
Mashing up Visual Languages and Web Mash-ups

M. Cameron Jones, Elizabeth F. Churchill

Yahoo! Research

{mcjones, elizabeth.churchill}@yahoo-inc.com

Michael B. Twidale

University of Illinois at Urbana-Champaign

twidale@uiuc.edu

Abstract

Research on web mashups and visual languages

share an interest in human-centered computing. Both

research communities are concerned with supporting

programming by everyday, technically inexpert users.

Visual programming environments have been a focus for

both communities, and we believe that there is much to

be gained by further discussion between these research

communities. In this paper we explore some connections

between web mashups and visual languages, and try to

identify what each might be able to learn from the other.

Our goal is to establish a framework for a dialog

between the communities, and to promote the exchange

of ideas and our respective understandings of human-

centered computing.

1. Introduction

The recent popularity of the “programmable web”

reflects a shift in the ways in which people think about

information technologies, computing, and programming.

There are several trends embedded in this notion of a

programmable web which are coming together to

encourage new modes of technology production. One

trend is the shift away from the desktop computing

model where software is installed locally on your

machine which contains your data, towards web

applications where personal and public data and services

coexist on remote servers distributed across the web.

Layering these new applications on top of existing web

technologies has the consequence of everything being

addressable with URLs, accessible via HTTP, and

presented in a structured or semi-structured format. This

opens up access to these data sources and services, either

through formal or de facto application programming

interfaces (APIs), allowing people to computationally

access them, and remix data to create new applications

called web mashups.

Mashups offer great potential as extremely rapid

development environments, allowing skilled

programmers to leverage existing systems and services to

quickly and easily compose an application. However, in

practice mashups are complex to program, involving

arcane calls, complex data transformations and the

challenges of integrating applications developed without

regard to reuse and lacking consistency in their

architectures and communication protocols. Various

attempts are being made to address the problems that are

caused for end-users as a result of these complexities –

for example the development of new languages and

programming tools, many of which offer manipulable,

visual representations for coding and debugging. This

paper is an exploration of ideas originating from the

mashing up of concepts from visual languages with web

mashups. We examine cognitive dimensions [4] as a

possible common framework for identifying and

discussing issues of human-centered computing which

may enable a mutual dialog between these communities.

2. Background

The landscape of mashup programming is not well

charted. In contrast to typically closed environments of

domain-specific visual programming languages (VPLs)

where technologies can be controlled and homogenized,

mashups exist in an open ecosystem where the

technologies involved are constantly shifting, evolving,

and being replaced and regenerated. Furthermore, it is

unclear who the mashup developers are, with little

known about their particular development practices, and

motivations [11]. What is known is that the mashup

community includes professional and “hobbyist”, end-

user programmers. Researchers have studied students

learning to program [3], and workers in enterprise

organizations [1], but little is known about the

motivations and practices of hobbyist programmers and

“everyday programmers” [9].

For many programmers an attraction to mashups is

the apparent quick payoff that they offer in terms of

bootstrapping development. That is, developers may use

a pre-existing data source, extract and manipulate the

data they want and then use a pre-existing visualization

to display the results in an interesting way. The

developer “just” has to write the code to “glue” the

services together. Achieving this can take relatively few

lines of code – often astonishingly less than building the

same functionality from scratch, and without the need to

manage seed data. However, effective glue code snippets

can be very complex to write or discover so that the word

“just” becomes highly ironic.

2.1 Decomposing a Mashup

HousingMaps.com (HM) is an example of a simple

mashup which combines real-estate listings from

Craigslist with a Google Map allowing users to browse

properties spatially (see Figure 1). The basic

functionality of HM involves searching for listings in

Craigslist, and displaying them in a map. Search results

are displayed in a map-view and a matrix-view, side-by-

side. Of the elements of the HM mashup described in

Figure 1, the page itself, the JavaScript for filtering

search results, the RSS proxy, and other pieces of code

for controlling the presentation of listings and the

interactions between the matrix and map views, are all

glue code for building the mashup.

Additionally, the RSS feed from Craigslist does not

contain the geo-coded GPS coordinates of the real-estate

listings, only street addresses. However, viewing the

HTTP traffic shows that the data being pulled into the

mashup is geo-coded. Therefore, HM must be geo-

coding the addresses after it fetches them from Craigslist.

It is most likely using a web service to look up GPS

coordinates for each street address when it fetches and

caches the RSS data (it should be noted that recent

versions of the Google Maps API include geo-coding,

allowing addresses to be mapped directly without GPS

coordinates). Thus, what appears to be a simple data and

visual combination, on deeper analysis, turns out to be a

complex and multi-faceted challenge for those hoping to

build a mental model of the data flow, integration, and

representation. Often these complexities only become

apparent when the mashup “fails”.

