
Semantic Navigation Strategies for Scenario-Based Programming

Michal Gordon and David Harel
Dept. of Computer Science and Applied Mathematics

The Weizmann Institute of Science
Rehovot, Israel

Email: {michal.gordon, dharel}@weizmann.ac.il

Abstract—The scenario-based approach to specification and
programming uses powerful extensions of sequence diagrams,
such as LSCs (live sequence charts), to model system behavior.
Previous work in this area presents interesting challenges
related to the scalability of the approach and to better tool
support for analysis, execution, and comprehension. Here we
suggest new semantic-rich ways of viewing sequence diagrams
and LSCs for better comprehension of both a single large chart
and a full multi-chart specification, in a variety of software
engineering tasks. Our method uses weighted messages to
create a semantic order that enables semantic zooming and
scrolling of different parts of a chart, providing visual hints
about context.

Keywords-Live Sequence Charts; Sequence Diagrams; Se-
mantic Zoom; Program Navigation; Program Comprehension;

I. INTRODUCTION

LSCs (live sequence charts), a new scenario-based pro-
gramming language, and sequence diagrams, a popular
scenario-based specification language, are both visual for-
malisms that present major challenges to usability. In the
case of LSCs, these challenges are made even more acute
due to the multi-modal features of the language and the
dependencies between different charts. These features are
also found in some other programming paradigms. The
challenges include scalability of the presentation, and navi-
gation strategies for comprehension and debug. In this paper,
we suggest ways to address some of these challenges by
applying a new method of semantic navigation to LSCs.
Specifically, we define new zooming and scrolling methods
for LSCs based on custom weights for diagram elements.
Our methods are described for LSCs but can also apply to
sequence diagrams, and they can be extended to textual code.

Our custom weights are generated automatically, depend-
ing on the task at hand, or manually by the user, and they
end up creating a semantic order on the elements of an LSC.
This order is different from the spatial order of the elements
in the chart, and we define it to assign higher weights to
elements that are semantically “more relevant” to the current
task. For example, in comprehension, elements that appear
only once in the chart may provide more information than
ones that repeat.

The order allows semantic zooming and panning on
a diagram, while some additional definitions we provide
maintain the context, abstracting unnecessary information

to assist comprehension in the specific task. More generally,
our work can be viewed as the application of the concept
of semantic zoom, adapted from information visualization
and user interface design, to the programming domain in
general. We demonstrate the approach and show the new
visual notations for the scenario-based visual formalism of
LSCs implemented in the play-engine tool [1].

II. BACKGROUND

Live sequence charts, LSCs, are used for specifying multi-
modal scenario-based behavior [2], [1]. An LSC describes
inter-object behavior, i.e., behavior between objects, captur-
ing part of the interaction between the system’s objects, or
between the system and its environment. LSCs are an enrich-
ment of message sequence charts (MSCs) [3] and the UML
sequence diagrams [4], in which objects are represented
by vertical lifelines and messages between the objects are
visualized as horizontal arrows, with time advancing from
top to bottom, as in Figure 1. Additions include subcharts,
which can contain alternative statements and messages,
allowing one to specify different behavior under different
conditions, as well as loops and synchronization points along
the lifelines.

LSCs add modalities of behavior to MSCs and sequence
diagrams by, e.g., distinguishing possible (cold) from nec-
essary (hot) behavior (the latter is where the term “live”
comes from), and can also express forbidden behavior, i.e.,
scenarios that are not allowed to occur. A prechart fragment,
represented as a blue dashed hexagon as in Figure 1, at
the beginning includes cold messages, whose occurrence
triggers the main part, depicted as a solid black rectangle
as in Figure 1, of the LSC. To execute LSCs, the play-out
mechanism or its more powerful variants [5], [6] monitors
at all times what must be done, what may be done and
what cannot be done, and proceeds accordingly. Although
the execution does not result in optimal code, nor is the
executed artifact deterministic (since LSC can yield an
under-specification) it, nevertheless, leads to a complete
consistent execution of the LSC specification, if one exists.
The details of play-out are outside the scope of this paper,
and are described in detail in [5], [1].

