
Making Programming more Conversational

Alexander Repenning
AgentSheets Inc.

Boulder 80301, Colorado, USA
alexander@agentsheets.com

Abstract – Accelerated by the Do-It-Yourself mindset of the
Web 2.0 culture, end-user programming—programming by
end users with limited or even no formal programming
background—is growing rapidly. Especially in educational
settings, children are exposed to computational thinking by
making games, building scientific simulations and creating
stories. Early educational programming languages such as
Logo have made programming substantially more accessible
to end-users. More recent approaches include visual
programming with a drag-and-drop style of programming
that makes it nearly impossible to compose syntactically
incorrect programs. However, as the syntactic challenges of
end-user programming are gradually fading into the past, the
new frontier of semantic programming support emerges. This
demonstration introduces Conversational Programming, a
system to make programming more conversational. A
conversational programming agent runs programs one step
into the future in order to help end-users visualize
discrepancies between the programs they intended to write
and their actual programming results.

Keywords – Game design; computational thinking;
debugging; end-user programming; visual programming.

I. TOWARDS CONVERSATIONAL PROGRAMMING
In programming, the interaction between the programmer
and the programming environment is typically
asymmetrical and often limited to syntactic feedback
regarding programs that are malformed. Miss one
semicolon in a C program and the program may no longer
work at all. A programmer may spend a considerable
amount of effort on writing a program before the
programming environment provides meaningful feedback.

One way to simplify programming would be to make the
communication process between the programmer and the
programming environment more symmetrical with the goal
of aiding debugging. But just how can one conceptualize
debugging? Pea [1] describes the process of debugging as:

systematic efforts to eliminate discrepancies between
the intended outcomes of a program and those brought
through the current version of the program.

A number of programming approaches, including
programming by example [2, 3] and natural programming
[4], try to systematically reduce these discrepancies by
having programmers demonstrate actions on concrete
examples or by providing programming languages that
more closely resemble the way users with no programming
background tend to think about certain problems. The

notion of conversational programming, introduced in this
paper, provides a different approach that employs
computational agents to provide real-time semantic
feedback to a programmer so that the programmer can
identify discrepancies between the intended program and
the actual program. The only way to provide this kind of
semantic feedback is for the computer to actually execute
parts of the program as written by the user. While this
translates into additional computational needs for
programming environments, we find that modern multi core
computers have no problem handling this extra effort. More
importantly, computational cycles tend to be cheaper than
cognitive ones.

Conversational Programming can be conceptualized as a
simple form of pair programming [5] that replaces one of
the human partners with a computational agent called the
Conversational Programming Agent (CPA). Figure 1
describes a Conversational Programming architecture.

The notion of a conversation suggest the need for a:

• programming partner/agent able to serve as another
pair of eyes. Just like a partner in pair programming, this
partner participates in different kinds of conversations.
It can be somewhat reactive, and can simply wait for the
programmer to edit the program or the situation.
However, it can also be proactive and might suggest
information relevant to programming tasks ahead.

Figure 1. Conversational Programming: The programmer edits

the program and edits the situation (game or simulation). A
conversational programming agent executes the program,

interprets the situation and annotates the program semantically.

• more symmetrical and semantic interaction between
the programmer and the programming environment. As
the programmer is editing the program, the CPA needs
to be able to provide timely feedback on program
semantics to the programmer in order to reveal emerging
semantic discrepancies between the indented program
and the actual program.

• shared context with a defined focus corresponding to a
conversation topic. For instance, a programmer should
be able to select an object in a game or simulation world
in order to make the conversation relevant to this object
and its state. This focus helps to make conversations
more relevant to the programmer and also reduces
computational overhead by restricting the CPA to
program fragments pertinent to the conversation.

The goal of Conversational Programming is to reduce
semantic discrepancies between an intended program
and an actual program by using notions of conversations
to make the interaction between the programmer and
the programming environment more symmetrical, more
timely, and more meaningful.

II. PREBUGGING: PROACTIVE DEBUGGING
Conversational Programming as presented here is integrated
into the AgentSheets game and science simulation end-user
programming tool [6] used in schools world wide. Visual
AgenTalk is the drag and drop, rule-based programming
language of AgentSheets�—this language has a long history
in educational applications that goes back to 1994.

Novices, such as middle school students building their first
game with no programming background, as well as more
advanced programmers, such as computer science
undergraduate students, often have difficulties when trying
to fully understand complex rules. For instance, confusion
in understanding the significance of instruction sequences is
surprisingly common and is not limited to beginning
programmers [1]. Common questions include: why does
this rule fire? Why does that rule NOT fire? Why is this
condition or rule not even being tested? What is the order in
which conditions and rules are tested? Why is the rule and

condition order of fundamental importance?

