Animated Simulation of Integrated UML Behavioral Models
based on Graph Transformation*

Claudia Ermel
Fac. Electrical Eng. and Comp. Science
Technical University of Berlin
Franklinstr. 28, 10587 Berlin, Germany
lieske @cs.tu-berlin.de

Abstract

This paper shows how integrated UML models combin-
ing class, object, use-case, collaboration and state dia-
grams can be animated in a domain-specific layout. The
presented approach is based on graph transformation, i.e.
UML model diagrams are translated to a graph transforma-
tion system and the behavior of the integrated model is sim-
ulated by applications of graph transformation rules. For
model validation, users may prefer to see the behavior of
selected model aspects as scenarios presented in the layout
of the application domain. We propose to integrate anima-
tion views with the model’s graph transformation system.
A prototypical validation system has been implemented re-
cently supporting the automatic translation of a UML model
into a graph transformation system, and the interactive ex-
ecution and simulation of the model behavior. We sketch
the tool interconnection to GenGED, a visual language en-
vironment which allows to enrich graph transformation sys-
tems for model simulation by features for animation.

1 Introduction

In the last decade the Unified Modeling Language [2,24]
has become more and more popular to visualize and docu-
ment different aspects of software systems. Unfortunately,
most of the UML diagram types were introduced without a
formal semantics that maps them to a mathematically well-
understood domain. Furthermore, different UML diagrams
represent different system aspects, but their coupling is not
precisely defined, i.e. even if one had a formal semantics of
every employed diagram type it would not be always clear
in which way the diagrams and their semantics interact.

*Research partially supported by the EC Research Training Network
SegraVis (Syntactic and Semantic Integration of Visual Modeling Tech-
niques)

Karsten Holscher, Sabine Kuske, Paul Ziemann

Dept. for Math. and Comp. Science
University of Bremen

P.O. Box 330 440, 28334 Bremen, Germany
{hoelscher,kuske,ziemann } @informatik.uni-bremen.de

Graphs and graph transformation have been employed
successfully for both the specification of a well-founded
formal semantics of different UML diagrams [7, 12, 19,22,
32] as well as the definition of an integrated formal seman-
tics of a UML model consisting of a set of UML diagrams
[14,20,34,35]. The latter has the advantage that the be-
havior of the entire system described by a UML model can
be simulated so that system states are graphs (representing
enriched object diagrams) and simulation steps are mod-
eled by the application of graph transformation rules. In
other words we obtain for every model specified by UML
diagrams a graph transformation system (called simulation
system) which simulates the model’s behavior via the iter-
ated application of graph transformation rules.

Graph transformation proved to be an adequate means
for a formal description of UML models for various rea-
sons. On the one hand, the area of graph transformation is
theoretically well-founded and thoroughly studied [6, 28].
On the other hand, UML diagrams can be represented in
a straightforward way as graphs, and system evolution can
be naturally described and executed via the application of
graph transformation rules. Moreover, there exist some
well-developed graph transformation tools [5].

However, for validation purposes this integrating graph-
transformation-based approach for the formalization of a
UML semantics is not always adequate. System states are
visualized in simulation runs as graphs which may become
rather complex. This is due to the fact that the simula-
tion system is generated automatically, which necessarily
involves auxiliary constructs and yields more complex rules
than a hand-written specification would contain.

Therefore, in this paper we extend the integrated graph
transformation-based UML semantics by animation views
which allow to define model-specific scenario animations
in the layout of the application domain (cf. also [8]). We
call the simulation steps of a behavioral model animation
steps when the states before and after a step are shown in

the animation view. Fig. 1 sketches the relation between
UML behavioral models and their animation views in dif-
ferent application domains. An integrated UML behavioral

UML Behavioral Diaaram
Model ‘agra

Translation to graph
transformation system

simulation step

Extension to
animation views
Animation I
f state
Views animation step -

Figure 1. Animation views for UML models

animation step

model (consisting of several diagrams) is translated auto-
matically to a simulation system, which is then extended
on the basis of a view transformation system (another graph
transformation system) [9]. The view transformation sys-
tem realizes a consistent mapping from simulation steps to
animation steps in the respective animation view.

It is worth noting that our notion of animation goes be-
yond the notion of specification animation in the literature,
which means to generate an executable prototype from a
formal specification [23]. More precisely, in the context of
UML, animation means for example the following:

e Generating “filmstrips” from the UML model (snap-
shot sequences of object diagrams over a given class
diagram [25]). This approach is closely related to
our simulation system with the difference that we use
graph transformation rules instead of OCL constraints.

e Enriching UML behavioral diagrams by graphical
means for highlighting process steps, such as colored
message arcs in sequence diagrams or colored activity
rectangles in activity diagrams (see e.g. the animation
add-in for Microsoft Visio [30]).

e Enhancing the UML diagram syntax, e.g. by three-
dimensional layout to make UML diagrams more read-
able. Gogolla et al. [13,26] use three-dimensional
blocks for classes in class diagrams and move message
balls between objects of a sequence diagram.