LSC is an example of a visual formalism that is suffi-
ciently novel so as to render scalability of presentation and

Figure 1. The top half of the full LSC, with readable messages, part of a larger LSC

tool support for analysis a challenge that has not yet been
fully addressed. Several pieces if work have addressed the
issue of viewing large sequence diagrams (SDs) [7], [8], but
they do not address issues of various tasks of comprehension,
nor do they apply to the considerably more semantically-
complex case of a set of diagrams, as when dealing with
a full LSC specification. They also lack the ability to deal
with the multi-modality of LSCs and the semantical issues
these raise. These approaches also seem to require much
intervention on the user’s side, and little to assist him/her in
filtering the information wisely, as would be expected from
a truly semantic method of zooming.

Semantic zoom has been used in many fields of informa-
tion processing. The idea is to balance details and context
when displaying information. However, when working with
LSCs, there is no clear definition of what the important
details are. Here we propose a method for using custom
weights, which make it possible to navigate between level
of detail in LSCs. The weights are generated to correspond
to different tasks, and visualization methods are suggested
to allow semantic zoom and navigation.

The current paper centers around LSCs, yet many of the
ideas can be used to also contribute to MSCs and UML
sequence diagrams.

III. DEFINING SEMANTIC ORDER

When setting up a system for carrying out semantic zoom,
some form of the relevant details has to be carefully defined,
to allow for navigation between different levels. Many pro-
gramming languages, and LSCs among them, lack explicit
definitions of such information. In our case, we found that
the additional information would best come in the form of
custom weights on the elements of the chart, thus creating a
semantic order. When the language supports hierarchy, this
information, which induces an order on element-sets, can be
integrated with the custom weights. However for navigation
to be continuous we require an element-wise semantic order
that includes all the elements.

Most programs, including LSCs, can set as the default se-
mantic order the textual/spatial order of the code. However,
more meaningful orders, which do not necessarily coincide
with the natural order in the program or diagram, can be
generated by the user or computed automatically, depending
on the task at hand. We shall discuss some suggestions for
semantic orders in section VI, and we refer to an LSC with
a semantic order as a weighted LSC.

More formally, a custom weight w(mi) is defined for
each message mi of the LSC. Since some elements of an
LSC contain others, as in, e.g., subcharts (fragments in UML
terminology), the message weight induces a weight for each
subchart as the sum of the weights of the messages in the

subchart, w(si) =
∑
{w(mi)|mi ∈ si}, and a weight on the

lifelines as the sum of the weights of messages connected
to the lifeline, w(li) =

∑
{w(mi)|mi ∈ cover(li)}. The

custom weights define a semantic order on the elements
of the LSC, and ties (equal weights) can be resolved by
reverting to the spatial order in the chart.

Consider the LSC in Figure 1. First, the vertical order
induces higher weights for messages higher in the vertical
dimension, so that message SetCash has higher weight
than message Beep. Second, the horizontal order induces
higher weights for messages that are left of other messages
(higher in the horizontal dimension) and on the same ver-
tical line, hence message SetCash, which is to the left of
message Show(take your money), has higher weight. (In
the figure they are not on the same vertical line due to
tool limitations but they could be on the same vertical
line, since there is no order between them semantics-wise.)
However, message Show(take your money) is also higher
than Beep and therefore we get the order w(SetCash) >
w(Show) > w(Beep). Section VI describes how the weight
of an element can be chosen to reflect the information it
provides relevent to the task at hand. Thus, the semantic
order will allow a viewer to focus on more relevant elements
while ignoring others.

