
Improving API Documentation Using API Usage Information

Jeffrey Stylos, Andrew Faulring, Zizhuang Yang, Brad A. Myers
Carnegie Mellon University

{ jsstylos, faulring, zizhuang, bam } @ cs.cmu.edu
http://www.cs.cmu.edu/~jadeite

Abstract

Jadeite is a new Javadoc-like API documentation
system that takes advantage of multiple users’ aggre-
gate experience to reduce difficulties that program-
mers have learning new APIs. Previous studies have
shown that programmers often guessed that certain
classes or methods should exist, and looked for these in
the API. Jadeite’s “placeholders” let users add new
“pretend” classes or methods that are displayed in the
actual API documentation, and can be annotated with
the appropriate APIs to use instead. Since studies
showed that programmers had difficulty finding the
right classes from long lists in documentation, Jadeite
takes advantage of usage statistics to display com-
monly used classes more prominently. Programmers
had difficulty discovering how to instantiate objects, so
Jadeite uses a large corpus of sample code to auto-
matically the most common ways to construct an in-
stance of any given class. An evaluation showed that
programmers were about three times faster at perform-
ing common tasks with Jadeite than with standard
Javadoc.

1. Introduction

An Application Programming Interface (API) is the
user interface of a library of functionality to the pro-
grammer who uses it. A growing body of evidence has
made it clear that many APIs are difficult to use
[2][4][13][14]. This same research has also shown that
not all of this difficulty is intrinsic; APIs can be de-
signed so that they are significantly easier to use. In
many cases APIs can achieve a goal of being “self
documenting” [3], where users can learn the APIs sim-
ply by trying to use them.

However, this knowledge of how to design more
usable APIs does little for the many widely used APIs
that have already been released. In addition, there are
important considerations other than usability that de-
signers must take into account [1][3], including per-

formance and future extensibility, which can lead to
designing harder-to-use APIs for legitimate reasons.

Different approaches for improving the usability of
existing APIs (written in existing programming lan-
guages) include: creating wrapper APIs, changing the
integrated development environment (IDE), and chang-
ing the API documentation. Because previous observa-
tions showed that many Java programmers rely heavily
[5] on Javadoc-based documentation [11], we have
been exploring ways that API documentation can be
used to improve the usability of existing APIs. This
paper presents Jadeite (see Figure 1), a prototype
documentation system that embodies these ideas. Jade-
ite stands for: Java API Documentation with Extra
Information Tacked-on for Emphasis. Jadeite is a sys-
tem for displaying API documentation that uses other
programmers’ previous API usage to make common
tasks easier. Jadeite’s features are motivated by the

Figure 1. Novel features of the Jadeite documentation system.
Font sizes are varied based on usage data (a); common meth-
ods of class construction (c) are automatically determined; and
users can add new placeholder classes or methods (b) to stand
in for expected parts of an API.

specific problems observed in previous user studies
[13][4][14].

The contributions of this research include new
documentation techniques for focusing users’ attention
on what is most likely to be relevant and for adding
useful extra information in a controlled way, which are
shown to be extremely effective (e.g., a factor of 3
faster). We also contribute new techniques for using
Google to mine the vast information of the web to
augment the information to be displayed to users, and
these techniques are likely to be useful for many other
areas besides API documentation.

2. Related work

2.1. API usability studies

Previous work has used a series of studies to deter-
mine which patterns common across different APIs are
more difficult to use. One study examined the effects
of required constructor parameters: classes without a
default (parameterless) constructor, so that all of the
available constructors require certain parameters to be
specified [13]. This study found that, while API de-
signers expected that required constructors would be
easier to use and would guide users into the correct use
of an object, instead the programmers were quicker and
made fewer errors when there were default construc-
tors offered.

A follow-on study [4] examined the abstract factory
and factory method design patterns [6]. In these pat-
terns, objects are not created with constructors, but
instead using a separate factory class or static factory
method. Both patterns were significantly more difficult
for participants to use than a standard constructor,
causing participants to take up to 10 extra minutes to
construct a single object.

A recent study examined differing object designs –
how functionality is separated into objects – and which
cause APIs to be less usable [14]. This study found that
when multiple objects are used together and one is
thought of as the “primary” object, then programmers
are significantly faster if the primary object contains a
reference to the helper object in one of its method sig-
natures, despite the fact that many common APIs do
the opposite.

