
Curve-based diagram specification and construction

Gennaro Costagliola∗, Mattia De Rosa∗, Andrew Fish†, Vittorio Fuccella∗ and Rafiq Saleh†
†School of Computing, Engineering&Mathematics, University of Brighton, UK. Email:{Andrew.Fish,R.Saleh}@brighton.ac.uk

∗Department of Informatics, University of Salerno, Italy. Email:{gencos, matderosa, vfuccella}@unisa.it

Abstract—We present a code which captures the topology
of closed-curve based diagrams (e.g. Euler diagrams (EDs) are
used to visualize set-based relationships, whilst knot diagrams
represent knotted structures), often used in visual languages. We
briefly indicate how to construct a diagram from such a code.
Furthermore, we present an interactive software artefact with a
human-centric focus, permitting users the freedom to construct
and transform diagrams at either the diagram or the code level,
implementing algorithmic procedures developed.

I. INTRODUCTION

EDs with items [1] visualise elements within the regions
(set intersections) determined by the curves (representing sets),
and have been for resource management, network visualisation
and for display of search query results [1]–[3]. The additional
constraint of (approximate) area-proportionality of regions to
indicate relative sizes of sets has been used in bio-informatics
for the representation of genetic set relations and for statistical
data representation [4]–[6].

We propose that the import of significant machinery from
knot theory to EDs is likely to be of great benefit to the
development of the field, with the adoption of code-based
approaches enabling use (a) as a specification language; (b) for
diagram construction and interchange; (c) for diagram property
identification; (d) for diagram transformations simulated with
string rewriting techniques.

II. DIAGRAM AND CODE DEFINITIONS

Definition 2.1: Let C = {C1, . . . , Cn} be a (ordered)
family of immersed closed curves in the plane. Let Xi and
Yi denote the interior and exterior of Ci, respectively, for each
i ∈ I = {1, . . . , n}. Let each subset I ′ of I be called an
abstract zone which describes the set

⋂
i∈I′ Xi ∩

⋂
i∈I−I′ Yi,

called a concrete zone of C. We say C is generic if at most
two curves intersect at any point, and all intersections are trans-
verse, is simple if each Ci is simple (so has no points of self-
intersection), has connected zones if the non-empty concrete
zones of C are connected. A link diagram is a generic set
(i.e. ignoring the ordering) of immersed closed curves, together
with additional information of over/under at the crossings. A
wellformed ED [7] or simple ED [8] is a simple generic family
of immersed closed curves in the plane which has connected
zones (noting the obvious correspondence between labelling
of curves and an ordering); relaxing simplicity yields EDs.

We consider ordered families of generic immersed closed
curves in the plane. Examples are provided in Figure 1, where
the obvious correspondence between labelling of curves (e.g.
using A,B,C) and curve ordering is assumed.

We consider Gauss paragraphs (previously used for links,
with the term Gauss code or word used for single component

knots), but with an additional ordering on the words. Fix an
alphabet N×{+,−}, and abbreviate (k,+) by k+ and (k,−)
by k−. Given a set of words W = {w1, . . . , wn}, and a symbol
j, let |wi | denote the length of the word wi, and |W |j the
number of occurrences of j in W . The ordering on the words
in W = {w1, . . . , wn}, is presented using the index.

Definition 2.2: An ordered Gauss paragraph (OGP) is an
ordered set of words W = {w1, . . . , wn} over the alphabet
N× {+,−} such that:

• |w1|+ |w2| . . .+ |wn| is even, and

• for every i ∈ N either |W |i+ = |W |i− = 0 or
|W |i+ = |W |i− = 1.

Definition 2.3: An OGP of an Euler diagram C =
{C1, . . . , Cn} with k-crossings is constructed as follows: as-
sign a unique label l in {1, . . . , k} to each crossing and orient
all curves; for each curve Ci, choose an arbitrary base point pi
on Ci which is not a crossing point; for each i ∈ {1, . . . , n},
compute wi by traversing the curve Ci once, starting and
ending at the base point pi, following the orientation of the
curve, recording the label of each crossing met in turn, together
with the sign associated with the strand that is met at that
crossing. Within the traversal of Ci, the sign of crossing l is
determined by the orientation of Ci relative to the orientation
of the passing strand (i.e. the part of the curve, Cj , that it
crosses) at l, as shown in Figure 2.

The diagram at the bottom of Figure 2 has two curves
oriented clockwise. Each arc between a pair of crossing points
is called a segment, with the corresponding pair of symbols in
the code called a segment code. For instance, whilst traversing
curve A, the segment which is the top arc of the diagram
has segment code (3+4−); we use (3+4−)r to refer to the
same segment, but in reverse (i.e. against the orientation of the
curve). The adjacent table shows the region boundary codes
for each of the regions of the diagram, which are a means of
identification of the individual regions.

