

Version
This is the Accepted Manuscript version. This version is defined in the NISO
recommended practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Diprose, J. P. (2011). End User Robot Programming via Visual Languages. In IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (pp.
229-230). Pittsburgh, PA. doi:10.1109/VLHCC.2011.6070406

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved, unless
otherwise indicated. Previously published items are made available in accordance
with the copyright policy of the publisher.

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

http://www.ieee.org/publications_standards/publications/rights/rights_policies.ht
ml

https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1109/VLHCC.2011.6070406
http://www.ieee.org/publications_standards/publications/rights/rights_policies.html
http://www.ieee.org/publications_standards/publications/rights/rights_policies.html
https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm
https://researchspace.auckland.ac.nz/

End User Robot Programming via Visual Languages

James P Diprose

Department of Computer Science

University of Auckland

Auckland, New Zealand

jdip004@aucklanduni.ac.nz

Abstract—The world has an increasing population of robots

whose end users could benefit from being able to give them new

tasks. Visual languages are a possible medium to accomplish this.

We have taken a first step towards this through the realisation of

Ruru, a visual language that enables novice programmers to

create simple robot behaviours. It also addresses some inherent

issues associated with robot software development. We plan to

explore other domains, such as healthcare and agriculture, to

facilitate the development of an end user robot programming

language that can express more realistic real world robot tasks.

Keywords-end user robot programming; visual language;

physics of notations; domain experts;

I. INTRODUCTION

The International Federation of Robotics (IFR) estimates
that at the end of 2009 the world’s robot population totaled 8.7
million units and grow by 11.4 million units by the end of 2013
[2]. The creators of this vast population of robots could not
possibly have predicted and therefore programmed every task
that end users will want their robots to perform. There are also
many diverse domains where autonomous, mobile robots are
not utilized well yet e.g. healthcare and agriculture. However,
end users in these domains may wish to take advantage of
autonomous mobile robots in the future. Both cases involve the
creation of new robot behaviors that accomplish end user needs
e.g. a farmer might want a robot to find and spray the weeds on
his farm so that he does not have to do it himself. Ideally, end
users should be able to create new robot behaviors by
themselves, or at the very least, they should be able to
communicate better with programmers when new robot
behaviors are being created e.g. by using a programming
language that end users can read and understand [14].

Visual languages (VL’s) are a possible solution to this
problem. They use graphical symbols rather than text to
represent semantic constructs and have advantages that make
them suitable for end user robot programming (EURP). Firstly,
they make the task of programming accessible to a wider
audience than professional programmers [3], they increase the
speed of programming [3], the use of graphics can afford more
meaning than text [4] and they can aid comprehension and
recall [4]. There are two main issues that arise when designing
a VL; choosing the right semantic constructs to represent and
deciding what the VL’s visual notation should like.

The semantic constructs and relationships from the end user
robotics domain can be acquired using an iterative

development cycle based on the Three Examples Pattern [7]. In
the context of EURP VL’s this involves creating meta-models
for three different representative robotics domains including;
novice robot programming (see Section II), healthcare, and
agriculture. Robots are currently being applied as healthcare
assistants by a cross disciplinary team of researchers at the
University of Auckland [15]. For instance, a robot might visit a
number of patients throughout the day reminding them to take
their medication [15]. This is an ideal domain for research into
EURP as the Psychologists on the team are interested in
specifying robot behavior. Agriculture is also an appropriate
domain to research real world EURP because farmers could
make use of robots that perform repetitive real world tasks on
their farms, such as finding and spraying weeds. The common
abstractions that are found between the meta-models of novice
programming, healthcare and agriculture are the semantic
concepts that should be represented in the final meta-model [7].

 Deciding what the VL should look like can be informed by
tools such as Moody’s Physics of Notations (PON), which is a
set of principles for VL notational design [8]. This enables the
notational designer to give an explicit design rationale for a
visual notation, transforming notational design from a craft into
a design discipline [8].

II. RURU

There is much existing work on VL’s for robotics and
novice programming. We reviewed nine of these VL’s using
Moody’s PON and found that they had a number of
deficiencies [6]. Additionally, the robotics related VL’s fail to
address problems associated with robot development as shown
in Figure 1. This was the motivation for our own robot VL,
Ruru, which is targeted at novice robot programmers (a type of
end user) [6].

Ruru was designed as a first example in the approach
mentioned in the introduction. Its semantic constructs were
derived by finding common abstraction between typical novice
robot programs (extracted from the book Learning computing
with Robots) [9], robot program examples included in the
Player Project [10], the Player robotics API [10] and robotics
related literature [11] & [12]. The design of Ruru’s visual
notation was heavily influenced by Moody’s PON principles
[6].

Ruru’s visual notation also addresses some of the problems
associated with robot software development (Figure 1). Firstly,
Ruru is live i.e. its visualisations are animated in real time and

The nature of the robot environment:

• The environment is dynamic, asynchronous and real time.

• Unexpected environmental variations cause non repeatable

behavior.

The nature of the robot being programmed:

• Robots are mobile – they move away from the programmer.

• Robot hardware is heterogeneous i.e. there is a large and

increasing number of input, output and storage devices.

• There is a lack of standardization of robot hardware and

software interfaces.

The nature of mobile robot tasks:

• Robot tasks emphasize geometry and 3D space.

• Some tasks will be disrupted if they are interrupted e.g. a

robot carrying a heavy object might drop it if the program
controlling it is stopped for inspection.

