
Using Scalable Game Design to Promote 3D Fluency: Assessing the
AgentCubes Incremental 3D End-User Development Framework

Andri Ioannidou
AgentSheets, Inc.

andri@agentsheets.com

Alexander Repenning
AgentSheets, Inc.

alexander@agentsheets.com

David Webb
University of Colorado
dcwebb@colorado.edu

Abstract
With the IT crisis reaching alarming levels, it is

more important than ever to attract K-12 students to
computer science. 3D game development can be an
enticing way to achieve that, but building 3D games is
far from trivial. Students need to achieve a degree of
3D fluency in modeling, animation and programming
to be able to create compelling 3D content. The
combination of innovative end-user development tools
and standards-based curriculum promoting IT fluency
by shifting the pedagogical focus from programming to
design, can address motivational aspects without
sacrificing principled educational goals. The
AgentCubes 3D game-authoring environment raises
the ceiling of end-user development without raising the
threshold. Our formal user study shows that with
Incremental 3D, the gradual approach to transition
from 2D to 3D authoring, middle school students can
build sophisticated 3D games including 3D models,
animations and programming.

1. Introduction: Why Incremental 3D?
K-121 Information Technology (IT) education fails

to attract the necessary number of students to
Computer Science (CS) especially at the middle school
level when students make critical career decisions by
judging their own aptitudes towards math and science.
Fueled by bad experiences with programming, middle
school IT curricula have disintegrated into
keyboarding, web browsing, word processing and
PowerPoint workshops with little authentic enticement
foreshadowing CS careers. This is a very serious
problem because despite the growing need for IT
workers, the enrollment in undergraduate degree-
granting CS programs in the U.S. dropped by 70%
between 2000 and 2005 [1].

1 K-12 (Kindergarten through 12th grade) is the North American
designation for primary and secondary education.

The notion of IT fluency is slowly gaining
momentum in education as means to train and evaluate
IT skills beyond just using applications. For instance,
the Fluency with Information Technology (FIT)
framework by the National Academy of Sciences [2]
postulates a set of skills including meta-skills such as
problem solving, creativity, working in groups, and
algorithmic thinking. Game design [3] and
computational science [4] are gradually establishing
themselves as application domains capable of
balancing educational and motivational concerns of IT
fluency. With the right combination of tools,
curriculum and teacher training, game design can be
employed effectively to teach IT to middle school
students in a motivating way.

A fundamental challenge to the notion of fluency is
the need to define skills, explore motivational means of
promoting skills, and devise ways to assess these skills.
The focus of our research is to promote the notion of
3D fluency. People live in a 3D world; meanwhile,
because of computer gaming, today’s computers are
highly capable of processing 3D information.
Unfortunately, creating computational 3D artifacts and
games can be a truly daunting task. Even end users
familiar with making 2D games are likely to find the
transition to 3D to be a hard one. A completely new set
of tools is usually necessary to create 3D models, to
animate and program them. For instance, there is very
little skill transfer from 2D paint programs such as
Photoshop to a 3D modeling editor such as Maya 3D.
The question is if this kind of discontinuity is a
conceptual consequence of 2D versus 3D with
potential roots in human cognition or if it is more of an
accidental consequence of computational tools that
have emerged disjointedly for 2D and 3D applications.

Our goal is to promote 3D fluency through a
gradual approach that we call Incremental 3D. We
reconceptualize the universe of 2D and 3D tools and
skills as a continuum rather than a dichotomy. Most
tools support either 2D or 3D authoring. For example,

NetLogo2 [5] and Scratch3 [6] are 2D authoring
environments aimed at K-12; BlueJ4 and GreenFoot5
are targeted for more advanced students, typically at
the undergraduate level, and Macromedia Flash at
professional designers. Alice6 [7], NetLogo 3D2,
StarLogo TNG [8], DarkBASIC7, and Macromedia
Director are 3D authoring environments with varying
degrees of usability for different audiences. Some 2D
tools are starting to integrate 3D authoring. However,
some of them have limited degree of integration with
the 2D product (e.g. Swift3D is a separate component
for Flash) or force the user to drop from a visual
language level to a textual language with a 3D API
(e.g. Game Maker8). AgentCubes, on the other hand, is
a tool that supports 3D authoring through incremental
approaches for all components of the 3D authoring
process, namely modeling, animation, and
programming. A gentle slope approach allows end
users to develop 3D games by first creating a 2D
version of that game and then gradually moving along
well-defined stepping-stones towards a 3D version.
Our hope is that this incremental process ultimately
allows end users to make 3D applications just as easily
as 2D applications by transferring existing skills.