Conversational Programming could be considered a
prebugging tool [2] that provides answers to the questions
listed above even before the program is completely written
or executed. The Conversational Programming Agent
(CPA) will proactively execute parts of the program as
created by the programmer and annotate the program
discretely in order to help the end-user recognize potential
differences between the intended program and the actual
program. A simple feedback approach based on subtle
colors is employed to avoid issues of cognitive overload
recognized by Hundshausen, with the Alvis system [7]. He
suggested that cognitive overload might be a limiting factor
that should be considered when designing programming
feedback systems. The CPA focuses on the agent selected
by the user in the game world and visualizes the outcome of
running the existing program of the selected agent one step
into the future. For instance, if the programmer had
previously selected the only frog in the worksheet (Figure
2, left) then Conversational Programming annotations
would suggest that the frog is about to be crushed by the
truck.

III. RELATED WORK
The asymmetrical conversation between programmers and
programming environment has its roots in early
programming approaches. Some of the first programming
environments hardly included any kind of meaningful
feedback, which turned the process of programming into a

Figure 2. The truck will crush the frog selected in the worksheet (left). Rules 1 and 2 of the Frog behavior (right) are tested
but contain at least one condition keeping them from firing. All conditions of rule 3 are true. Rules annotations

(background): green=would fire, red=would not fire, and gray=not tested; Conditions annotations (text label): green=is true,
red=is false, black=not tested.

complete monologue. A programmer would have to enter a
complete, self-contained program all at once, and would not
get even syntactic feedback. Only when trying to run or
compile the entire program would the programmer find that
the program failed to work. In the best-case scenario, the
programmer might get some cryptic error message from the
compiler. The obvious problems with this programming
approach were recognized early, and researchers tried to
create programming environments that would provide more
immediate and more meaningful feedback. By 1967 the
Dialog system [8] employed a variety of input/output
devices, including switches and oscilloscopes, to provide
feedback. This system was many years ahead of its time,
and provided almost instant feedback to the programmer
after each character input in a way similar to the much more
modern code auto-completion found later in Integrated
Development Environments. Interestingly, the Dialog
system was already conceptualized as a �“conversational
programming system.�” The notion of picturing the
interaction between a programmer and a programming
environment as a conversation was explored early on and
has been revisited often over the years.

The Lisp programming language has long included
mechanisms that let programmers test not only complete
programs but also test program fragments. In contrast to
programming schools that advocate top down approaches�—
starting with a complete plan working towards an
implementation�—the Lisp philosophy encourages the
programmer to start programming experimentally before a
complete plan has been devised. The ability to run
incomplete programs [17] in Lisp provides an efficient way
to explore programs. DiSessa [18] calls the degree to which
one is able to run a specific piece of code pokeability.

A very different approach to changing the nature of the
conversation between the programmer and the
programming environment, but with similar results, can be
found in the field of visual programming [9, 10]. Instead of
typing in text-based instructions, many visual programming
languages use mechanisms such as drag and drop to
compose programs. Similar to code auto-completion
approaches, these kinds of visual programming
environments prevent syntactic programming mistakes such
as missing semicolons or typos. Systems such as
AgentSheets [11, 12] provide dynamic drag and drop
feedback to indicate compatibility/incompatibility between
programming language building blocks as the user is trying
to drag them onto targets. Other approaches use puzzle
piece shaped programming language building blocks to
convey compatibility. Some of these approaches go back as
far as 1986 [13]. More recent systems aimed at end-users
such as Scratch [14], Alice [15] and Squeak/eToys [16]
employ similar approaches. AgentSheets and some of these
related systems include the characteristic of pokability.
However, we found the Conversational Programming
approach to be significantly more effective because of: a)

its proactive nature�—programmers do not need to initiate
the test of a condition, instead, the programming
environment just shows if the condition is true/false all the
time; and b) the high degree of parallelism�—all relevant
code will be annotated in real time.

Live programming is an attempt to reduce the cause / effect
gap of programming by more tightly connecting a program
with its environment. A program, in general, is not all that
useful unless it is connected to some kind of environment.
Flogo [19] is a programming language that annotates a
running programming representation in various ways to
indicate the state of the environment. For instance, the
value of variables is presented in the program
representation. Boolean expressions indicate if they are true
or false when they execute. Live programming with
SuperGlue [20] goes one step further by creating
environment objects as the direct result of specifying code.
For instance, a programmer defining a Pac-Man class and
specifying its shape as a yellow disk would automatically
get a yellow disk on the screen representing the Pac-Man.

Natural programming [4] explores a completely different
way of providing semantic support. Natural programming is
about creating programming languages that are closer to the
way people think about tasks. Myers et al. have
documented significant benefits for tasks such as
debugging. However, in contrast to Conversational
Programming natural programming does not include active
mechanisms such as the Conversational Programming
Agent to reduce discrepancies between the intended
program and the actual program.