III. DIAGRAM CONSTRUCTION

We can construct a unique diagram, on the sphere, from
an OGP. Thus any specification of choice of the infinite face
(to be used for the stereographic projection) determines the
diagram in the plane. Based on the work of Carter [9], we
can directly construct a diagram from an OGP via a solution
of the planarity problem for the considered class of generic
curves. The main idea is to associate with a OGP a Carter
surface, which is a combinatorial 2-cell complex1, where
vertices correspond to crossing labels, edges correspond to

1A topological space with cell structure consisting of 0-cells corresponding
to vertices, 1-cells corresponding to edges and 2-cells corresponding to faces.

Fig. 1. From Left to Right: (1) is simple generic with connected zones; (2) is generic; (3) is simple generic; Top: sketched by a user of the tool, with code
automatically computed; Bottom: diagrams generated from the code.

two consecutive labels and faces are found by successive left
turns on each crossing (as illustrated in Figure 2) and then
compute its Euler characteristics χ, which is the number of
faces (cycles) minus the number of edges plus the number
of vertices. If χ is equal to 2 then the OGP is planar. The
OGP includes the information required to construct the Carter
surface, and thus check planarity, whilst the embedding of the
graph (the 1-skeleton of the 2-complex) in the plane such that
the faces of the graph are the faces of the 2-complex (and such
that the chosen face is unbounded) is precisely the required
graph of the diagram.

Theorem 3.1: The OGP determines the topology of the
diagram on the sphere.

We explicitly construct the combinatorial embedding of the
graph of the diagram directly from the code, as indicated in
Figure 2. The symbol for crossing i will appear exactly twice
in the code, once with each choice of sign. So, suppose that
the following strings of consecutive symbols appear in their
containing words wi+z and xi−y, noting that the words are
read cyclically and the signs of symbols w, x, y, z are omitted
here. Then the clockwise order of the edges around the vertex
for i is determined, as shown.

Theorem 3.2: The OGP, together with a specification of
the infinite face, determines the topology of the diagram in
the plane.

The choice of the infinite face can be specified in several
ways, including as the region boundary code for the specified
face. The options can be made available for user selection for
initial generation, or simply preserved for diagram transforma-
tion, whilst preserving the mental map, for instance.

Theorem 3.3: Given an OGP of a diagram C, the set of
region-boundary codes can be algorithmically computed, and

from this, together with a choice of outer face, the set of
abstract zones can be algorithmically computed.

We utilise an off-the-shelf algorithm for embedding the
graph, producing a necessarily correct result. The outputs
look extremely promising (e.g. see Figure 1), but further
post-processing beautification could be used to enhance the
output, and if topology preservation is a requirement (depends
upon application domain) then one could make use of code
preservation as a means of identifying topology preservation.

Since there are various methods to automatically produce
EDs and to beautify them, and distinct methods will likely
work well for certain tasks, it makes sense to ask if one can
combine their capabilities, permitting users to choose which
method they deem fit or to compare methods for their task.
One can take any existing method or tool which produces
diagram output (e.g. any existing generation or beautification
method), and compute the code from the diagram (e.g. to pass
an initial feasible layout from a generation method into another
beautification method). Figure 1 shows diagram regeneration
using the code taken from diagrams sketched by the user.
Figure 3 highlights the similarities and differences of code
changes in diagrams that differ by transformations, and shows
the idea of the import of a diagram from another method,
its encoding, followed by their regeneration from the code. A
previous version of the prototype EulerSketch, using the static
code instead of the gauss code, is described in [10].

IV. RELATED WORK AND CONCLUSION

In [11], alternative equivalent ED abstractions were de-
veloped, including the view as a building sequence of curve
additions [12]. In [1], [13], efficient algorithms were provided
for the online ED abstraction problem: given a concrete ED,

(xi+)

x

y
(yi-)r

i

1

(xi-)
x

y

(i+y)

i

2 (i+x)r

y

x

(i-y)
i

3
(i-x)r

x

y

i

4
(yi+)r

x y

z

w

i

wi+

i+z

xi‐ i‐y

Fig. 2. Above – Left: The four traversal rules t1, . . . , t4 indicate how to traverse the code corresponding to a traversal of a region of the diagram in which we
turn left at every crossing. For example, t1 shown on the left, is read as follows: if we approach the crossing i along the vertical strand the sign of i is + and
so we see xi+ in the code (where x itself could be positive or negative). Turning left at the crossing corresponds to traversing segment yi− (negative sign since
that strand is negative) against its orientation, and so we obtain (yi−)r in the code, where r indicates reversal orientation. Right: The direct computation of the
combinatorial embedding via the clockwise ordering of edges around a vertex from an ordered Gauss paragraph. Below– a redrawing of (3) from Figure 1 used
to indicate region-boundary codes, alongside the table of computed region boundary codes.