We prefer to regard the execution of a prototype gener-
ated from a behavioral model, such as our graph transforma-
tion system, as simulation, even if the syntax is enhanced by
highlighting or 3D-features.

Animation in this paper is also based on the simula-
tion prototype but differs from simulation in three respects:

First, simulation presents the states of the system in the ab-
stract, formal syntax of the modeling language (e.g. as ob-
ject diagrams or graphs), whereas animation uses a domain-
specific layout (an animation view), which is visually closer
to the modeled system and hides the underlying formalism.
Second, simulation shows model state transitions as discrete
steps, whereas animation shows a continuously changing
scenario in a movie-like fashion. At last, simulation shows
complete states whereas animation may abstract from im-
plementational details of the model that are not important
to understand functional behavior.

We advocate that this way of animation simplifies the
early detection of inconsistencies and possible missing re-
quirements in the model which cannot always be found by
simulation and analysis only.

A prototypical system implementing the translation of a
UML model into a graph transformation system was devel-
oped in [29]. Moreover, the visual environment GenGED
[11] allows to enrich graph transformation systems with an-
imation features and to export scenario animations in SVG
format [33]. In this paper we also sketch the tool intercon-
nection of both, resulting in a graph-transformation based
platform for animating UML behavioral models.

For reasons of space limitations we do not introduce the
approach in a general way but illustrate it by a running ex-
ample modeling a client-server system. The system basi-
cally consists of drive-through restaurants and clients. In
the animation view, the model behavior is visualized in the
layout of cars queueing in front of a drive-through restau-
rant, giving orders and being served.

The paper is organized as follows. In Section 2, the UML
model of the example is presented. Section 3 introduces its
integrated semantics as a graph transformation system, and
Section 4 shows how an animation view can be built on top
of such a system. In Section 5 we give a short overview
of the tools supporting our approach. The paper ends with
some concluding remarks.

2 A Sample UML Model

In general, UML models are composed of several UML
diagrams such as use-case, class, object, state, collabora-
tion, sequence, and activity diagrams (see [2,24]). The in-
terplay of UML diagrams — as used in our integration ap-
proach — is depicted in Fig. 2. An integrated UML model
consists of one class diagram and one top-level use-case di-
agram containing the use cases of the simulation which are
refined by collaboration diagrams. For each class, there can
be a state machine diagram describing in which order the
operations of the class can be executed. Object diagrams
which instantiate the class diagram model possible states of
the system.

To illustrate the connection between the different UML

context behavior
Class Diagram [0.~ | State Diagram

instance of
Object Diagram uses
uses

refines
"‘ Collaboration Diagram H Use Case Diagram ‘

refines ‘

Figure 2. Central UML modeling concepts

modeling concepts, we sketch a sample UML model of a
client-server system which consists of an arbitrary number
of drive-through restaurants each of which has a (possibly
empty) queue of hungry clients that are served one after the
other. There may also exist some more idle people who are
not yet visiting a drive-through.

The user of the drive-through simulation may select idle
people to be hungry and drive-throughs to start serving
clients. Hence, the use-case diagram of our simulation sys-
tem consists of two use cases, namely callClientToEat and
startDriveThrough. Both are refined by a set of collabora-
tion diagrams, one of which is presented below.

The class diagram is depicted in Fig. 3. It consists
of the four classes Client, DriveThrough, Meal, and Order.
Clients may be associated with a drive-through via a Visit-
association (in this case they are hungry). Clients may sub-
mit orders and eat meals that are served by drive-throughs.
Drive-throughs and clients can perform a series of opera-
tions the most important of which are shown in Fig. 3. The
names of meals and orders are given by attributes.

DriveThrough Client
start() 01 Visit queueAndOrder()
serve() {ordered} | pay()
updateFirst() eat()
updateLast() ready(meal:Meal)

01 0.1 .
0.1 ToServe ToEat o4 Submit
0.1
Meal Order
name : String meal : String

Figure 3. Class diagram for drive-through
model

Instances of class diagrams are object diagrams consist-
ing of an arbitray number of objects for every class, and
links for every association so that the multiplicity require-
ments of the associations are satisfied.

Fig. 4 presents the protocol state machine for the class

Client. Initially, a client is in the state idle. In this state
the operation queueAndOrder can be executed which also
changes the state of the client from idle to waiting. In the
state waiting the client can pay and change its current state
to hasPaid. After paying the client can eat and be idle again.
Operations which do not occur in the state machine diagram
can be executed in every state. (By the collaboration dia-
grams of the model it is guaranteed that the operation ready
is executed only between the operations pay and eat.)