This paper assesses the idea of Incremental 3D as
an approach for end users to create 3D games and
acquire 3D fluency in the process. We first describe the
components of Incremental 3D, namely incremental
modeling, animation, and programming, in the context
of AgentCubes, then outline the steps to transform a
2D into a 3D application, and report the findings from
assessing 3D fluency in two schools.

2. AgentCubes: an Incremental 3D
authoring environment

AgentCubes is a 3D rapid game prototyping
environment that enables even 10-year-old children to
make simulations (Figure 1) and games in just a few
hours. While simple compared to commercial games,
these are complete, playable games. Versatility is an
essential characteristic for systems to be used for
Scalable Game Design [9]. They should enable
students to easily create simple content, but also allow
the creation of more sophisticated content.
AgentSheets [9, 10], our 2D simulation and game
authoring tool, has a low threshold and a relatively

2 http://ccl.northwestern.edu/netlogo/
3 http://scratch.mit.edu/
4 http://www.bluej.org/
5 http://www.greenfoot.org/
6 http://www.alice.org
7 http://darkbasic.thegamecreators.com/
8 http://www.gamemaker.nl/

high ceiling, but AgentCubes raises the ceiling
considerably while keeping the threshold low. Rich
media such as audio, 2D images, and 3D models, a 3D
environment with layers, and camera controls to switch
perspectives (first person vs. bird’s eye view), and
sophisticated user-controlled animations enable the
creation of 3D games. While 3D authoring is far from a
simple task, Incremental 3D is a scaffolding
mechanism that provides considerable support for
modeling, animation, and programming.

2.1. Incremental Modeling
Incremental 3D modeling is enabled through the

Inflatable Icons technology [11]. Instead of limiting
end users to only using stock 3D art (including
licensed characters, such as The Sims in Alice and
LEGO Star Wars in Scratch) or professional 3D
modeling tools with very steep learning curves, such as
Maya 3D, we enable them to gradually acquire 3D
fluency in modeling by creating their own 3D models.
With Inflatable Icons, users draw 2D images and
gradually turn them into 3D models using diffusion-
based inflation techniques.

Figure 1: A traffic simulation in AgentCubes.

Early user testing in local schools illustrated that
students were able to make basic inflatable icons
quickly, but needed additional means for producing
more sophisticated 3D models, including benchmark
shapes such as bugs and cars. Selection-based inflation
is one such feature. We therefore created an Adobe
Photoshop-inspired set of tools that allows users to
make and extend pixel selections. For instance, we
included a magic wand tool to make selections based
on pixel color values. Say we want to create a frog.
First we use the 2D editor with the symmetry mode
enabled to sketch a frog (Figure 2a). In the 3D view,
the frog shows completely flat (Figure 2b). Inflating
the entire frog is a good start (Figure 2c) but fails to

Figure 3: (a) Cube agents programmed to move up to 4 cells and rotate randomly. (b) A snapshot of a frame in the middle of
animation, showing the agents moving and rotating. (c) Agents arrive at their final positions at the end of the cycle. Without

animation, the viewer would only see the first and last frame without the intermediate animation frames.

highlight the strong legs of the frog. Using the magic
wand, the frog legs get selected and inflated more
(Figure 2d).

Figure 2: A frog as an Incremental 3D shape.

2.2. Incremental Animation
End users that program 3D worlds appear to have

higher expectations for run-time behavior. For
instance, if agents move or rotate, users would like to
have at least the option to have the world change in an
animated way. With no animation, the agents in Figure
3a that are programmed to simply move and rotate
randomly, would instantly arrive at the next frame
(Figure 3c) without seeing any in-between frames.
However, with animation, the agents move and rotate
smoothly in a series of multiple frames such as the one
shown in Figure 3b.

AgentCubes supports incremental animations. That
is, initially users may not need or want to deal with
animations. As they are getting ready, they can access
animation parameters that are optional to language
pieces such as move and rotate actions. Moreover,
built-in scene awareness assisted by the notions of
grids, stacks and layers (e.g. built-in gravity)
significantly scaffolds 3D animation authoring for
users. Finally, the Parallel Time-Jump animation

approach [12] allows any number of agents to animate
in parallel without the need to track object locations
and the overhead of sequential animation.