IV. VISUAL NOTATIONS

A. The placeholder

Given a particular semantic order to be used (which does
not necessarily depend on the “geography” of the diagram),
we have to find ways to support the kinds of navigation
we want, such as zoom in, zoom out, and pan/scroll at
a specific zoom level. We do this by hiding some of the
elements, and in LSCs this will apply directly to a message,
a subchart, or a lifeline. Hiding an element can be performed
anywhere, and since it means removal of information, we
add a placeholder instead to provide context information
and to hint at the fact that data has been hidden. A specific
“look” for the placeholder must be devised, which should
indicate the location of the missing elements and include
some coding that means for capturing the sum of weights
of the elements it replaces. In LSCs, the placeholder for a
removed message is depicted as horizontal gray lines at the
appropriate location. A vertical gray line holds the place for
a removed lifeline. The weights are coded by the level of the
grayscale color of the placeholder, thus hinting at the amount
of information being hidden. When an element is hidden and
its weight is added to a specific placeholder, we refer to the
element as being consumed by the placeholder. Adjacent
placeholders are placeholders that are immediately next to
each other, with no interfering elements between them. If, in
the process of adding a placeholder at a particular location
it turns out that there is already one in an adjacent location,
the two are merged into one, and the weights are summed

Figure 2. Placeholders not merged due to subchart separation

(and the darkened color will reflect the added weight). Struc-
tural containers impose some limitation on the placeholder
merge algorithm. Subcharts in LSCs, for example, cannot
be merged in a naı̈ve way, since doing so would result
in removing structural information. A placeholder inside a
subchart can replace the subchart completely after it has
assumed the weight of all elements in the subchart. Only
then can the placeholder merge with placeholders outside
the boundaries of the subchart, thus leaving the structural
information intact for as long as necessary. This can be
seen in the example in Figures 2 and 3 that show the LSC
before and after the hiding operation of a single message
that causes a merge operation cascade for four placeholders.
The algorithm for hiding elements and merging placeholders
is given in the next section.

B. Last change marker

Our navigation allows continuous zooming and scrolling
using the scroll wheel (the former also requires holding
down the ctrl button). This means that consecutive zoom
/ scroll steps may be taken but since the semantic order
does not depend on ’geography’, there is no guarantee that
the elements being shown or hidden are in adjacent spatial
locations. We therefore mark the last change at each step,
using a special last change marker and focus on it at each
step. In LSCs, we use a red circle; see Figure 2. When
the last step added an elements, the last element added
is marked as in Figure 2. When last step hid an element,
the placeholder that consumed the element, is marked; see
Figure 3. When scrolling we mark the added element, or
the placeholder that changed due to the hidden element,
depending on the direction of the scrolling.

We have also found that it is helpful to provide a clear
indication to the viewer when the code/diagram is shown
at some zoom level that is not the regular full-detail one.
In LSCs we use a light green background for all zoomed
diagrams, rather than the normal white.

Figure 3. A merged placeholder

Figure 4. The full LSC zoomed

C. Semantic navigation

1) Zooming: During zoom-out, less information is dis-
played at each step and the level of detail decreases. There-
fore, the element with the least weight is hidden and is
replaced by a placeholder. This, in effect, leaves the most
informative elements on the diagram, and they will be the
last to be hidden.

During zoom-in, more information is displayed at each
step and the level of detail increases. Therefore, at each step
the hidden element with the largest weight is added and its
placeholder is updated accordingly.

This principle can be applied to vertical elements or
horizontal ones (i.e., lifelines) when appropriate. In our
implementation for LSCs, the zoom is applied to the vertical
elements.

In applications that have a limited area available for
drawing the diagram, the principle can be used to find the
right level of zoom for the area. The area can induce the
maximal number of vertical or horizontal elements that can
be displayed. We start by hiding all elements and then adding
the most informative elements one after another, counting
also the number of placeholders that are required at each
step to find the optimal zoom level.