Client {protocol} J
[] queueAndOrder/
[] idle X waiting

pay/

eat/

hasPaid

Figure 4. State machine diagram Client

Operations of classes can be described with collabora-
tion diagrams. The collaboration diagram in Fig. 5 specifies
the operation serve in which a drive-through d serves a meal
m ordered by the first client ¢ of its queue. The operation
creates the meal-object m (1.1). It inserts a ToServe-link
between d and m (1.2). The attribute name of m is set to
the meal-attribute of the order submitted by c¢ (1.3). Drive-
through d sends the message ready(meal) to c (1.4) with the
effect that the Submit-link attached to c is deleted (1.4.1)
and a ToEat-link between ¢ and m is created (1.4.2). At last,
the ToServe-link between d and m is deleted (1.5).

1.1: create() »

1: serve()
d: DriveThrough m: Meal
meal

1.2: link(ToServe) =
«local» | meal
Actor - First 1.3: setAttribute(name=o0.meal) =+
1.5: unlink(ToServe) -
1.4: ready(meal) { : ToEat
1.4.2: link() »
: Submit
¢ : Client
1.4.1: unlink() -

Figure 5. Collaboration diagram for serve()

It is worth noting that the main operations modeled in the
collaboration diagram are the creation and deletion of links
or objects or the sending of messages. Graph transforma-
tion systems can model such operations in a straightforward
way. In the next section we sketch how UML models can be
automatically translated into graph transformation systems
in order to obtain a proper semantics of UML models.

3 Integrated UML Semantics based on

Graph Transformation

The underlying idea of defining the operational seman-
tics of a system specified via UML diagrams is to repre-
sent system states as (enriched) object diagrams (formalized
as graphs) and system evolution steps as transformations of
such object diagrams (formalized as graph transformation).

Up to now, the integrated semantics of UML takes into
account use-case diagrams, class and object diagrams, state
machine diagrams, and sequence and collaboration dia-
grams. The automatic integration of all these diagrams is
a graph transformation system mainly consisting of a set of
graph transformation rules and a graph representing the ini-
tial system state. The operational semantics of the system
consists of all system states that can be reached from the ini-
tial state via the iterated application of graph transformation
rules.

3.1 Graph Transformation

A graph transformation system consists of an initial
graph and a set of graph transformation rules which rewrite
parts of graphs when applied. We use the algebraic graph
model for attributed, directed and labeled graphs and their
transformations [21], where a graph transformation rule
consists of two graphs L and R, called left and right-hand
side which may share a common part. A rule can be applied
to a graph if there exists an image of the left-hand side in
this graph. The application of a rule deletes the image of the
left-hand side up to the common part, removes all dangling
edges, and replaces it by a copy of the right-hand side up to
the common part. It is also possible to use negative applica-
tion conditions [16] which only allow a rule application if
some context specified in the negative application condition
does not occur in the current graph. Boolean OCL expres-
sions may also be used as application conditions meaning
that a rule can only be applied if the OCL expression is
evaluated to true. Variables representing attribute values in
the usual way can be used in both sides of a rule.

Fig. 6 presents an example of a graph transformation
rule. Both sides of the rule contain three common nodes
representing an object of class DriveThrough, an object of
class Client and an object of class Order. The application
of the rule to a graph inserts an additional node (an object
of class Meal) into the graph it is applied to.

This rule realizes the effect of operation 1.1 of the collab-
oration diagram in Fig. 5. There the execution of operation
1.1 create is specified to create a new Meal object.

In general, it is possible to associate types with the nodes
and edges of the graphs that are transformed by a graph
transformation system. This can be done by specifying a
so-called type graph [3].

m: Mea
name=x

d:DriveThrough d:DriveThrough
:First :First

0:Order .

Figure 6. Rule for the operation serve():1.1
create(Meal)

3.2 The Integrated Semantics

As stated before, the integrated semantics of a UML
model is a graph transformation system in which system
states are modified via the application of graph transforma-
tion rules. A system state is a kind of object diagram repre-
senting the objects that are alive in the system state.

Fig. 7 shows an excerpt of a system state of our drive-
through model. It consists of two clients (o1 and 02), to-
gether with their current states, a drive-through (03), and an
order (04). Both clients are visiting the drive-through, o1
being the first and 02 being the second and last client in the
queue. The order has been submitted by the first client.

o4 : Order 03 : DriveThrough : State
meal = "Menu 1" name = "waiting"
:Submit (First| 1 Visit LVisit | :Last
: State o1 : Client 02 : Client
name = "waiting" Queus

Figure 7. A system state of the drive-through
model

Technically, the classes, their attributes and operations,
the associations, the initial object states and a node for each
use case are also included in every system state. For reasons
of space limitations and clarity they are omitted here.