2.3. Incremental Programming

To support 3D fluency, we needed a programming
language that allows students to create behavior in 3D.
Our conceptual starting point was our previous work
with the Visual AgenTalk (VAT) programming
language in AgentSheets [13]. VAT had established
the usability of the rule-based approach for authoring
2D games and simulations/computational science
applications in school settings [14]. For AgentCubes,
we enhanced the language to include the notion of
Incremental 3D, leading to Visual AgenTalk 3D, which
includes the ability to author and run 2D projects and
gradually add control over 3D aspects. VAT 3D has
the following characteristics:

• 3D grid: the AgentCubes worlds consist of layers
with stacks of agents. VAT 3D features conditions and
actions that orient and move agents in 3D, providing
incremental support through optional parameters.

• Camera control: attaching cameras to agents (first
person view) makes the agent the location of the
camera. If the agent moves, the camera will move too.
If this agent turns, the camera will turn too. This
seemingly simple extension resulted in a number of
cognitively interesting challenges, including the need
to have conditions to test if the simulation is currently
running in bird’s eye or first-person view.

• Lighting control: end-user support for the use of
light sources in sophisticated scene rendering.

• Formula language: The formula language allows
users to express equations as functions of agent
attributes using special notation to access agents via
their grid locations in relative and absolute terms
similar to spreadsheets. Unlike AgentSheets, which
features a 2D spatial structure and operators to express
computation in 2D, AgentCubes allows users to
express computation in 3D.

• Animation support: Optional animation parameters
in movement and orientation language pieces enable
the separation of logic and animation in agent
behavior, thus ensuring that the logic part works
without obliging the user to first define animation.

3. Incremental 3D process in Game Design
Student progression to 3D fluency is established by

having a process that is gradual enough to keep
students in the optimal flow of learning [15]. The
following steps move students through the process of
creating a 3D game starting with a 2D game:

1) Creating a 2D game: Students are guided
through a game design process we call Gamelet Design
to create an initially 2D version of a game. We
typically use the classic arcade game of Frogger9
because even young kids are aware of it and it seems to
be gender neutral. The result is a simple but completely
playable version of the first level of the game with a
cursor-controlled frog trying to cross a highway with
cars driving across, cars automatically being generated
and absorbed at the beginning and end of the highway
respectively, and dealing with the car-frog collision
that results in the frog perishing and being regenerated
again. The 2D version of the game (Figure 4a) does not
include custom animations or 3D models at this point.

2) Creating a first person 2D game: Using
incremental modeling, animation, and programming,
the look and basic behavior of the 2D Frogger game
gets transformed to 3D. We motivate the transition
from 2D to 3D by attaching the camera onto the user-
controlled character, namely the frog, and therefore
changing perspectives from a world view where the
user looks at the game world from a bird’s eye view to
a first-person view where the user sees the game world
through the “eyes” of the frog (Figure 4b). After the
initial “the world is flat” shock, students typically want
to create 3D looking objects. Inflatable Icons are used
for incremental modeling to create 3D game objects
from the 2D images that the students had created
during the previous step (Figure 4c). Seeing the game
run and the jerky movement of the cars prompts

9 http://en.wikipedia.org/wiki/Frogger

students to change the animation parameters for the
movement. To make the games seem more realistic,
AgentCubes supports different animation modes
(constant vs. accelerated). For cars, for instance, it
makes sense to have constant animation speed,
whereas for the frog it is better to have accelerated
animation to simulate jumping. Moreover, simple
behavior changes are incrementally implemented. With
the camera attached to the frog, the students see the
need to rotate the character when it changes direction,
so they add rotation actions to the behavior.

3) Creating a First Person 3D Game: Modifying
the look of game objects is not enough to create a 3D
game. The transition from bird’s eye to first person
camera view also means that the coordinate system
changes, which presents a conceptual perspective issue
for navigation. The “absolute” right, left, up, down
directions that make sense when looking at the world
from a bird’s eye view, no longer make sense in first-
person mode (Figure 5 and Figure 6). Students expect
the user-controlled character to transition seamlessly
from absolute to relative coordinates. Instead, they
need to implement additional navigation behavior to
deal with the relative coordinate system.