Another finding of this study was that, while most
programmers tended to find the same classes to start
from – for example, all of the participants found and
explored the Message class before the Transport class
– in many cases programmers still had difficulty locat-
ing an appropriate class to start from amid the long
lists of objects provided by the API.

These previous studies identified trade-offs between
usability and other qualities in API design. For exam-
ple, while less usable, the factory pattern allows the
concrete class of the object to be hidden. By improving
the documentation, Jadeite allows APIs that are opti-
mized for other qualities to still be usable.

2.2. Existing documentation and tools

There has been much recent research on how to
mine useful information from large repositories of
source code [10]. Jadeite differs from most of this
work in that it uses code snippets from standard web-
pages, found using Google, rather than a CVS reposi-
tory or source-code-specific search engine. We chose
this approach for two main reasons. First, for breadth:
none of the code repositories or code search engines
we have seen has been as comprehensive in the variety
of examples they contain as what is indexed by Goo-
gle. Second, to try to be representative of common
usage: many code search engines are heavily affected
by a relatively few very large open-source applications,
whose usage of any given API is not always represen-
tative of how a typical programmer might use it. One
downside of this approach is that, unlike compilable
.java files, snippets from webpages are often incom-
plete and difficult to recognize, and sometimes incor-
rect. This makes the implementation of a system which
tries to mine information from the web at large more
difficult. However, for the large and commonly used
APIs, including the standard Java APIs, we think that
this is the most worthwhile approach. However, for a
different, possible private, API, it is possible that a
different approach would work better.

Some API search systems like Assieme [8] and
Mica [15] also use webpage snippets as source data.
One of the main differences between Jadeite and these
systems is that Jadeite presents a Javadoc-like hierar-
chical browsing interface, rather than a search inter-
face. Searching and browsing interfaces both have their
advantages, and can also be used together. However,
we chose in this project to focus on trying to create the
best browsing based interface, in part because this let
us do our analysis offline, allowing us to analyze more
data while avoiding any latency issues during use. Fur-
thermore, browsing compliments search interfaces by
helping users find the right terminology to search for.

Jungloids [12] automatically discover how to con-
vert from a set of initial types to a desired type. Jadeite
takes the alternative approach of displaying the most
common way to construct a desired type from any pos-
sible starting types.

Recent repository mining work [9] has used method
popularity data to recommend the most popular parts

of an API. Jadeite’s font sizes are similarly motivated,
though different in presentation style (font sizes) and
context (lists of classes in standard API documenta-
tion).

3. Placeholders

3.1. Placeholder design

Typical API documentation lists the classes and
methods that exist in an API. The idea behind our API
“placeholders” is that the documentation should also
list the classes and methods that programmers expect to
exist, and these placeholders should contain forward
references to the actual parts of the APIs that should be
used instead.

The motivation for this feature comes from observ-
ing programmers become frustrated with APIs that did
not contain the expected classes and methods. For ex-
ample, a programmer might reasonably wonder why
Java’s Message and MimeMessage classes lack a
send() method, why classes like SSLSocket lack a pub-
lic constructor, or why the File class lacks read() and
write() methods. Even when there are valid reasons for
omitting expected parts of an API, we conjectured that
the simplest and most effective way to explain these is
by including placeholders in the context of the actual
API documentation, where they would appear if they
actually existed.

Figure 2. Before, during and after adding a placeholder
send (message) method to the Session class.

Displaying these placeholders alongside the docu-
mentation for the actual API is a key aspect of this
idea. Otherwise users would be required to prematurely
decide where to look, in the actual API documentation
or a separate site, before knowing whether the particu-
lar class or method they wanted existed.

One of the primary goals of the placeholder design
was to provide a scalable way for programmers to edit
and add to API documentation. One goal of the design
was to work with many different users and edits. Since
methods are displayed for browsing concisely by sig-
nature, with additional details available when clicked
on, it is practical to browse classes with dozens of
methods, and adding a few more placeholder methods
will not appreciably increase the size of what users
must investigate. In contrast, viewing dozens of sepa-
rate examples or dozens of paragraphs of textual
documentation would take much longer.