An initial state of a UML model consists of all objects
and links (together with the corresponding classes, associ-
ations, initial states, etc.) that are alive in the beginning of
the system simulation. (Fig. 7 does not show an initial state
because the clients are not in their initial state idle.)

Each operation of a class and the use cases are trans-
lated into a set of graph transformation rules according to
the specifications given by the collaboration and state ma-
chine diagrams. Technically, the control flow of operation
execution is modeled by means of process nodes. These
nodes fall into two main categories: complex and atomic
ones. Complex process nodes represent operations that are
composed of suboperations as specified in the collaboration
diagrams. Atomic process nodes represent predefined, ba-
sic operations which specify the creation of objects, the in-

sertion of links between them, the setting of their attribute
values, etc.

When a state machine diagram is specified for an object,
the execution of an operation may not be defined to take
place in a certain object state. In this case, a corresponding
process node is added to the system state, but it can never
get active. In this way, an operation call will be ignored
if the called object is in a “forbidden” state. Our approach
supports basic state machine diagrams (protocol state ma-
chines) without advanced features like nested states.

Should the model be incomplete (e.g. a class operation
without a specification in a collaboration diagram), no rules
are generated for the incomplete part. Thus the system ex-
ecution will get stuck, due to the lack of adequate rules (in
case of a non-specified operation there will be no rules to
properly execute and terminate it, thus succeeding opera-
tions may never be executed).

The rule presented in Fig. 6 summarizes the effect of a
set of four more detailed rules that are applied in a special
order. These detailed rules would be applied to the complete
system state graph, of which Fig. 7 shows an excerpt.

Another example for a rule corresponding to the opera-
tion 1.4 in the collaboration diagram for serve() in Fig. 5
is the rule shown in Fig. 8. As specified by the operations
1.4.1 and 1.4.2 of the collaboration diagram, the Submit link
between a Client object and an Order object is deleted, and
a ToEat link between the Client object and the Meal object
is created under the condition that the name attribute of the
Meal object corresponds to the meal attribute of the Order
object. Again, this is a summary of a set of more detailed
rules realizing the unlinking and linking in several steps,
taking into account also the link ends.

Lireon : R rson :
d:DriveThrough [:ToServe = d:DriveThrough r:ToServe =
:First :First
| :ToEat
c:Client :Submit: 0:Order
nr=x meal=y meal=y

Figure 8. Rule for the operation serve():1.4
ready(meal)

Summarizing, for each operation of a class specified in a
collaboration diagram we can automatically generate a set
of graph transformation rules the application order of which
is determined by so-called process nodes. Furthermore, the
state machine diagrams determine in which object states the
operations can be executed. Finally, all parts of the class
diagram and the use cases are reflected in the system states.
Hence, the graph transformation system is obtained from
the use-case, class, state, and collaboration diagrams of the
model.

4 Animation Views for Integrated UML Be-
havioral Models

Despite the benefits of graph-transformation based simu-
lation, the behavior of a complex formal model may not al-
ways be comprehensible to users. This is due to the fact that
many details had to be integrated in the simulation system in
order to be able to perform a formal analysis. Moreover, due
to the automatic generation of the simulation system, sev-
eral auxiliary structures are generated which simplify the
generation process and schedule the order of rule applica-
tions, but make it more difficult to understand immediately
the behavior of the resulting generated system (analogously
to program code which is generated automatically).

Therefore, instead of simulating the model behavior in
its whole complexity, we propose the use of animation
views and view transformation for well-founded model an-
imation based on graph transformation. Thus, in a system-
atic way, additional graphical symbols for the animation of
model behavior are added to the behavioral model, such that
on the one hand users can easily understand and validate the
model behavior, and on the other hand, the animation view
does not change the semantics of the modeled system.

An animation view presents the model states in the lay-
out of a specific application domain. The simulation steps
of a behavioral model are called animation steps if the states
before and after a step are shown in the animation view.

The view transformation is realized in three steps: at
first, the visual language definition for the simulation sys-
tem (a type graph for extended object diagrams) is ex-
tended by symbol types and relations describing the graph-
ical means used in the respective animation view for the
domain-specific representation of model states. Secondly,
the view transformation rules are defined over this extended
type graph, and applied to the initial graph of the simula-
tion system, generating animation view symbols and link-
ing them to all objects which shall be animated. Thirdly,
the same view transformation rules are applied to the sim-
ulation rules such that afterwards the state transitions also
visualize the animation view symbols. The resulting trans-
formed simulation rules are called animation rules, and to-
gether with the transformed initial graph we obtain an an-
imation system. A scenario animation then is defined as a
derivation sequence applying the animation rules beginning
with the initial state of the animation system. Moreover,
by adding continuous animation operations to the animation
rules the resulting scenario animations are not only discrete-
event steps but can show the model behavior in a movie-like
fashion. Consequently, requirements and scenarios can be
validated in one or more animation views.