Figure 5: (a) Lobster in birdʼs eye view; (b) result of using
the left arrow key: the lobster turns and faces to the left.

With an incremental behavior approach students are
taught how to implement first-person vs. world-view
navigation, extending existing code with language able
to deal with 2D and 3D version of behavior. This is a
fairly difficult concept that requires more than trivial
programming, but at the same time presents great
opportunities for learning about coordinate systems
and modulo arithmetic – a concept not covered in the
middle school math curriculum. Game design provides
many such opportunities for learning complex concepts

Figure 4: (a) Birdʼs eye view of Frogger; (b) flat frog in first person looking at flat cars; (c) 3D frog looking at 3D cars.

on demand, rendering it an experience that synthesizes
many different skills from various STEM (Science,
Technology, Engineering, Math) domains, not just
programming. Indicative of this was a quote from the
only student who indicated he knew about modulo
arithmetic in our experiment: “I knew about modulo
arithmetic, I understood it, but now I know how to
apply it”.

Figure 6: (a) Lobster in birdʼs eye view; (b) lobster in first

person view; (c) result of using the left arrow key: the
lobster turns to its left; (d) result viewed from birdsʼ eye

view: lobster is actually facing up in the absolute
coordinate system.

At this point, students have a simple but complete
3D game.

4) Constructing a 3D world: As a final step, we
introduce students to a truly 3D world. Not only are the
objects of the game 3D, but there is movement in all
three dimensions using layers in the 3D grid. This 3D
environment enables students to first navigate a ready-
made 3D maze and then construct their own mazes by
directing the movement and rotation of a spaceship
drilling holes in a solid cube. Indicators of 3D fluency
in this activity are specific design aspects of the mazes
students create (e.g. toggling between bird’s eye and
first-person views, toggling between visible and
invisible walls to evaluate the maze structure, rotating
the world to view the possible routes in the maze) and
the usage of orientation and visualization tools to
verify if the maze satisfies the given design criteria.

4. Assessment
We formally evaluated the effectiveness of the

Incremental 3D approach as a way to achieve 3D and
IT fluency at the middle school level.

4.1. Study Design

Collaborating with educational researchers from the
University of Colorado’s School of Education with
experience in working with students in technology-
intensive instructional environments, as well as
expertise in conducting classroom-based research in K-
12 settings, we designed an evaluation study. The
study was designed to document the impact of student
use of AgentCubes on identifiable learning objectives
with respect to the development of student IT and 3D
fluency, mainly following the FIT framework. Given
the scope of the feasibility study, we focused on a
subset of FIT and 3D fluency elements that included IT
Skills such as using a graphics package to create
illustrations, IT Concepts such as algorithmic thinking
and programming, and Intellectual Capabilities such as
managing complexity, engaging in sustained
reasoning, and managing problems in faulty situations.

Instruction followed the Incremental 3D steps
mentioned above. In addition to formative evaluations
during instruction, upon completion, to measure
fluency, we designed problem-solving situations in
which students were asked to troubleshoot authentic
programming scenarios. Instead of traditional pre/post
tests, we opted to perform an authentic assessment that
would require students to draw upon what they had
learned about game design and programming agent
behavior to identify and solve troubleshooting
scenarios in an intentionally defective version of a 3D
Frogger game given to them. Within a 45-minute
period students had to figure out at least five things
that were wrong with the game and re-program the
agents’ behavior to fix those problems. These included
issues with movement in world and first-person view,
missing behavior, and defective generation rates.

The debugging scenarios were challenging since
students were neither told what the problems were nor
how to locate the problematic procedure within the
AgentCubes environment. They needed to identify the
problem, locate the problematic agent and its behavior,
locate the exact problematic procedure in the code, and
correct the program for the agent. The troubleshooting
tasks were unfamiliar situations to students and were
not discussed in previous sessions. Students were
required to complete the activity on their own and
could only ask the instructors questions of clarification.

We recognized that offering students an opportunity
to engage in troubleshooting was an authentic
experience familiar to any computer programmer. It
required managing problems in faulty situations in
addition to sustained engagement in reasoning and
application of programming skills. Our eagerness with

presenting such tasks to students was tempered by
uncertainty regarding students’ ability to identify the
problems, student insight in locating the problematic
procedures for a given agent, and knowing how to
resolve the problems. However, using the
troubleshooting assessment to gather evidence of
student FITness was rewarded by the intensity of
student engagement throughout the assessment and
what students were able to accomplish, which is
discussed in the findings section.