An API designer might intentionally seed an API
with placeholders for the classes and methods they
considered including but chose not to. Programmers
trying to use the API might later add other placeholders
for operations that the original designers never thought
of. Other programmers, or the same programmers once
they figure out a solution, can then annotate any of the
placeholders with replacement code explaining how to
accomplish the desired functionality with the available
APIs. Programmers might add placeholders for the
benefit of others or so that they themselves do not need
to re-learn the API when returning to it in the future.

We mark a method as a placeholder by displaying it
in the method summary list with a green background,
adding “Edit” links in the summary and description,
and by displaying “This is a placeholder method” in
the description (see bottom of Figure 2). We wanted to
avoid any possible confusion of placeholder methods
with actual methods, while still displaying them in the
same part of the documentation. Placeholders are cur-
rently authored using a form interface (middle of Fig-
ure 2), but a WYSIWYG editor is planned.

When desired functionality is known not to be pos-
sible (or practical) with a given API, a programmer can
create a placeholder that is marked as not possible. For
example, users of Google’s SOAP APIs might want to
perform an image search, but that is not possible with
those APIs. One programmer could create a searchI-
mages(query) method, an another could add an annota-
tion explaining that image searching is not supported.

Placeholders also provide a low-maintenance way
of providing redundancy in an API. While providing
multiple, redundant names or designs would often be
unwieldy and inelegant in an actual API, creating
placeholders for these reasonable alternatives provides
a mechanism for matching the expectations of many
different users while keeping the API simpler.

Unlike the other features described below (which
take advantage of aggregate information currently
available from large corpora) placeholders are based on
the idea of community collaboration and evolution, and
are an interactive way for users to make the documen-
tation system more useful than when they started.
Similar to a wiki, we imagine that sufficient use will
evolve the documentation into a more comprehensive
and useful state.

3.2. Placeholder implementation

Jadeite is based on the Javadoc documentation sys-
tem, in part because this is the standard form of docu-
mentation for Java APIs that many programmers are
used to. The freely available tool to generate Javadocs
contains a mechanism for customizability in the form
of “doclets”, Java classes that enable programmers to
generate customized Javadocs. We use a custom doclet
to generate a database that is then used by a PHP script
to generate documentation that looks similar to Java-
doc. Using a web scripting language allows us to more
easily create documentation that is dynamic and inter-
active, instead of being limited to static html. One dis-
advantage of this approach was that it required reim-
plementating most of the functionality already offered
in Javadoc. To reduce this burden, we took advantage
of Javadoc’s source file parsing by using a doclet to
generate a SQL database that our PHP front-end uses.
This approach allows us to generate new documenta-
tion for any API for which standard Javadocs can be
generated.

Placeholder classes and methods are added to the
database by the PHP front-end and stored alongside the
actual APIs with an additional placeholder flag. Be-
cause they are stored alongside the actual API, Jadeite
includes placeholders in the rest of the documentation,
for example by including a placeholder class in the list
of all known subclasses of its superclass, or all known
implementing classes of any interface it implements.

4. Font sizing

4.1. Font sizing design

Our previous studies [cite] showed that program-
mers had difficulty finding the classes they wanted,
and in the process they would spend time examining
and trying to understand classes that few people ever
use (as evidenced by the rarity of example code and
references to these classes on the internet). However
from the documentation it can be difficult or impossi-
ble to tell which classes are the common classes that

most people use and which classes are only used
rarely.

Our goal was to come up with a design that would
highlight the most commonly used classes within the
context of the complete documentation, while still
showing all of the classes. In our observations of pro-
grammers using documentation in which classes were
sorted by popularity, instead of alphabetically by name,
this greatly annoyed users, who could no longer find a
class even if they already knew its name. Because of
these observations, we wanted to keep the existing
alphabetical list.

Figure 3. Jadeite displays varied font sizes based on Goo-
gle hits, shown for the Java Mail packages (left) and the
javax.mail classes (right).

The popularity-based font size design we created

(see Figure 3) is inspired by tag clouds [7], which usu-
ally display a similar list vertically across several lines,
and are often generated from chat logs.

4.2. Font sizing implementation

We compute font sizes based on the number of
Google hits for each class and package. We compute
this offline, as a batch process, by using the Google
API to search for the fully qualified class name e.g.,
“java.lang.Object” and recording the number of hits
returned. The frequencies of classes in the Java 6 APIs
roughly follow a power law distribution, from the most
frequent java.lang.Object (with 3,530,000 hits) to the
least frequent java.awt.peer.SystemTrayPeer (17 hits).