2) Scrolling: When viewing a chart at a specific zoom
level, there are cases (e.g., when the chart fills the entire

available “canvas”) that call for allowing the user to scroll
and see adjacent details presented according to the semantic
order.

In such cases, we allow the user to scroll with a fixed-
sized window over the ordered set of elements. For each
scroll operation, the elements in the window are shown and
all others are hidden and are replaced by placeholders.

3) Filtering: We can easily allow the application of a
filter of a specific weight threshold. All elements with
custom weight below the threshold will be hidden (and
replaced by appropriate placeholders). This will allow the
user to focus on the more relevant information.

The filtering operation is essentially setting an exact zoom
level, but is carried out without having to go through the
continuous changing of the level.

V. THE NAVIGATION ALGORITHM

We now describe the navigation algorithm for hiding
weights and merging placeholders. It can be applied inde-
pendent of the calculations for the custom weights, and has
been implemented in the play-engine tool. The next section
discusses different ways to calculate the weights.

Here we view an LSC as a structure consisting of a tree
T of vertical elements taken from the following two sets: a
set of subcharts S and a set of messages M listed by their
‘geographical’ order. The LSC also contains a list of lifelines
L. For simplicity, no two vertical elements can be at the same
vertical location and therefore each element can be replaced
by a single placeholder. Subcharts can have child elements
of type subcharts and messages, while messages cannot have
child elements (thus, child(e) = null for e ∈ M). Each
message m or subchart s has a parent element in the tree.
Each message m and subchart s has a non empty cover
set of lifelines from L that it is connected to. A message is
connected to at most two lifelines.

Since the basic element of an LSC is the message, the
navigation is in the vertical dimension and it affects the
horizontal elements; e.g. if all the elements connected to a
lifeline have been removed, the lifeline will also be removed.

In the zoomed LSC, placeholders from a set P can
be added as leaves in the tree. A placeholder p has a
list of contain elements from S ∪M that it consumed.
Placeholders are added only in the vertical dimension but
could also have been added for removed lifelines.

The input to the algorithm is an LSC {T, L} with weights
calculated as in section III, and the output is a zoomed LSC
{T ′, L′}. Let E be a list of the messages in T sorted in
increasing order by weight (m1, ...,mn), ; thus, w(mi) ≤
w(mi+1).

For navigation, a copy of the original LSC is created, and
at each step the tree structure is updated, and then drawn.
The order of child elements in the tree determines their
vertical order. If two elements i and j have the same parent

procedure: MergePlaceholders(element)
foreach c ∈ child(element) do

MergePlaceholders(c)
for i ←0 to length(child(element)) - 2 do

e0 ←child(element,i) //gets i’th child of element
if e0 is a placeholder
e1 ←child(element,i+1)
if e1 is a placeholder //merge placeholders
weight(e0) ←weight(e0) + weight(e1)
contain(e0) ←contain(e0) ∪ contain(e1)
remove e1 from element //decreases number of elements
i ←i− 1 //loop increases i, decrease since element removed

elseif e0 is a subchart and length(child(e0)) = 1
and child(e0,0) is a placeholder

e0 ←child(e0) //replace subchart e0 by its child placeholder
i ←i− 1

Table I
THE MERGE PLACEHOLDER ALGORITHM

and i is listed before j, then i will be drawn above j in the
vertical dimension.

For zoom-out, we create a copy {T ′, L′} of the original
LSC and at each zoom-out step i = 1, ..., n, the procedure
RemoveMessage(mi) is called. In RemoveMessage(mi), the
message mi is removed from T ′ and is replaced by a place-
holder p with parent(p) ← parent(mi), w(p) ← w(mi).
w(l) for l ∈ cover(mi) is decreased by w(mi) and if
w(l) = 0, the lifeline l is removed from L′ and is not drawn.
Then the procedure MergePlacholders(T ′) (see Table I) is
called recursively, first on all child elements and than on
their parent elements, guaranteeing that subchart elements
will also be merged.