4.2. Contexts
The evaluation study was administered in

collaboration with Science Discovery, the University
of Colorado’s science outreach program, and was
conducted in the context of 4 after-school classes in
two middle schools, one in Boulder and one in Aurora,
Colorado. Forty students attended the initial session.
The race and ethnic background of students recruited
for the AgentCubes course was a close approximation
of the respective background of students found at the
participating schools, with the majority of participants
at the Boulder school reporting a Caucasian
background and the majority of participants at the
Aurora school reporting a Hispanic background (Table
1). Participation was on a voluntary basis. A large
number of students was recruited by researchers and
teachers. School administration and teachers whittled
the recruitment group down to the 40 students we
could accommodate in the experiment. The
requirements included having two groups of all-female
students and a participant sample that represented the
school population. It is also interesting to note that
Boulder is a technology hub region whereas Aurora is
an inner-city, low-income area.
Table 1: Study participants from Aurora (top) and Boulder

(bottom) schools
Male Female Total AgentCubes School

African-Am 4 2 6 30% 17%

Asian-Am 0 1 1 5% 3%

Caucasian 1 0 1 5% 11%

Hispanic 4 6 10 50% 68%

Multi-Eth 0 1 1 5% nr

Native-Am 1 0 1 5% 1%

10 10 20
Male Female Total AgentCubes School

African-Am 1 0 1 5% 1%

Asian-Am 0 0 0 0% 4%

Caucasian 7 8 15 75% 84%

Hispanic 0 1 1 5% 11%

Multi-Eth 1 2 3 15% nr

Native-Am 0 0 0 0% < 1%

9 11 20

4.3. Findings

The findings resulting from the overall evaluation
study are grouped in three categories: 1) technology; 2)
curriculum; and 3) broadening participation.

4.3.1. Technology: For the technology category, the
criterion to measure success was whether students can
build a simple game from scratch, including 3D
models and behavior programming in a short period of
time (< five hours). The technology findings (TF) are:

TF1) All students were able to create a working 3D
game in less than five hours: All students made at least
one game. Multiple kids went beyond what was
expected in class and created extra games. It is
interesting to note that it was mostly boys from the
Aurora school that did that.

TF2) All students were able to create sophisticated
3D models from scratch using Inflatable Icons: The
Inflatable Icons technology turned out to be highly
accessible to all students. Inflatable Icons were able to
cover the spectrum from rough and ready abstract
looking 3D model drafts all the way to sophisticated
3D models. It is interesting to note that, on average,
girls spend more time and paid more attention to detail
in creating their 3D models than the boys.

TF3) All students were able to add animations to
their games incrementally and customize animation
parameters: Students were able to enable and disable
animations as well as customize them. Customization
allowed students to control the animation timing and
acceleration parameters. The incremental nature of the
animation approach built into AgentCubes allowed
students first to build a game and then, when
necessary, add the animations after they had developed
the main game mechanics.

TF4) Most students (85%) were able to program
their own character control in 1st person and bird’s eye
view successfully: This was a very challenging task: it
included understanding and application of modulo
arithmetic, a concept that is unfamiliar to middle
school students. Even so, students were able to follow
instruction and 85% of them were able to complete the
implementation of the challenging first-person
navigation. Also, 75% of them were able to fix the
intentionally defective version of first-person
navigation in the unassisted troubleshooting session.

4.3.2. Curriculum: The criterion to evaluate
curriculum was based on achievements towards
FITness goals. The curriculum findings (CF) are:

CF1: Most students (75%) were able to solve most
issues (60% or more) in the troubleshooting activity.

Almost all students demonstrated sustained
engagement and persistence in resolving these
problems. All students were able to identify at least
three of the problems and attempted to resolve the
problem by reprogramming agent behavior. As a
matter of fact, 75% of students solved the majority of
the issues (3 or more).