Tag clouds generally use either linear or logarithmic
weighting schemes. In linear weighting, the most
popular element is assigned a predefined maximum
font size, and the least popular element is similarly
assigned a minimum font size. Linear interpolation is
used to calculate the font size of each element, so
something halfway between the least and most popular
classes will get the halfway between the minimum and
maximum font sizes. Logarithmic weighting uses
logarithmic interpolation instead.

Because of the observed power law distribution of
Java class popularity, using a logarithmic scale for
computing font sizes yields a roughly even distribution

of font sizes, while using a linear scale results in a few
classes with large font sizes and many small classes.
We chose to use logarithmic weighting on the list of all
classes in the API, so that the list was generally read-
able, but chose to use linear weighting when listing the
classes in a single package. This is because most pack-
ages seem to actually have relatively few commonly
used classes. Using logarithmic weighting would give
above average prominence to almost half of the classes
in a package, while we thought much fewer would be
usefully highlighted.

We currently compute font sizes for packages,
classes and interfaces. When computing font sizes for a
list of classes within a single package, we use the rela-
tive popularity of a class (or interface) within that par-
ticular package (as opposed to throughout the entire
API). This makes it difficult to tell from a package list
if a class is globally popular (though the font size of its
package name gives a hint to this), but has the advan-
tage that there is always a range of font sizes within the
class listings of a package, as opposed to a list of
classes in uniformly large or small font sizes, as would
otherwise happen with popular or unpopular packages.

One of the main advantages of using Google is that
the corpus searched is so large (billions of pages, more
than 400 million with the word “Java”). It has the dis-
advantage, however, that it can be ambiguous whether
a word refers to a specific Java class or not. We chose
to measure popularity by the fully qualified class name
(e.g. “java.io.File”), because this avoided a problem
where class names that were also common English
words (for example “File” would otherwise get inaccu-
rately high hits, even when including the package name
as another search term in the query). Using fully quali-
fied class names also has problems, though; some
classes are more commonly referred to fully qualified
than others. In particular, Exception classes are fre-
quently referred to fully qualified to avoid an extra
import statement. To deal with this, we ignore excep-
tions when computing font sizes and impose a limit to
the maximum size of an Exception (about two-thirds of
the maximum font size). A few particular classes are
also very frequently referred to fully qualified, such as
java.lang.Object and java.lang.String. These dominate
the lists even when using logarithmic weighting. To
solve this problem, we ignore the top 0.05% most
common classes when computing other classes’ font
sizes. These very common classes are still displayed at
the maximum font size.

Jadeite computes the popularity of individual class
methods using the same technique as for classes and
packages, however we do not currently display this
information. One reason for this is that methods are not
currently displayed in the same simple list that pack-
ages and classes are, making it less obvious which font

sizes to change. However we plan to explore design
ideas for this in the future.

5. Construction examples

5.1. Construction examples design

The pseudocode that participants wrote in previous
studies and their think-aloud comments [13] showed
that nearly all of the users expected all objects to be
constructed using a constructor (and usually by a de-
fault – parameter-less – constructor). When presented
with classes that needed to be constructed without a
constructor, the first – and sometimes insurmountable
– barrier was in realizing that something other than
such a constructor was needed.

Providing this initial realization was one of the main
goals of our design of the construction-examples fea-
ture. For this reason we chose to place the construc-
tion-example snippet near the very top of the class
documentation page, just below the inheritance hierar-
chy (see Figure 5). In addition to trying to solve the
usability problem of the Factory pattern [4], we were
also motivated by difficulties programmers had with
abstract classes and interfaces, where programmers
would often not realize a class was abstract (or that it
was actually an interface) until after they had written
code that tried to construct it.

Figure 4. Based on example code found on Google result
pages, Jadeite shows the most common ways to construct
an instance of the SSLSocketFactory class.

Another goal was to provide short, understandable
snippets that users could copy and paste into their pro-
grams. In initial prototype displayed only a single line
of example code. However, in order to annotate the
types of the variables and keep it on a single line we
had to use non-standard Java syntax. We quickly real-
ized, however, that a more readable snippet was re-
quired for users, and so we display the snippet on mul-
tiple lines, using an additional line for each of the in-
stance variables that are used as a factory or parameter
(see Figure 4). This lets us use standard Java syntax for
defining class instances.