For zoom-in, if the zoom-out step is some i > 1 then
AddMessage(mi) is called for i ← i − 1. In AddMes-
sage(mi), let p = {p ∈ P |mi ∈ contain(p)}, mi is added
to parent(p) before p, the placeholder’s weight is updated
w(p) = w(p) − w(mi) and if w(p) = 0 then p is removed
from T ′. For all lifelines l ∈ cover(mi), if l /∈ L′ then l is
added to L′, and w(l)← w(l) + w(mi). If mi is a child of
a subchart in T that is contained in p, then mi is not added
directly; rather, the subchart is added and mi is added as its
child.

At a specific zoom-out level, for scrolling up (respectively,
down), at each step the message with the smallest index mi

is removed (resp., added) and the message with the largest
index mj is added (resp., removed) using the RemoveMes-
sage and AddMessage procedures, and then MergePlace-
holders is called.

VI. MEANINGFUL SEMANTIC ORDERS

The semantic order is determined by weights that are
calculated automatically before navigation as a consequence
of the task at hand. These weights can additionally be
modified manually by the user, but in most cases it is
preferable to calculate them automatically. The computation
may take time but it is performed offline, and therefore

does not affect the user’s experience of navigation. This
section discusses some possible semantic orders and their
applicability.

The spatial order is inherently part of the diagram. It has
a clear temporal meaning, which induces a default semantic
order for navigation.

Another order mentioned earlier is that created between
groups of messages using lifeline composition, as suggested
in [9], or class hierarchy, as described in [10]. In compo-
sition, a lifeline is composed of additional lifelines defined
in a separate diagram. In hierarchy, a lifeline can also be
composed of other lifelines (but the semantics is different,
of course). Ties within element-sets can be resolved using
the spatial order.

The other orders we suggest are heuristic, and depend on
the task at hand.

A. Interdependencies for comprehension

One heuristic semantic order connected to program com-
prehension is related to the dependencies between mes-
sages. This order is the result of applying some function
on statistics of the elements to calculate custom weights
automatically. For statistics, the definition of unification
is used. Roughly, when there exists two messages with
the same method and connecting the same objects, but in
different LSCs, they can be unified. The formal definition
can be found in [1] and can be applied also to messages in
the same LSC.

For a message m, we define the following local and
global statistics. Local statistics depend on the single LSC:
let Ul(m) be the number of messages unifiable with the
message local to the LSC. Let Cl(m) be the causal weight,
which is the fraction it constitutes of the prechart. A message
that does not appear in the prechart has weight 0, and that
of a message that is the only one in the prechart (i.e., its
occurrence alone triggers the LSC’s main chart) is 1.

Global statistics depend on the entire specification; that is,
the full set of LSCs. Let Cg(m) be the number of messages
that can either be caused by m (e.g., m is in a main chart
and the unifiable messages are in a prechart), or are causal
to m (e.g. m is in a prechart, and the unifiable messages are
in a different main chart), Ug(m) the number of messages
unifiable with m that are not causal or caused by m.

Our current implementation in the play-engine tool sup-
ports only this semantic order, and we have used equal
weights for the local and global components. These weights,
wl = 0.5 and wg = 0.5 are parameters that may be changed
according to user preferences.

Using the aforementioned statistics, the final custom
weight for a message m is the real number: w(m) =
wl(1

1+Ul(m) + Cl(m)) + wg(1
1+Ug(m) + Cg(m)).

The Ul(m) and Ug(m) components make the weight of
messages that appear once higher than those that repeat,
both locally and globally. The causal components, both local

Cl(m) and global Cg(m) add to the weight of messages
that cause changes in the same LSC or between LSCs. In
a way this is counterintuitive to indexing methods that give
higher weights to repetitive elements. However, it makes
sense when the task at hand is comprehension, or, more
specifically, comprehending the interdependencies between
different LSCs.