In contrast to software visualization approaches rely-
ing on the observer pattern [10] for decoupling the model
and its visualization, in our graph transformation-based ap-

proach, the basic visualization information is kept in the
graph transformation rules in close relation to the model.
This allows to prove in a formal way that the model be-
havior is preserved in the visualization, by defining views
as graph transformation systems, and arguing about proper-
ties of view morphisms [9]. Despite this close relation of a
model and its animation view, the decoupling of both is real-
ized, as the animation view is generated by a separate graph
transformation system. Thus, if animation features need to
be changed, the underlying model itself is not touched, but
only the view transformation rules have to be adapted and
applied again to the model, resulting in a changed animation
view for the model.

4.1 An Animation View for the Drive-Through
Restaurant

For the example of our drive-through restaurant we
choose an animation view where the clients are visualized
as cars queueing in front of a restaurant building. Their
orders are shown as bubbles inscribed by the order attribute
meal, e.g. “Meal 1”. Animated actions are the entering of
the drive-through, ordering, being served, eating and leav-
ing the queue. The animated actions (and their graphical
representations) are coupled to certain graph transfor-
mation rules which evoke the corresponding operations.
Other graph transformation rules (preparing the operation
processing or checking conditions) are not relevant for the
animation view. They will be still applied but their effect
will not be visualized in a scenario animation.

The Extended Type Graph

Fig. 9 shows the extended type graph for our animation
view. At the top we have the type graph for extended object
diagrams (the states of the simulation system), and at the
bottom we have the new symbol types needed for the ani-
mation view. Both parts (the old and the new type graph)
are linked by an arc connecting the type Object and its vi-
sualization type Building. This top-level link is sufficient to
define how a specific drive-through object, its clients and
their orders are visualized because all animation view sym-
bols are connected to a certain building object or to a car
which in turn is connected to a building.

The extended type graph contains not only information
how symbols of a certain symbol type should be visualized
(the symbol icons), but also layout constraints, i.e. relations
concerning the size and positions of the symbol type
graphics. For example, there have to be layout constraints
defining that cars are always positioned on the road, that a
car should be placed in front of its successor in the queue,
that an order bubble points to its car, and that a served

‘ Operation ‘4% Parame\er‘ ‘ Process ‘

Association
[AttributeValue }—-{ Object }-—{ LinkEnd }—»\ Link \
T

View

Buﬂdlng ServedMeaI

OrderBubee

Figure 9. The extended type graph for the an-
imation view

meal is positioned near the car which submitted the order.
Formally, these layout constraints are defined as a graphical
constraint satisfaction problem (a set of equations over
positions and sizes of graphics) which has to be satisfied by
each diagram which is an instance of the type graph.

The View Transformation Rules

Fig. 10 shows the abstract syntax (without layout informa-
tion) of the view transformation rules which are used to
add the new animation view symbols in a consistent way
to the initial graph and to the simulation rules of the drive-
through simulation system. Rule application is done on
the abstract syntax level only, and the layout of the derived
graph is computed according to the layout constraints in the
extended type graph. The first rule, initDriveThrough, adds
the top-level icon for the animation view and links it to a
drive-through object. The other rules require a link from
a client object, either connecting it to a drive-through, or to
an order or to a meal, and add the respective animation view
symbols and their links. Note that for all rules the negative
application condition is the same graph as the right-hand
side, such that each rule can be applied exactly once to each
of the links of a client. In our approach, we do not delete the
original graphs but only add animation view symbols. The
visual language tool GENGED (see Section 5.2) allows to
mark parts of a type graph as invisible, such that in the an-
imation we show derivation sequences visualizing only the
graph objects belonging to the animation view.

Fig. 11 shows a sample animation rule which is obtained
by applying the view transformation rules to the simulation
rule in Fig. 8.