One aspect of the design we considered was how
large of a construction example snippet to display.
While a class instance is usually instantiated in only a
single line, this line sometimes uses parameters or fac-
tories that themselves have complicated construction

patterns. Some classes also have post-construction ini-
tialization methods that need to be called before using
the object. We chose to display only a single line with
the addition of partial lines for each of the instance
variables used in the construction example, but chose
not to recursively try to include code to instantiate each
of these variables, since sometimes this chain would be
very large. (An exception is values that are used inside
the main construction example without being assigned
to a temporary value, for example a constant like “lo-
calhost” or 8080.) We display an ellipsis after the vari-
able declaration, to represent that some instantiation of
these variables is needed but not shown. Users can see
how to instantiate each of these variables, if they need
to, by clicking the class name link and seeing the most
common construction patterns for that particular class.
One disadvantage of this approach is that it loses the
specific context of how the classes are used together.
For example, suppose a factory is used to create a
product class. Showing how to create the factory on its
own page means that users will see the most common
overall way to construct the factory, which might not
be the same as the way the factory is usually con-
structed when using that particular product. So far, this
does not seem to be much of a practical limitation for
the Java APIs we have looked at, however.

When classes can be created in multiple ways, one
question we had is how many different construction
examples to show. In our initial development, almost
all of the classes we examined were nearly always con-
structed in one particular way, so we chose to usually
display only the most common way of construction,
and display the two most common ways in the few
cases that there were more than one common way. We
currently display two different construction examples
if the second most popular construction has more than
50% of the number of different source examples as the
most popular construction pattern.

5.2. Constructor examples implementation

The examples are constructed by examining the
sample code contained on the top 500 Google results
for a search using the fully qualified name of the class.
Within these pages we look for code construction ex-
amples that match a regular expression for variable
declarations and assignments (ClassName variable-
Name = expression;). For each of the variables used in
each construction examples, we try to figure out the
type of the variable by looking for variable or parame-
ter declarations. For example, an earlier line that con-
tained: “SSLSocketFactory factory = ” would tell us
that the factory in the construction example was of type
SSLSocketFactory. For each variable type and explicit

class reference, we then try to determine which pack-
age it was from. In the event that there are multiple
classes with the same name in different packages (for
example java.util.List and java.awt.List), we guess the
package that is closest to the package of the class for
which we are looking for construction examples
(choosing java.awt.List in construction examples of
classes in java.awt or subpackages).

After recording all of these construction examples,
we aggregate all of the examples that have the same
type signature, ignoring whitespace and variable
names. For each variable we determine the most com-
mon variable name and use this and all of the variable
types we were able to determine to create a construc-
tion example signature.

We chose to use Google as the corpus because the
other large corpora we examined seemed to be less
comprehensive and more biased by the inclusion of a
few large projects (such as Apache), whose use of code
did not seem representative of average use.

6. Study

6.1. Method

We repeated two tasks from prior work since they
proved to be examples of difficult tasks. These first
two tasks, creating an SSLSocket (which required a
factory) and sending an email (which required the use
of multiple abstract classes and a helper Transport ob-
ject) have been previously described [4][14]. We added
a third task to test how programmers would be affected
by our tool when they were performing a compara-
tively uncommon task, so that Jadeite’s features may
get in the way of finding the necessary information. In
the third task, we asked participants to take an input
like www.google.com and return an output like
“66.2.10.162”, using the package java.net. We used
this wording to avoid mentioning terms like IP address,
URL, or DNS lookup, which might have biased their
exploration. We chose this task because none of Jade-
ite’s features were helpful: the font sizes of classes in
the package were dominated by the URL class, not the
InetAddress class that needed to be used; the construc-
tion example for the InetAddress used the local host,
and not an arbitrary host name in the form of a string.
We wanted to make sure that, in the (hopefully un-
common) case when users had to do something differ-
ent than Jadeite suggested, Jadeite would at least not
cause new problems.