Testing this heuristic on sample specifications shows that
messages that are used frequently, such as clock ticks
or enabling and disabling of buttons, tend to have lower
weights, and are indeed less interesting to the reader. See,
for example, part of a large LSC from an ATM sample
specification in Figure 1 and how when zoomed, the tick
messages are hidden before other messages in Figure 4.

B. Semantic order for debug

Another semantic order that plays a significant role in
software analysis and debugging is the order of execution.
In languages such as LSCs this is not identical to the
textual/spatial order. LSCs are of inherent potential nondeter-
minism, with a partial order existing between messages in a
single LSC and subtle behavioral and temporal dependencies
between multiple LSCs, with their enabled and forbidden
events [2]. And in smart play-out, the execution mechanism
plans a series of steps ahead of time [5], so that the notion
of order of execution is not a trivial matter that can be read
from the text/chart.

When the task is debugging, and the focus of the user is
on the recently executed message, the semantic order can
change with each debug step to show previously executed
messages and future enabled messages with higher weights.
This will allow the user to watch a smaller window of
proximal messages not necessarily in the spatial sense but in
the executable sense. The ability to watch a partial LSC in a
small window can clear an area for displaying other relevant
LSCs, thus allowing the user to see how the LSCs interact.
We have not implemented semantic zoom for debug and we
leave the details for future work.

C. Generation order

Another order, which requires additional information that
is available during diagram generation, is the order the user
chose to add the elements during programming. This order
has the value of displaying the user’s cognitive process,
and how certain elements were added later than others. In
many cases, the later additions are the low-level details, or
sometimes ‘patches’ to fix holes in the specification. This
semantic order is relevant for comprehension and can be
accumulated during the programming process (play-in with
LSCs, for example).

D. User selection

A user may want to directly affect the semantic order, for
example, in LSCs assigning more weights to some messages,

and less to others. As in other interactive works [7], allowing
the user to interact with the diagram and specify the details
he/she is interested in helps navigation, this order can be
combined with a default order to avoid requiring the user
to assign weights to all the elements and to help the user
avoid excessive interaction. Using the placeholder element
for interaction, the user can also choose to expand all
elements consumed by a placeholder by double-clicking it,
or to extract the single highest weighted element, depending
on the tool implementation.

VII. APPLICATIONS TO CONVENTIONAL PROGRAMMING

Reverse engineered sequence diagrams are widely avail-
able and are automatically generated by commercial and
research tools. In many cases these diagrams are very
large and hard to read and navigate. Applying a semantic
order and using the suggested algorithms for zooming and
scrolling can improve the usability of these diagrams.

Our approach may also be useful in navigating textual
code. Although textual code is spatially ordered by lines,
there is much information filtering that can be applied to
lines of code. Most editors today allow the ability to collapse
lines of code that are part of the same function or class.
However, code lines have similar dependencies to those of
LSC messages. If we replace unification by calls to the same
function, we can create a weight function for each line that
will provide information on how much this line is repetitive
within a code project or a class. This information may be
valuable when comprehending code and debugging.

Once the information exists, one can even debug only
lines with an information level higher than a certain thresh-
old, hiding other code lines using the suggested placeholder
algorithm. For example, one can hide code lines that call a
logger or deal with a database, that often repeat throughout
the code, although they do not appear in consecutive lines.

VIII. RELATED WORK

The idea of semantic zoom and zoomable user interfaces
is fundamental to navigating large information spaces [11],
and has been addressed also in the domain of structured
textual code [12] and in model engineering [13], [7], [14].
In [12] a degree of interest (DOI) is defined, to allow fisheye
view of information, a view that distorts information in order
to allow focusing on some details rather than others. The
idea is applied to textual code based on its tree structure.

Some of the ideas discussed here have been previously
researched for textual code. Structure of textual code has
been used in [15] for better comprehension and for naviga-
tion between components. Different indexing strategies, such
as statistical measures for code parts [15] or social tagging
by experts [16], have been used for better navigation in large
textual code projects.

