering and Methodology,
pages 110–147, 2001.

[18] M. M. Burnett, C. Cook, J. Summet, G. Rothermel, and
C. Wallace. End-user Software Engineering with Assertions.
25th Int. Conference on Software Engineering, 2003.

[19] S. L. Peyton Jones, A. Blackwell, and M. M. Burnett. A
User-Centered Approach to Functions in Excel. InACM Int.
Conf. on Functional Programming, pages 165–176, 2003.

[20] A. F. Blackwell and T. R. G. Green. Notational Systems -
The Cognitive Dimensions of Notations Framework.HCI
Models, Theories, and Frameworks: Toward and Interdisci-
plinary Science, pages 103–133, 2003.

[21] T. Antoniu, P. A. Steckler, S. Krishnamurthi, Neuwirth, and
M. Felleisen. Validating the Unit Correctness of Spreadsheet
Programs. InInt. Conf. on Software Engineering, 2004.

[22] S. Prabhakarao, C. Cook, J. Ruthruff, E. Creswick, M. Main,
M. Durham, and M. Burnett. Strategies and Behaviors of
End-User Programmers with Interactive Fault Localization.
IEEE Symp. on Human-Centric Computing Languages and
Environments, pages 203–210, 2003.

8