Table 2 summarizes the percentages of students
able to troubleshoot each scenario. Please note that out
of the 40 original participants, a subset of 24 students
participated on the day the troubleshooting activity was
administered. In addition to overall results, data is
disaggregated by school, gender, and ethnicity. It is
worth noting that female students and students at the
Boulder School were more successful in resolving car
movement and generation issues. Male students and
students at the Aurora school were more successful in
resolving the scenarios related to frog movement.

Furthermore, 25% of the students went beyond the
scope of the activity and improved the program in
other ways, such as using the graphics tools to change
or inflate game components such as cars and turtles so
they would be easier to see in first-person view.

Table 2: Percentage of students identifying and
completing troubleshooting tasks: 1) one type of cars not
moving; 2) other type of car stacking up; 3) 2D navigation
not functioning correctly; 4) 3D navigation not functioning

correctly; 5) not enough turtles to make game playable.
 Troubleshooting Tasks
Groups N 1 2 3 4 5 Average
All
Students 24 67% 88% 79% 75% 42% 70%

Schools
 Boulder 14 71% 93% 64% 64% 50% 69%
 Aurora 10 60% 80% 100% 90% 30% 72%
Gender
 Male 16 63% 81% 88% 88% 50% 74%
 Female 8 75% 100% 63% 50% 25% 63%
Ethnicity

Caucasian 13 69% 92% 69% 62% 46% 68%

 Hispanic 5 60% 80% 100% 100% 20% 72%
 Afr-Am 3 67% 100% 100% 100% 33% 80%
 Other 3 67% 67% 67% 67% 67% 67%

CF2: Scalable Game Design is a feasible strategy
to create FIT-oriented curriculum using AgentCubes:
Data from our observation protocols was analyzed in
terms of opportunities to address the five elements of
FIT mentioned above over the five class sessions. A
hierarchical rating scheme was developed to
distinguish potential opportunities from observed
opportunities with and without guidance. Every session
included opportunities to address multiple goals, but
what distinguished the latter sessions from the earlier
ones were the opportunities for students to demonstrate
their achievement of FIT goals apart from instruction.
From the results of the assessment activities

(troubleshooting and 3D world construction) we
concluded that the instruction using AgentCubes did
result in the development of student fluency in 3D and
IT across several elements, in particular algorithmic
thinking programming and managing faulty situations.

CF3) Students have capacity for visualization and
representing 3D objects as illustrated by their ability
to navigate 3D mazes and create their own: All
students were able to navigate and create their own 3D
mazes with varying degrees of complexity. With
AgentCubes students could create a 3D maze by
drilling holes in 3 dimensions into a solid large cube
following specific design criteria and with the
expressed goal of constructing a maze that would offer
sufficient challenge to their classmates.

4.3.3. Broadening participation: The criterion we
used to evaluate this category was whether the
technology and curriculum could be used across
ethnicity and gender, both in technology hub areas and
inner city school cultures. The broadening participation
findings (BPF) are:

BPF1) The idea of Game Design is compelling to
middle school girls. We were able to easily recruit
more than 50% girls. The percentage of female
students involved at both schools was greater than
50%. Organizing the weekly sessions by gender may
have had some influence on the ability to recruit a
higher percentage of female students to agree to
participate in these sessions. This was influenced by
earlier experiences in recruiting female students in
after-school STEM courses offered by Science
Discovery. Student attendance over the five sessions
experienced some attrition, with the most significant
attrition occurring among the Aurora school female
group. Based on follow-up discussions with teachers
and students, it appears that there were various reasons
for this attrition such as overlapping family
commitments or other after school commitments. It is
not uncommon to find high attrition rates in voluntary
after-school programs. Strategies to address this would
be to either offer the AgentCubes sessions during the
school day (i.e., as part of a computer education
course) or provide a more compact after-school course
over the course of one week (five half-day sessions)
rather than organized as two-hour sessions each week
over a period of five weeks.

BPF2: The under-privileged school did better than
the privileged school in authentic assessment (but
difference is not statistically significant). The
troubleshooting performance of students at both
schools was essentially the same. The Aurora students
outperformed the Boulder students on the challenging
frog movement tasks.

BPF3: There was no major difference between the
ethnicity groups in troubleshooting performance. From
Table 2, we see that African American students on
average completed 80% of the troubleshooting tasks
during the authentic assessment activities. Hispanic
students on average completed 72% of the tasks.
Caucasian students on average completed 68% of the
tasks. Other Ethnicity students on average completed
67% of the tasks. Note that both, the African American
and the other ethnicity groups were small (n=3).