2.2 Visual Tools for Mashups

Concepts and techniques from visual programming

have been applied to improving mashup development

[7], resulting in numerous visual mashup development

environments (MDEs). MDEs come in a variety of

forms, including wikis (e.g., [1], [5], and QEDWiki),

spreadsheets (e.g., EditGrid), and dataflows (e.g., [10],

Yahoo! Pipes, and Microsoft Popfly). Figure 2 shows the

visual source code of a Yahoo! Pipes application which

approximates the functionality of the HousingMaps

mashup. Yahoo! Pipes affords certain kinds of

programming interactions, making some operations

easier and others more complex. For example, over half

of the source code of this pipe (3 of 5 modules) is

devoted to constructing the URL for the RSS feed from

Craigslist. Fetching and geo-coding the data are executed

in the last two modules (there is an “output” module

which is used to demarcate what data is to be returned

after the pipe has been executed). Mapping the data is

handled outside the code of the pipe itself.

3. Cognitive Dimensions

Cognitive dimensions (CDs) have been used as one

way of analyzing VPLs and evaluating interface and

interaction designs. Following the approach of Burnett

[2], we have applied CDs to both MDEs and the broader

mashup ecosystem. Our motivation was not only to

reflect on what CDs tell us about mashup programming,

but also to see the ways in which mashups challenge the

definitions and boundaries of current CDs. The CDs

originally defined by [4] are: abstraction gradient,

closeness of mapping, consistency, diffuseness, error-

proneness, hidden dependencies, premature commitment,

progressive evaluation, role-expressiveness, secondary

notation, viscosity, and visibility. We provide a cursory

Visible Components

Page
HTML & JS controlling interactions

between property listings and map

Listings Fetched via RSS feed from Craigslist

Map panel JS library from Google Maps

Filters
JS which filters the current data set to

display only relevant properties.

Non-visible Components

Proxy

Proxies and caches the RSS feed

from Craigslist to bypass browser

security restrictions. Transforms data

to proprietary text format.

Entities

Google Maps Map Libraries

Craigslist Property Listings in RSS

HousingMaps

The HTML page; RSS proxy and

caching module; JS for filtering data;

JS for controlling interaction

 Figure 1. Decomposing a mashup - HousingMaps.com

analysis of mashups with respect to the dimensions we

feel are most relevant.

Abstraction gradient

Green and Petre [4] define an abstraction as a

grouping of multiple elements into a single entity. The

abstraction gradient is the difference between the

minimum and maximum levels of abstraction. Mashups

have a large abstraction gradient, touching multiple

layers of the programming stack, from data and file

systems, to the graphical user interface. Interactions with

these multiple layers are often blended in a single script

(or even single lines of code – see Figure 3). Working

across layers is often required when combining different

services or sources which operate at different levels of

abstraction. For example, in the HousingMaps mashup,

Google Maps is abstracted into a high-level entity,

freeing the user from the many low-level details of

fetching and rendering the map data. However, Craigslist

lacks an API library, and so the mashup developer must

write code to request and marshal data at a fairly low-

level. This alignment happens across multiple

programming languages, in both the server and client-

side contexts.

Consistency

Consistency, the degree to which new knowledge

can be inferred given what is already known, is very low

in mashups. Little knowledge about how new services

will function can be inferred by analogy to other

services. Each mashup service provides its own API,

data formats, and invocation patterns. Standards provide

some consistency in the technological infrastructure

which enables mashups to be possible; however, many

are merely serialization standards, and the data structures

being serialized and passed back and forth are unique to

each service, requiring custom marshalling.

Hidden dependencies

The mashup ecosystem has many hidden

dependencies. What happens within the black-boxes of

the remote server calls is unknown, and

more importantly, unknowable. The black-

boxes of remote APIs reflect the intentional

hiding of what is inside. This is a very

different kind of black-box than the

abstractions used in VPLs, which are used

as scaffolds to aid development.

Furthermore, the dependencies

between services are not necessarily

explicit. A service may require data of a

particular type, or formatted in a particular

manner. Type and format may not be the

same as that used by other services, nor

correspond to the developer’s conception of

the data (e.g., the geo-coding

transformation in the HM mashup). Data

transformations raise the complexity of the

overall mashed-up system, and impose additional

dependencies between the services.

The browser programming environment likewise

imposes dependencies which are not always visible or

obvious. In the HousingMaps example presented earlier,

the need for a proxy service to fetch and cache the RSS

feeds is required to bypass the JavaScript “same origin”

security restriction.

Progressive evaluation

The all-or-nothing remote call to a remote service

does not easily afford debugging. When services fail to

respond, or respond with unexpected results, the

developer can only debug to a certain level before

reaching the atomicity of the black-box service call.