In Fig. 12 we finally present a few snapshots from a sam-
ple derivation sequence, visualized in the animation view.

initDrive Through:

L R,N —
d:DriveThrough d:DriveThrough :Building
queueing:

L~ TR R,N|[- TR
d:DriveThrough b:Building d:DriveThrough b:Building
c.Client

ordering:

L d:DriveThrough b:Building RN

Visit @
c:Client
nr=x :OrderBubble
Submit

eating:

L| | d:DriveThrough b:Building|| RN b:Building

d:DriveThrough

Visit

1

:ServedMeal

Toal

Figure 10. View transformation rules for the
drive-through model

L [gr R .
d:DriveThrough b:Buildin d:D‘nveThrou h b:Buildin
c:Client
nr=x
:Submi
: AToat
:ServedMeal

Figure 11. Rule serve():1.4 ready(meal) trans-
lated to an animation rule

We apply the graph transformation rules modeling the op-
erations for order(), pay(), serve() and eat(). The first graph
shows two cars queueing in front of the drive-through build-
ing (idle cars are not visualized in the animation view).
Then the first client in the queue submits an order (visu-
alized by an order bubble, inscribed by the name of the or-
dered meal), the client pays (not visualized), the meal is
prepared and served (visualized by a meal icon placed next
to the car), and finally, the meal is eaten and the client leaves
the drive-through.

Using GENGED, continuous movement of cars is spec-
ified by adding a linear-move operation to the animation
rules modeling a client to enter or to leave the queue (rules
queue() and eat()).

Figure 12. A derivation sequence visualized
in the animation view

5 Implementation
5.1 UGT: Simulation by Graph Transformation

In order to support the automatic generation of rules
from the given UML model and to facilitate a stepwise ex-
ecution of the simulation system, the prototypic tool UGT
(UML to Graph Transformation) has recently been devel-
oped [29]. UGT reads a model specification from a given
text file and automatically generates the graph transforma-
tion rules as introduced in [34,35]. The initial graph is com-
puted from the input model plus an object diagram specified
by the modeler as initial. Should the model specification be
incomplete, the automatic rule generation will fail. In case
of success the user may run the obtained simulation system
by choosing one of the specified use cases to be executed.
Internally, when a use-case is chosen, the corresponding
set of graph transformation rules is applied stepwise to the
graph representing the current system state. This can be
done automatically by selecting the step command in the
tool, or interactively by clicking on a waiting process node.
In order to check e.g. invariants when executing use cases
or processes, it is at all times possible to evaluate OCL ex-
pressions in the context of the current system state.

Technically, UGT combines two well established tools
in order to realize the functionality described above. The
graph transformatorial part of UGT is realized by the graph
transformation tool AGG [31] and an extension of the vali-
dation tool USE [27] is utilized for the evaluation of OCL
expressions.

5.2 GenGED: Animation based on Graph Trans-
formation

Tool support for the animation of visual behavior models
has been realized using GENGED [1, 11], a tool for gener-

ating visual modeling environments. In GENGED, an al-
phabet editor supports the definition of the language vocab-
ulary (alphabet) as type graph and the layout of alphabet
symbols by graphical constraints. For the layout computa-
tion, GENGED uses the graphical constraint solver PAR-
CON [15] which supports the definition of complex graph-
ical constraints, e.g. to declare minimal or maximal dis-
tances of graphical objects, or to define relations between
objects like above, inside or at_border. Such complex con-
straints are decomposed by PARCON into basic constraints,
i.e. equations over positions and sizes of graphical objects.
A valid layout for a given model is a set of values for the
layout positions and sizes of all graphical objects belong-
ing to the model such that the constraint equations are all
evaluated to true, i.e. the layout constraints defined by the
alphabet are satisfied.

A visual grammar editor allows to define different kinds
of grammars based on the alphabet, e.g. for syntax-directed
editing, parsing and/or simulation. Alphabet and grammars
configure a specific visual language environment, includ-
ing an editor for the specified language. The simulation
rules are used for validating the model behavior, where the
underlying graph transformations are performed by AGG
[31]. Moreover, they are the basis for the definition of an
application-specific animation view as demonstrated in this
paper. Related tools for generating visual modeling and
simulation environments based on graph transformation are
e.g. DiaGen [17] and AToM? [4]. In DiaGen, the focus
lies on the generation of sophisticated visual editors, and
the main applications of AToM? are the simulation of dis-
crete and continuous semi-formal models by graph transfor-
mation. Both tools do not provide support for user-defined
animation in a different layout.

In GENGED, scenario animations can be exported to the
SVG format [33] and viewed by an external SVG viewer
which shows continuous state changes according to the de-
fined animation operations. Due to the generic and modu-
lar definition of syntax, behavior and animation for behav-
ior models, the GENGED approach reduces the amount of
work to realize a domain-specific animation of a system’s
behavior. The tool integration of UGT and GENGED is
based on AGG which is the underlying graph transformation
engine for both tools. Thus the graph transformation system
which has been generated from the UML model specifica-
tion by UGT can be imported as simulation grammar and
used for the animation specification by GENGED.