5. Conclusions and Future Work
Our preliminary experiences and findings with

Scalable Game Design, our low-threshold/high-ceiling
framework supporting skills beyond programming,
ranging from theoretical design skills to concrete
development skills, lead us to believe that we can
establish IT fluency and broaden participation in
computer science with game design activities.
Preliminary results from the studies indicate that it is
educationally effective to use AgentCubes as a low-
threshold game design environment featuring
Incremental 3D for teaching IT skills to middle school
students. To have a systemic impact, we will scale up
research and development along different dimensions:
• technology: provide more scaffolding techniques
especially for incremental programming.
• content and curriculum: develop longer modules
offered as part of the curriculum for comprehensive
coverage of IT standards.
• teacher training: a systematic approach to teacher
training is essential for technology adoption in schools.
• social factors: explore the factors leading to the
somewhat disappointing attrition rates for girls, given
their interest in game design and ability of achieving
the level of fluency required to create their own games.

6. Acknowledgements
This work is supported by the National Science

Foundation under Grant Number No. IIP 0712571.
Any opinions, findings, and conclusions or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the National Science Foundation.

7. References
[1] Computing Research Association, "CRA Bulletin:
Enrollments and Degree Production at US CS Departments
Drop Further in 2006/2007," 2008, (available at
http://www.cra.org/wp/index.php?p=139).

[2] Committee on Information Technology Literacy, National
Research Council, Being Fluent with Information

Technology. Washington, D.C.: National Academy Press,
1999.

[3] K. Salen and E. Zimmerman, Rules of Play: Game
Design Fundamentals. Cambridge, MA: The MIT Press,
2003.

[4] President's Information Technology Advisory Committee
(PITAC), "Report to the President: Computational Science:
Ensuring America’s Competitiveness," June 2005.

[5] U. Wilensky and W. Stroup, "Learning through
Participatory Simulations: Network-Based Design for
Systems Learning in Classrooms," in Computer Supported
Collaborative Learning (CSCL '99), Stanford University, CA,
1999.

[6] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman,
and M. Resnick, "Scratch: A Sneak Preview," in Second
International Conference on Creating, Connecting, and
Collaborating through Computing, Kyoto, Japan, 2004, pp.
104-109.

[7] M. Barbara, L. Deborah, and C. Stephen, "Evaluating the
effectiveness of a new instructional approach," in
Proceedings of the 35th SIGCSE technical symposium on
Computer science education Norfolk, Virginia, USA: ACM,
2004.

[8] E. Klopfer and S. Yoon, "Developing Games and
Simulations for Today and Tomorrow’s Tech Savvy Youth,"
TechTrends, vol. 49(3), pp. 33-41, 2005.

[9] A. Repenning and A. Ioannidou, "Broadening
Participation through Scalable Game Design," in Proceedings
of the ACM Special Interest Group on Computer Science
Education Conference, (SIGCSE 2008), Portland, Oregon
USA, 2008.

[10] A. Repenning and A. Ioannidou, "Agent-Based End-
User Development," Communications of the ACM, vol.
47(9), pp. 43-46, 2004.

[11] A. Repenning, "Inflatable Icons: Diffusion-based
Interactive Extrusion of 2D Images into 3D Models," The
Journal of Graphical Tools, vol. 10(1), pp. 1-15, 2005.

[12] A. Repenning and A. Ioannidou, "AgentCubes: Raising
the Ceiling of End-User Development in Education through
Incremental 3D," in IEEE Symposium on Visual Languages
and Human-Centric Computing, 2006, Brighton, United
Kingdom, 2006, pp. 27- 34.

[13] A. Repenning and A. Ioannidou, "Behavior Processors:
Layers between End-Users and Java Virtual Machines," in
Proceedings of the 1997 IEEE Symposium of Visual
Languages, Capri, Italy, 1997, pp. 402-409.

[14] A. Ioannidou, A. Repenning, C. Lewis, G. Cherry, and
C. Rader, "Making Constructionism Work in the Classroom,"
International Journal of Computers for Mathematical
Learning, vol. 8(1), pp. 63-108, 2003.

[15] M. Csikszentmihalyi, Flow: The Psychology of Optimal
Experience. New York: Harper Collins Publishers, 1990.