We used identical recruiting and study setup from
our previous studies [4][14], so that the earlier data
could serve as the control condition. We ended up with
7 participants, all current students, with between 1 and

4 years of Java experience (an average of 2 years). All
were very familiar with Javadoc. Participants in the
Jadeite condition were told that they would be using
new documentation, and were given a brief, one-
minute overview of the new features.

We focused our study primarily on the effect of the
three automated analyses, without placeholders, and
then on the user interface for adding placeholders. The
first five participants performed each task using Jadeite
without any placeholders (and without the user inter-
face for adding new placeholders), and then, after they
had finished all of the tasks, they were told about
placeholders and asked to add any they felt would have
been helpful. The last two participants performed the
tasks with placeholders turned on (though still no UI
for adding new ones), and saw all of the placeholders
that the previous 5 participants had added.

We also asked participants to fill out a survey at the
end of the study, in which we had them rank how help-
ful they thought each feature and the documentation
overall on a 7-point Likert scale, and asked them
whether they preferred standard Javadoc or the new
documentation.

6.2. Results

To test the effect of Jadeite, we measured the time
taken to perform several specific parts of the tasks.
Measuring these parts helps reduce the effect of overall
task variance due to each participant’s programming
style and also helps separate the effects of different
features on participants’ success.

On the Email task we measured the time to find the
Message class. Every participant found the documenta-
tion for this class before writing successful code. We
also measured the time it took participants to find the
MimeMessage class, which was the needed subclass of
the abstract Message class.

The times compared here are the first five Jadeite
participants compared with the control condition par-
ticipants, run in the previous studies.

Participants using Jadeite were approximately 3
times faster at finding Message, in an average 4 min-
utes versus 12 minutes in the control condition. For
this and the other times we used the Wilcoxon Rank-
Sum test (which does not assume normality) to test
statistical significance, and found p to be < 0.05.

Participants were also about 3 times faster at finding
MimeMessage, 5 minutes for Jadeite participants ver-
sus 18 minutes in the control (p < 0.05).

In the SSLSockets task we measured the time par-
ticipants took to find the SSLSocketFactory class,
needed to construct the SSLSocket. Participants were
about 2.5 times faster at finding SSLSocketFactory in

the Jadeite condition, spending an average of 7 minutes
versus 17 for the control condition (p < 0.05).

After testing one condition of the InetAddress task
(there being no previous study to compare it to, unlike
the other tasks), we felt from our subjective observa-
tions that participants were not slowed down by any of
the Jadeite features, even when they did not suggest the
right answer for the task. Because running a second
condition for just this task would have required twice
as many participants, with the expected result being no
statistical differences, we did not run a second, control
condition, and make no claims about the relative effec-
tiveness of participants for this task.

On the survey participants ranked Jadeite at 6.3 out
of 7, where 7 was very helpful and 1 was very unhelp-
ful. Placeholders were ranked 6.3, font sizing 5.9, and
construction examples 6.7. All seven participants pre-
ferred Jadeite to the standard Javadocs. After the study,
two of the participants asked to be emailed if we re-
leased Jadeite to the public.

6.3. Discussion

Based on our observations of which features par-
ticipants used, the faster times finding the Message
class can mainly be attributed to the font sizes, and the
faster times on the MimeMessage and SSLSocketFac-
tory can mainly be attributed to construction examples.

Subjectively, placeholders seemed to help the final
two users a great deal, though this might have been in
part because all of the available placeholders were
relevant. The long-term usefulness of placeholders will
have to be tested as more, varied placeholders are
added over time.

The reaction to the font sizes by the participants
seemed initially neutral, but grew more positive with
use. In contrast, participants were immediately happy
with the construction examples.

Based on watching participants add new placehold-
ers, we confirmed that our existing form-based inter-
face (see middle of Figure 2) was too complicated, and
participants had difficulty determining the purpose of
each textbox. From these results we have increased the
priority of creating in-place web interface for adding
placeholders on our list of planned improvements.

While our observations are consistent with the idea
of programmers preferring to use example code, we
had not previously realized just how powerful auto-
matically selected example code could be, and how
practical it was for inclusion on the documentation for
each class or even each method. Consequently, we
believe that finding new ways to add more example
code is the most promising future direction, both in
terms of programmer preference and effectiveness.

6.4. Threats to validity

Our study tested only a limited number of tasks, and
focused on tasks that we knew to be problematic, to
test if we had helped solve some of these problems.
Based on our own usage of the tool, we think that it
will be useful for many more APIs and tasks as well.