6 Conclusion

In this paper we have combined two approaches for mod-
eling and validating system behavior based on graph trans-
formation. The first approach defines a translation from
central UML language features into graph transformation

systems to obtain a formal, integrated UML semantics (us-
ing the tool UGT). The second approach extends graph
transformation systems modeling behavior, by animation
views that enable users to run scenario animations based on
the graph transformation rules, but visualized in a domain-
specific layout (using the tool GENGED). The combination
of both approaches has been demonstrated by a model of a
drive-through restaurant.

The main benefit of the combination of both approaches
are, on the one hand, a precise UML semantics obtained by
the translation into a graph transformation system, and, on
the other hand, the flexible visualization of the simulation
steps in the animation view. The precise semantics allows
to execute use cases and to check invariants by evaluating
OCL constraints at arbitrary execution states. The anima-
tion view allows to hide auxiliary, technical nodes in the
graph that have proved necessary for the automatic trans-
lation but rather confusing for a user trying to simulate the
system behavior Thus, the animation supports an intuitive
validation of user requirements, in addition to the formal
checking of invariants.

Future work is planned to cover still more selected lan-
guage features from UML, especially considering the UML
2.0. Moreover, in complex cases the integration of various
UML diagrams may lead to large graph transformation sys-
tems which are difficult to handle and to understand. There-
fore, for practical use, structuring concepts for graph trans-
formation (see e.g. [18]) should be incorporated in the pre-
sented approach, and also implemented in the tool AGG,
which is the underlying graph transformation engine for
both UGT and GENGED. Work is in progress to implement
type graphs with inheritance and multiplicities as underly-
ing language model in AGG, which should make it easier
to go the step from a meta model description (a class di-
agram) to the corresponding type graph for a UML based
visual language.

References

[1] R. Bardohl, C. Ermel, and I. Weinhold. GenGED - a visual
definition tool for visual modeling environments. In J. Pfaltz
and M. Nagl, editors, Proc. Application of Graph Transfor-
mations with Industrial Relevance (AGTIVE’03), 2003.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language User Guide. Addison-Wesley, 1998.

[3] A. Corradini, U. Montanari, and F. Rossi. Graph processes.
Fundamenta Informaticae, 26(3,4):241-265, 1996.

[4] J. de Lara and H. Vangheluwe. ATOM?: A tool for multi-
formalism modelling and meta-modelling. In R. Kutsche
and H. Weber, editors, Proc. Fundamental Approaches to
Software Engineering (FASE’02), volume 2306 of LNCS,
pages 174 — 188. Springer, 2002.

[5] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, ed-
itors. Handbook of Graph Grammars and Computing by

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Graph Transformation, Vol. 2: Applications, Languages and
Tools. World Scientific, Singapore, 1999.

H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg,
editors. Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. 3: Concurrency, Parallelism,
and Distribution. World Scientific, Singapore, 1999.

G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. Dy-
namic meta modeling: A graphical approach to the op-
erational semantics of behavioral diagrams in UML. In
A. Evans, S. Kent, and B. Selic, editors, Proc. UML 2000
— The Unified Modeling Language. Advancing the Standard,
volume 1939 of LNCS, pages 323-337. Springer, 2000.

C. Ermel and R. Bardohl. Scenario animation for visual be-
havior models: A generic approach. Software and System
Modeling: Special Section on Graph Transformations and
Visual Modeling Techniques, 3(2):164—177, 2004.

C. Ermel and K. Ehrig. View transformation in visual envi-
ronments applied to Petri nets. In G. Rozenberg, H. Ehrig,
and J. Padberg, editors, Proc. Workshop on Petri Nets and
Graph Transformation (PNGT), volume 127(2) of ENTCS,
pages 61-86. Elsevier, 2005.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

GenGED homepage. http://tfs.cs.tu-berlin.de/genged.

M. Gogolla and F. Parisi-Presicce. State diagrams in UML:
A formal semantics using graph transformations. In M. Broy
et al., editors, Proc. ICSE’98 Workshop Precise Semantics of
Modeling Techniques, pages 55-72, 1998.

M. Gogolla, O. Radfelder, and M. Richters. Towards
three-dimensional representation and animation of UML di-
agrams. In R. France and B. Rumpe, editors, Proc. 2nd Int.
Conf. Unified Modeling Language (UML’99), volume 1723
of LNCS, pages 489-502. Springer, 1999.

M. Gogolla, P. Ziemann, and S. Kuske. Towards an inte-
grated graph based semantics for UML. In P. Bottoni and
M. Minas, editors, Proc. Int. Workshop on Graph Trans-
formation and Visual Modeling Techniques (GT-VMT 2002),
volume 72/3 of ENTCS, 16 pages. Elsevier, 2003.