IV. ASSESSMENT
Conversational Programming has been integrated into
AgentSheets 3, which was released in 2010. Our experience
with the various debugging mechanisms integrated into
AgentSheets over the last 15 years suggested focusing
primarily on motivational and not usability concerns. In
other words, it was not so much whether or not users could
use a certain debugging mechanism, as whether or not they
would actually employ the mechanism in practice.
Observations were conducted in some of the Scalable Game
Design project [21] test sites (mostly Colorado, Wyoming
and South Dakota). With over 4000 mostly middle-school
students participating in inner city, remote rural and Native
American communities, the Scalable Game Design project
has provided insight into how to bring the practice of
debugging into highly diverse educational environments.
The main finding to date is that the role of teachers and
teacher training is even more important than initially
assumed. Teachers need to be explicitly informed that
debugging approaches in general, and Conversational
Programming in particular, are not just additional features
but are fundamental computational thinking [22] skills that
will help with programming. The Scalable Game Design
summer institutes have therefore gradually increased the

percentage of time spent on debugging practice, including
sessions on Conversational Programming. We have found
this teacher training to be well spent, and have seen the
number of teachers and students using Conversational
Programming as a debugging aid grow quickly in schools.

At the University level, we received feedback on
Conversational Programming from Computer Science
students through questionnaires completed after creating
four different games using AgentSheets. We were interested
in finding if a system like Conversational Programming,
which was originally aimed at beginning programmers,
would be appreciated by much more experienced
programmers�—or would it simply get in their way. The
undergraduate students indicated that they kept
Conversational Programming turned on (90%, n=10) and
found that Conversational Programming was �“very useful
for debugging�“ (80% strongly agree, n=10). Some even
expressed the wish to add Conversational Programming to
programming languages such as C and Java.

V. CONCLUSIONS
Conversational Programming is a new model of interaction
between programmers and programming environments.
Unlike most drag and drop program composition models
Conversational Programming is not limited to syntactic
feedback, but also provides rich semantic feedback about
programs by constantly executing and annotating them.
While evaluation is still at an informal stage, the initial
results are very encouraging and indicate that
Conversational Programming could profoundly change how
we conceptualize programming and debugging.

VI. ACKNOWLEDGEMENTS
This material is based in part upon work supported by the
National Science Foundation under Grants DLR-0833612
and IIP-0848962. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

VII. REFERENCES
1. Pea, R. D. Chameleon in the Classroom: Developing

Roles for Computers, Logo Programming and Problem
Solving. In Proceedings of the American Educational
Research Association Symposium (Montreal, Canada,
April 1983) (Montreal, Canada, 1983)

2. Lieberman, H. Your Wish Is My Command:
Programming by Example. Morgan Kaufmann
Publishers, San Francisco, CA, 2001.

3. Cypher, A. Watch What I Do: Programming by
Demonstration. MIT Press, Cambridge, MA, 1993.

4. Myers, B. A., Pane, J. F. and Ko, A. Natural
programming languages and environments.
Communications of the ACM, 47, 9 2004), 47-52.

5. Telles, M. and Hsieh, Y. The Science of Debugging.
Coriolis Group Books, Scottsdale AZ, USA,
Scottsdale, 2001.

6. Repenning, A. and Ambach, J. Tactile Programming:
A Unified Manipulation Paradigm Supporting Program
Comprehension, Composition and Sharing. Computer
Society, City, 1996.

7. Hundhausen, C. D., Farley, S. and Lee Brown, J. Can
Direct Manipulation Lower the Barriers to
Programming and Promote Positive Transfer to
Textual Programming? An Experimental Study. IEEE
Computer Society, Washington, DC, USA, City, 2006.

8. Cameron, S. H., Ewing, D. and Liveright, M.
DIALOG: a conversational programming system with
a graphical orientation. Communications of the ACM,
10, 6 1967), 349-357.

9. Burnett, M. Visual Programming. John Wiley & Sons
Inc., 1999.

10. Shu, N. Visual Programming. Van Nostrand Reinhold
Company, New York, 1988.

11. Repenning, A., Ioannidou, A. and Zola, J.
AgentSheets: End-User Programmable Simulations.
Journal of Artificial Societies and Social Simulation, 3,
3 2000).

12. Repenning, A. and Ioannidou, A. What Makes End-
User Development Tick? 13 Design Guidelines.
Kluwer Academic Publishers, City, 2006.

13. Glinert, E. P. Towards "Second Generation"
Interactive, Graphical Programming Environments.
Computer Society Press, City, 1986.

14. Resnick, M., Maloney, J., Monroy-Hernández, A., et
al. Scratch: Programming for All. Communincation of
the ACM, 52, 11 2009), 60-67.

15. Conway, M., Audia, S., Burnette, T., et al. Alice:
Lessons Learned from Building a 3D System For
Novices. City, 2000.

16. Freudenberg, B., Ohshima, Y. and Wallace, S. Etoys
for One Laptop Per Child. IEEE Computer Society,
City, 2009.

17. Teitelman, W. History of Interlisp. City, 2008.
18. diSessa, A. A. Twenty reasons why your should use

Boxer (instead of Logo). City, 1997.
19. Hancock, C. M. Real-time programming and the big

ideas of computational literacy. Dissertation,
Massachusetts Institute of Technology, 2003.

20. McDirmid, S. Living it up with a live programming
language. ACM, City, 2007.

21. Repenning, A., Webb, D. and Ioannidou, A. Scalable
Game Design and the Development of a Checklist for
Getting Computational Thinking into Public Schools.
ACM Press, City, 2010.

22. Wing, J. M. Computational Thinking. Communications
of the ACM, 49, 3 2006), 33-35.