• The programmer has to manage parallel unrelated activities
occurring on multiple inputs and outputs.

can be edited in real time while the robot is operating. This
addresses the problem of the robot operating in a real time,
dynamic environment. Second, the visual representations of
robot sensors in Ruru are based on the physical forms of the
underlying data being represented [13]. This addresses
problems associated with the robot operating in 3D space.
Lastly, in contrast to other VL’s designed for multiple robots,
e.g. Microsoft Visual Programming Language (MVPL) and the
LabVIEW robotics module, Ruru abstracts away differences
between instances of particular robot sensors e.g. different laser
range finder models. This addresses some of the problems
associated with the heterogeneity of the robot input devices.

Figure 1. Challenges robot programmers face. Adapted from [1] & [5].

We performed a preliminary qualitative user study on the
efficacy of Ruru [6]. The participants considered themselves
novice programmers and were from fields other than computer
science and engineering. They found it motivating and
understandable, indicating it is a good bridge for them into an
understanding of computational concepts [6].

III. WHY MORE WORK IS NEEDED

Ruru can only express robot programs that are appropriate
for novice robot programmers. Examples include those
enabling a robot to: avoid obstacles, follow a colored object
and follow/avoid light. Additionally, emphasis is placed on
illustrating the elementary concepts behind these programs as
opposed to making them “robust”. The requirements of end
users in real world domains are more demanding. They need
their robots to accomplish more meaningful tasks and do them
robustly e.g. spraying weeds autonomously and reliably. Other
robot VL’s potentially have the semantic expressiveness to
create real world end user robot programs e.g. MVPL and
LabVIEW robotics module. However, they do not address the
challenges robot programmers face (Figure 1) and they have
deficiencies in their visual notations [6]. Although Ruru has
been explicitly designed to solve some of the robot
programming problems illustrated in Figure 1, it does not
attempt solve them all. This makes is why new tools for real
world EURP need to be created.

IV. NEXT STEPS

My own and others existing work has raised some
questions within the larger research question: “how should end
users program robots?” In particular:

- What types of robot programs do real world end users want

 to construct?

- What would a stable robot domain model look like [1]?

- How can the problems associated with robot programming

 be fully addressed in an EURP VL environment?

- How can an appropriate level of semantic expressiveness be

 maintained in an EURP VL whilst still having a cognitively

 manageable notation?

- Would the EURP VL need to be supplemented with other

 techniques in order to maintain semantic expressiveness

 and cognitive manageability? E.g. using robot

 programming by demonstration.

- What is an appropriate visual representation for an EURP

VL?

REFERENCES

[1] D. Brugali, A. Agah, B. MacDonald, I. A. D. Nesnas and W. D. Smart,
“Trends in Robot Software Domain Engineering,” in Software
Engineering for Experimental Robotics, D. Brugali, Ed. Berlin:
Springer-Verlag, pp. 3–8, 2007.

[2] International Federation of Robotics. “Executive Summary of World
Robotics 2010 Service Robots,” IFR Statistical Department, 2010.

[3] M. Burnett, “Visual Programming,” Encyclopaedia of Electrical and
Electronics Engineering, Vol. 4, pp. 275-283, New York: John Wiley &
Sons Inc, 1999.

[4] N. C. Shu, “Visual programming: Perspectives and approaches,” IBM
Systems Journal, vol. 28, no. 4, pp. 199-221, 1999.

[5] B. MacDonald, G. Biggs and T. Collett, “Software Environments for
Robot Programming,” in Software Engineering for Experimental
Robotics, D. Brugali, Ed. Berlin: Springer-Verlag, 2007, pp. 107–124.

[6] J. Diprose, B. MacDonald, J. Hosking, “Ruru: A spatial and interactive
visual programming language for novice robot programming,” in Proc
VLHCC 2011, In Press.

[7] D. Roberts, and R. Johnson, “Evolving frameworks: A pattern language
for developing frameworks,” in Pattern Languages of Program Design
3, D. Reiehle, F. Buschmann, & R.C Martin, Eds. Addison-Wesley,
1997.

[8] D. Moody. “The “Physics” of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering,” IEEE TSE., vol
35, no. 6, pp. 756-779, December 2009.

[9] D. Kumar, Eds., Learning Computing With Robots. Institute for Personal
Robots in Education, 2009.

[10] Player Project. “Player Project,” Retrieved March 2011,
http://playerstage.sourceforge.net/.

[11] D. Brageul, “An Intuitive Interface for Programming by
Demonstration,” M.S. thesis, Department of Computer and Electrical
Engineering, University of Auckland, Auckland, New Zealand, 2008.

[12] T. Collett, “Augmented reality visualisation for player,” Ph.D. thesis,
Department of Computer and Electrical Engineering, University of
Auckland, Auckland, NZ, 2007.

[13] T. H. J. Collet, B. A. MacDonald, “An Augmented Reality Debugging
System for Mobile Robot Software Engineers,” Journal of Software
Engineering for Robotics, vol. 1, no. 1, pp 18-32, Jan 2010.

[14] M. Fowler, R. Parsons, “Domain-Specific Languages,” Boston: Pearson
Education, Sep 2010.

[15] E. Broadbent, R. Tamagawa., N. Kerse, B. Knock, A. Patience, B.
MacDonald, Uniservices. “Retirement home staff and residents’
preferences for heathcare robots” In Proc. IEEE Symposium on Robot
and Human Interactive Communication 2009, pp 645 – 650.