Hard mental operations

Remembering multiple, inconsistent syntaxes for

different API calls, sometimes involving two or more

languages that are embedded in each other is hard; this

imposes an overhead of keeping track of what is being

done and why. These “hard mental operations” are often

a result of the limitations imposed by other CDs, e.g.,

large abstraction gradients, with low consistency can

combine to create mentally hard operations which

require working across several levels of abstraction, in

multiple languages, simultaneously. For example, in the

snippet shown in Figure 3, a PHP array reference

($item) is embedded in a line of JavaScript code (var

asin...), which is in an HTML document, being

Figure 2. HousingMaps programmed in Yahoo! Pipes

Figure 3. Messy mashup code from [8]

<?php
 //...
?><html><head>
<script type="text/javascript">
var asin = "<?=$item['Asin']?>"
...

<?php
 //...
?>

generated by a PHP script.

3.1 Refocusing Cognitive Dimensions

Analyzing the cognitive dimensions of mashups not

only helps formalize an understanding of mashups, but

also surfaces aspects of CDs which have not been

extensively discussed.

Stability

Stability is the measure of resistance to change. It is

similar to viscosity, however viscosity is a measure of the

effort required for the user to perform a change and

stability is about the resistance of the ecosystem as a

whole to changes over time. When proposed, the

cognitive dimensions framework was not used to

evaluate usability over time, merely the usability of a

given instance. However, mashups exist in a highly

dynamic, open ecosystem, with rapidly evolving and

changing components. This can lead to data, functions,

and APIs being deprecated, made redundant or obsolete,

or simply disappearing. Thus increasing the cognitive

burden on users, as programming know-how is short-

lived in such an environment.

Robustness

Another cognitive dimension foregrounded by

mashups is robustness. Domain-specific VPLs may be

able to make assumptions about the quality and

reliability of data, but mashup data is often messy and

sources fail sporadically. How well do end-users and

VPLs cope with incomplete, missing, or contradictory

data? Unlike error-proneness which measures how easy

it is for users to make mistakes, robustness is about how

the system responds to errors. Trapping and tolerating

errors can obscure their sources, blurring the distinction

between syntax errors, logical bugs, and bugs in the

underlying infrastructure. This can complicate problem

identification and resolution.

Sharability

One mechanism mashup developers use to cope

with the complexities, and dependencies of mashup

programming is sharing, and reusing shared code [6].

The ability to share and reuse code and code snippets

affords cognitive off-loading, allowing users to reduce

the individual cognitive overhead of having to

reconstruct code from scratch or establish shared context

by other means. The most successful MDEs have

facilities for viewing and sharing code with others. The

conversations developers have with, and around code

serve as informal documentation with reusable examples,

and provide human-language descriptive contexts for

searching and understanding.

4. Conclusion

Clearly, we believe there is much purchase to be

gained from analyzing similarities between mashup

programming and visual language programming from an

end-user perspective. The cognitive dimensions

framework provides a rich vocabulary for analyzing not

only visual programming languages, but also the mashup

ecosystem. Analyzing mashups has produced additional

insights into the cognitive dimensions of programming

heterogeneous applications. Cognitive dimensions is just

one framework for analysis; others may shed light on

other aspects of the mashup ecosystem previously

understudied, or highlight other ways in which mashups

may inform our understanding of human-centered

computing.

5. References

[1] C. Anslow & D. Riehle (2008) Towards End-User

Programming with Wikis. In Proceedings of WEUSE 4.

[2] M. Burnett (1999) Visual Programming. In Wiley

Encyclopedia of Electrical and Electronics Engineering (J.

Webster, ed.) John Wiley & Sons, Inc.

[3] I. R. Floyd, M. C. Jones, D. Rathi & M. B. Twidale

(2007) Web Mash-ups and Patchwork Prototyping: User-

driven technological innovation with Web 2.0 and Open

Source Software. In Proceedings of HICSS’07.

[4] T. R. G. Green & M. Petre (1996) Usability Analysis of

Visual Programming Environments: A ‘Cognitive

Dimensions’ Framework. Journal of Visual Languages and

Computing 7, 131-174.

[5] B. Hartmann, L. Wu, K. Collins & S. R. Klemmer.

(2007) Programming by a Sample: Rapidly Prototyping Web

Applications with d.mix. In Proceedings of UIST’07.

[6] M. C. Jones (2007) Web Mashups: Technological

Appropriation in Web 2.0. In Proceedings of 4S 2007.

[7] S. C. Lim, S. Lowe, J. Koempel, (2007) Application of

Visual Programming to Web Mash Up Development. In

Proceedings of HCII’07.

[8] M. C. Jones & M. B. Twidale (2006) Mashups and

CSCW: opportunities and issues. CSCW’06 Workshop.

[9] M. B. Rosson, J. Ballin, & H. Nash (2004) Everyday

Programming: Challenges and Opportunities for Informal

Web Development. In Proceedings of VLHCC’04 IEEE.

[10] J. Wong & J. Hong (2007) Making Mashups with

Marmite: Towards End-User Programming for the Web. In

Proceedings of CHI’07.

[11] N. Zang, M. B. Rosson, V. Nasser. (2008). Mashups:

Who? What? Why? In CHI’08 Extended Abstracts.