P. Griebel. ParCon: Parallel Solving of Graphical Con-
straints. PhD thesis, Univ. of Paderborn, Germany, 1996.
A. Habel, R. Heckel, and G. Taentzer. Graph grammars with
negative application conditions. Fundamenta Informaticae,
26(3,4):287-313, 1996.

0. Koth and M. Minas. Generating diagram editors provid-
ing free-hand editing as well as syntax-directed editing. In
H. Ehrig and G. Taentzer, editors, Proc. Workshop on Graph
Transformation Systems (GraTra2000), pages 32-39. Tech-
nical Univ. of Berlin, 2000.

H.-J. Kreowski and S. Kuske. Graph transformation units
with interleaving semantics. Formal Aspects of Computing,
11:690-723, 1999.

S. Kuske. A formal semantics of UML state machines
based on structured graph transformation. In M. Gogolla
and C. Kobryn, editors, UML 2001 — The Unified Modeling
Language. Modeling languages, Concepts, and Tools, vol-
ume 2185 of LNCS, pages 241-256. Springer, 2001.

[20]

(21]

(22]

(23]

[24]
[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

(33]

(34]

[35]

S. Kuske, M. Gogolla, H.-J. Kreowski, and R. Kollmann.
An integrated semantics for UML class, object and state di-
agrams based on graph transformation. In M. Butler, L. Pe-
tre, and K. Sere, editors, Proc. 3rd Int. Conf. on Integrated
Formal Methods (IFM 2002), volume 2335 of LNCS, pages
11-28. Springer, 2002.

M. Lowe, M. Korff, and A. Wagner. An algebraic framework
for the transformation of attributed graphs. In M. R. Sleep,
R. Plasmeijer, and M. van Eekelen, editors, Term Graph
Rewriting, Theory and Practice, pages 185-199. Wiley &
Sons, Chichester, 1993.

A. Maggiolo-Schettini and A. Peron. A graph rewrit-
ing framework for Statecharts semantics. In J. E. Cuny,
H. Ehrig, G. Engels, and G. Rozenberg, editors, Proc. 5th
Int. Workshop on Graph Grammars and their Application to
Computer Science, volume 1073 of LNCS, pages 107-121.
Springer, 1996.

I. Morrea, J. Siddigi, R. Hibberd, and G. Buckberry. A
toolset to support the construction and animation of formal
specifications. Systems and Software, 41:147-160, 1998.
Object Management Group. OMG Unified Modeling Lan-
guage Specification, version 1.5, http://www.omg.org, 2003.
I. Oliver and S. Kent. Validation of object-oriented models
using animation. In Proc. EuroMicro’99, Milan, Italy, 1999.
O. Radfelder and M. Gogolla. On better understanding
UML diagrams through interactive three-dimensional visu-
alization and animation. In V. D. Gesu, S. Levialdi, and
L. Tarantino, editors, Proc. Advanced Visual Interfaces (AVI
2000), pages 292-295. ACM Press, New York, 2000.

M. Richters. A UML-based Specification Environ-
ment, last revision 2001. http://www.db.informatik.uni-
bremen.de/projects/USE.

G. Rozenberg, editor. Handbook of Graph Grammars and
Computing by Graph Transformation, Vol. 1: Foundations.
World Scientific, Singapore, 1997.

L. Schaps. Design and implementation of a system execut-
ing UML and OCL specifications based on graph transfor-
mation (in German). Master’s thesis, Univ. of Bremen, 2005.
Sysoft. Visio Diagram Animation with Amarcos,
http://www.sysoft-fr.com/en/Amarcos, 2004.

G. Taentzer. AGG: A graph transformation environment
for system modeling and validation. In T. Margaria, editor,
Proc. Tool Exihibition at Formal Methods’03, 2003.

D. Varré. A formal semantics of UML Statecharts by model
transition systems. In A. Corradini, H. Ehrig, H.-J. Kre-
owski, and G. Rozenberg, editors, Proc. Ist Int. Conf. on
Graph Transformation, volume 2505 of LNCS, pages 378—
392. Springer, 2002.

WWW Consortium (W3C). Scalable Vector Graphics
(SVG) 1.0 Specification, http://www.w3.org/TR/svg, 2000.
P. Ziemann, K. Holscher, and M. Gogolla. Coherently Ex-
plaining UML Statechart and Collaboration Diagrams by
Graph Transformations. In A. Moura and A. Mota, editors,
Proc. Brazilian Symposium on Formal Methods, volume 130
of ENTCS, pages 263-280. Elsevier, 2005.

P. Ziemann, K. Holscher, and M. Gogolla. From UML mod-
els to graph transformation systems. In M. Minas, editor,
Proc. Workshop on Visual Languages and Formal Methods,
volume 127(4) of ENTCS, pages 17-33. Elsevier, 2005.