The navigation problem becomes more difficult when
dealing with complex graphical models that present layout.

Challenges that do not exist when reading sequential text
[14].

Many navigation solutions exist for class diagrams [13],
which have been researched more extensively than LSCs or
SDs, and include hierarchies that are exploited for naviga-
tion.

More recent work also address navigating and zooming
for the full set of UML diagrams, [8], [14]. In [8], various
diagrams are connected by special arrows for quick naviga-
tion and additionally, semantic zoom has been suggested for
interrelationships between elements from different diagrams
and for displaying the coarser details of a single diagram.
The work in [8] also discusses sequence diagrams briefly,
mentioning for example focusing on selected lifeline titles.
A similar work that focuses on multiple UML diagrams
[14] acknowledges that in UML multi-diagram models are
loosely coupled and are therefore hard to navigate. Novel
ways have been suggested to integrate different modeling
aspects (such as structure, data and behavior) into a coherent
model that allows definitions for navigations. In these works,
sequence diagrams are treated as one among the many
diagrams available in UML.

Recently, sequence diagrams have been acknowledged as
important in reverse engineering [7] and novel ways have
been suggested to view large diagrams using interactive
zooming. They include interactively focusing on parts of
the diagram while the context is displayed as small low
resolution image and as collapsed fragments in the zoomed
diagram. These methods can also apply to live sequence
charts, yet they require extensive user interaction.

In the current paper, LSCs are considered as inter-
connected scenarios in an executable specification and se-
mantic zoom is discussed for navigation and comprehension.
New methods for displaying missing information and con-
text are suggested, and less interaction is required from the
user when navigating. The formulation of custom weights
enables the creation of new detailed orders that are not part
of the single LSC, but can provide additional information
for different tasks.

IX. CONCLUSIONS AND FUTURE WORK

The main contribution of the current work is to allow
semantic navigation in LSCs, a form of visual programming
language that does not have a trivial level of details for
zooming or navigation.

Nevertheless, some of our ideas can extend beyond the
domain of LSCs. Specifically, the idea of creating a semantic
order that provides information not found in the original
order of the artifacts might be of more general use. Also
the idea of creating some form of placeholder for abstracted
information, that can hint at the amount of abstracted in-
formation for non-continuous regions and merge with other
placeholders depending on the ‘geography’, may be useful
for other environments. For example, it is possible to use

the notion of placeholder to abstract states in a statechart,
if a different visual notation, such as a dot placeholder, is
used, and the rule to merge placeholders is adjusted so that
there would be a straight line connecting two placeholders,
in order for them to merge.

We believe our work can also contribute to the de-
pendency graph between LSCs, when navigating a large
specification, as described in [17], and that it can assist in
viewing connected LSCs side by side for simulation and
debug. Although it is hard to assess how much the new
method helps in navigation, we did run a cognitive walk
through a large specification of an ATM that also included
some large LSCs (Figure 1) to support our claims that the
method can assist navigating.

When encountering a large LSC, it is necessary to scan
it, sometimes completely and all the way to its end, in order
to understand what it ‘says’. In the context of LSCs, it is
often necessary to scan multiple LSCs to understand how
they interact. Our method provides zoom and scrolling that
are widely used when reading information that is too large
to fit on a screen. The user receives feedback that he/she is
viewing parts of the full diagram from the placeholders, and
also has knowledge about where the missing information
is hidden so that he/she can form a mental model of the
sequence of events that occurred, rather than having to scan
the full document.

We have implemented the current ideas for the interde-
pendencies semantic order. We plan to create a tool that will
work also for UML SDs and will allow interaction and user
defined weights. We would also like to evaluate our method
in visualizing debug and simulation runs, operations that do
not scale well for large LSCs or for a large specification, at
the current time.