Participants in our study may have been biased to
use our features by their visual novelty, or by the fact
that we briefly pointed out the new features as part of
the tutorial the subjects ran at the beginning of the
study. We considered not including the 1-minute over-
view where we pointed out the new features, but felt
that this would hinge the results on their visual promi-
nence, and we wanted a realistic design that would be
practical and usable as a long-term solution, not some-
thing that was artificially eye-catching to ensure that
programmers noticed it on their first use.

While our techniques work well on the APIs we
have tried so far, we expect that other APIs with fewer
users or code examples might benefit more from other
implementation strategies to find construction exam-
ples and compute popularity.

7. Conclusion

The approach taken in this work, of studying the
user’s real problems, creating tools to solve those prob-
lems, and performing user studies to evaluate the re-
sults, proved very successful, and resulted in new de-
signs that may benefit many different kinds of docu-
mentation. We showed that information about pro-
grammers’ API usage, whether it is mined from Goo-
gle or code repositories, or explicitly annotated by pro-
grammers, can improve existing API documentation.
Jadeite demonstrated how this data can be used to
make it easier to find starting classes, figure out how to
construct objects, and find the right helper objects. We
hope that lowering these barriers will help make pro-
gramming easier and more accessible to more people.

8. Acknowledgements

This work was funded in part by a grant from SAP,
in part by the National Science Foundation, under NSF
grant CCF-0811610, and as part of the EUSES consor-
tium (End Users Shaping Effective Software) under
NSF grant ITR CCR-0324770. Any opinions, findings
and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily
reflect those of the National Science Foundation.

9. References

[1] Bloch, J. 2001. Effective Java Programming Language
Guide. Sun Microsystems, Inc.

[2] Clarke, S. 2004. Measuring API Usability. Dr. Dobbs
Journal, Windows / .NET Supplement. May 2004. 6-9.

[3] Cwalina, K. and Abrams, B. 2005. Framework Design
Guidelines: Conventions, Idioms, and Patterns for Reusable
.Net Libraries. Addison-Wesley Professional.

[4] Ellis, B., Stylos, J., and Myers, B. 2007. The Factory
Pattern in API Design: A Usability Evaluation. International
Conference on Software Engineering. ICSE ’07. 302-312.

[5] Forward, A. and Lethbridge, T. C. 2002. The relevance of
software documentation, tools and technologies: a survey.
Document Engineering. DocEng ’02. 26-33.

[6] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
1995. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

[7] Halvey, M. J. and Keane, M. T. 2007. An assessment of
tag presentation techniques. International Conference on
World Wide Web. WWW ’07. 1313-1314.

[8] Hoffmann, R., Fogarty, J., and Weld, D. S. 2007. As-
sieme: finding and leveraging implicit references in a web
search interface for programmers. User Interface Software
and Technology. UIST ’07. 13-22.

[9] Holmes, R. and Walker, R. J. 2008. A newbie's guide to
eclipse APIs. International Working Conference on Mining
Software Repositories. MSR ’08. 149-152.

[10] Kagdi, H., Collard, M. L., and Maletic, J. I. 2007. A
survey and taxonomy of approaches for mining software
repositories in the context of software evolution. J. Softw.
Maint. Evol. 19, 2, 77-131.

[11] Kramer, D. 1999. API documentation from source code
comments: a case study of Javadoc. International Conf. on
Computer Documentation. SIGDOC ’99. 147-153.

[12] Mandelin, D., Xu, L., Bodík, R., and Kimelman, D.
2005. Jungloid mining: helping to navigate the API jungle. In
ACM SIGPLAN Conference on Programming Language
Design and Implementation. 48-61.

[13] Stylos, J. and Clarke, S. 2007. Usability Implications of
Requiring Parameters in Objects' Constructors. International
Conference on Software Engineering. ICSE ’07. 529-539.

[14] Stylos, J. and Myers, B. A. 2008. The Implications of
Method Placement on API Learnability. Symposium on the
Foundations of Software Engineering. FSE ’08.

[15] Stylos, J. and Myers, B. A. 2006. Mica: A Web-Search
Tool for Finding API Components and Examples. Visual
Languages and Human-Centric Computing. VL/HCC ’06.
195-202.