ACKNOWLEDGMENT

The authors would like to thank Shahar Maoz for pre-
liminary discussions on some of the ideas in this work
and for his helpful comments. We thank Liat Nakar for
contributing her large LSC specification of an ATM system.
We also appreciate the assistance and helpful suggestions
of Itai Segall and Smadar Szekely. The first-listed author
would like to thank Goren Gordon for his support, general
and specific.

REFERENCES

[1] D. Harel and R. Marelly, Come, Let’s Play: Scenario-Based
Programming Using LSC’s and the Play-Engine. Springer-
Verlag, 2003.

[2] W. Damm and D. Harel, “LSCs: Breathing Life into
Message Sequence Charts,” Formal Methods in System
Design, vol. 19, no. 1, pp. 45–80, 2001. [Online]. Available:
citeseer.ist.psu.edu/damm01lscs.html

[3] ITU: International Telecommunication Union, “Recommen-
dation Z.120: Message Sequence Chart (MSC),” Technical
report, 1996.

[4] UML, “Unified Modeling Language Superstructure, v2.1.1,”
Object Management Group, Tech. Rep. formal/2007-02-03,
2007.

[5] D. Harel, H. Kugler, R. Marelly, and A. Pnueli, “Smart Play-
Out of Behavioral Requirements,” in Proc. 4th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD’02).
Springer-Verlag, 2002, pp. 378–398.

[6] D. Harel and I. Segall, “Planned and Traversable Play-Out:
A Flexible Method for Executing Scenario-Based Programs,”
in Proc. 13th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’07), 2007, pp.
485–499.

[7] R. Sharp and A. Rountev, “Interactive exploration of uml
sequence diagrams,” in Proc. of the 3rd IEEE international
Workshop on Visualizing Software For Understanding and
Analysis (VISSOFT’05), 2005.

[8] M. Frisch, R. Dachselt, and T. Brückmann, “Towards seam-
less semantic zooming techniques for uml diagrams,” in
Proc. of the 4th ACM symposium on Software visualization
(SoftVis’08), 2008, pp. 207–208.

[9] Y. Atir, D. Harel, A. Kleinbort, and S. Maoz, “Object compo-
sition in scenario-based programming,” in Proc. Fundamental
Approaches to Software Engineering, 11th International Con-
ference, (FASE’08), 2008, pp. 301–316.

[10] D. Lo and S. Maoz, “Mining hierarchical scenario-based
specifications,” in 24th IEEE/ACM Int. Conf. on Automated
Software Engineering (ASE’09), 2009.

[11] S. Pook, E. Lecolinet, G. Vaysseix, and E. Barillot, “Context
and interaction in zoomable user interfaces,” in Proc. of the
working conference on Advanced visual interfaces (AVI’00),
2000, pp. 227–231.

[12] G. W. Furnas, “Generalized fisheye views,” SIGCHI Bull.,
vol. 17, no. 4, pp. 16–23, 1986.

[13] A. Egyed, “Semantic abstraction rules for class diagrams,” in
Proc. of the 15th IEEE International Conference of Automated
Software Engineering (ASE’00), 2000, pp. 301–304.

[14] T. Reinhard, S. Meier, R. Stoiber, C. Cramer, and M. Glinz,
“Tool support for the navigation in graphical models,” in Proc.
of the 30th international conference on Software engineering
(ICSE’08), 2008, pp. 823–826.

[15] J. I. Maletic and A. Marcus, “Supporting program compre-
hension using semantic and structural information,” in Proc.
of the 23rd International Conference on Software Engineering
(ICSE’01), 2001, pp. 103–112.

[16] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby, “Waypoint-
ing and social tagging to support program navigation,” in
Extended abstracts on Human factors in computing systems
(CHI’06), 2006, pp. 1367–1372.

[17] D. Harel and I. Segall, “Visualizing inter-dependencies be-
tween scenarios,” in Proc. ACM Symposium on Software
Visualization (SOFTVIS’08), 2008, pp. 145–153.