Region Region boundary code
r1 {(3+4−), (4+1−), (1+2−), (2+3−)}
r2 {(3−4+), (3+4−)r}
r3 {(2−3+), (2+3−)r}
r4 {(1−2+)r, (4−1+)r, (3−4+)r, (2−3+)r}
r5 {(4+1−)r, (4−1+)}
r6 {(1+2−)r, (1−2+)}

compute the associated abstract ED and update this efficiently
upon curve addition and removal. This utilised intersection
points created in a building sequence, using these points
(or equivalently curve segments) to mark zones. Checking
membership of these marked points within regions can then be
used to determine the new zone set quickly. By not utilising a
graph based methodology within the interactive setting, the
implementation becomes simple and computations efficient.
In [14], the static code was introduced, which can be viewed
as a human-centric abstraction of the computational concepts
of [13]; the theory developed enabled the computation of the
abstract zone set for simple generic families of immersed
closed curves which were connected. Note that OGPs have
a simpler syntax than the static code, requiring the inclusion
of signs to indicate the relative orientation of curves at each
crossing versus the explicit association of the set of all
containing curves to each segment in the diagram. Previously,
Clark [15] made use of java-area operations to check if the
area is non-empty for every subset of the set of curves, whilst
the polygon comparison algorithm of Weiler [16] enabled the
computation of the ‘concrete zones’ (for their special case)
in a more efficient manner. Previous work on ED sketch
recognition [17] enabled the recognition of EDs, utilising a
single stroke recogniser.

There are various existing diagram generation approaches,
such as [8], [18]–[20], each of which will have its own
advantages or disadvantages, providing aestethically pleasing
output for particular classes of diagrams, perhaps. In [21],
they produce isocontours to highlight relationships amongst
graph nodes within existing graph layout, useful in highlight-
ing collections of venues within a map layout for instance.
Applications in which graph nodes are fixed are prime example
where the use of diagrams with multiple regions for single

zones would be appropriate to avoid massive distortion of
curves yielding unwieldy diagrams.

There have been many investigations of Gauss words [22],
which were originally developed for knots, with questions of
planarity (if there exists a realisation of a code as a generic
immersed curve) paramount; based on the work of Carter in
[9], Elton and Cairn presented an a combinatorial criteria
in [23] which deals with the planarity problem of signed
Gauss words. The specification of abstract EDs in terms of
zone sets restricts the ability to consider the use of more
general closed curves since it cannot capture variations in
the topology of the diagram (in the sense that the language
only permits the consideration of whether a zone is non-empty
as opposed to comprised of multiple disconnected minimal
regions, for example). We may utilise codes to explicitly
capture the topology of an ED, giving a compact string-based
means to specify an ED without requiring the provision of the
entire diagram (as a graph say, or equivalently its plane dual
graph). Since many visual languages with a foundation of sets
of closed curves in the plane, this direction of research has
clear potential for impact. Adopting a code-based approach is
fundamental in that it opens up many new avenues of research,
including: the investigation of the properties of codes (e.g.
in relation to alterations of the wellformedness conditions),
layout beautification via the incorporation of different planarity
algorithms, or to improve the output from existing tools.

ACKNOWLEDGMENT

Partially supported by UK EPSRC, grant EP/J010898/ 1,
Automatic Diagram Generation, and University of Salerno,
grant “Cofinanziamento per attrezzature scientifiche e di sup-
porto, grandi e medie (2005)”.

Fig. 3. Top – A pair of diagrams showing the effects of a user defined addition of a new curve; the codes are computed from the diagrams, but automation
is possible via code based transformations; the OGP is shown beneath the diagrams. Bottom – Left: a diagram, similar to those in [4], where the zone sets are
not clearly distinguishable. Right: an alternative view of the diagram based on our encoding and construction method. This view permits the identification of
relationships more easily, whilst forgetting the area proportionality feature of the original; both views are useful for different tasks.

REFERENCES

[1] G. Cordasco, R. D. Chiara, and A. Fish, “Interactive visual classification
with Euler diagrams,” in Proc. VL/HCC 2009. IEEE, pp. 185–192.

[2] N. Riche and T. Dwyer, “Untangling Euler diagrams,” IEEE VCG,
vol. 16, no. 6, pp. 1090–1099, 2010.

[3] J. Thièvre, M. Viaud, and A. Verroust-Blondet, “Using Euler diagrams
in traditional library environments,” in Proc. Euler 2004, ser. ENTCS,
vol. 134. ENTCS, 2005, pp. 189–202.

[4] H. Kestler, A. Müller, J. Kraus, M. Buchholz, T. Gress, H. Liu,
D. Kane, B. Zeeberg, and J. Weinstein, “Vennmaster: Area-proportional
Euler diagrams for functional GO analysis of microarrays,” BMC
Bioinformatics, vol. 9, p. 67, 2008.

[5] S. C. Chow, “Generating and drawing area-proportional Euler and Venn
diagrams,” Ph.D. dissertation, University of Victoria, 2007.

[6] L. Wilkinson, “Exact and approximate area-proportional circular venn
and euler diagrams,” IEEE Transactions on Visualization and Computer
Graphics, vol. 18, no. 2, pp. 321–331, 2012.

[7] J. Flower, A. Fish, and J. Howse, “Euler diagram generation,” Journal
of Visual Languages & Computing, vol. 19, no. 6, pp. 675–694, 2008.

[8] S. Chow, “Generating and drawing area-proportional euler and venn
diagrams,” Ph.D. dissertation, University of Victoria, 2007.

[9] J. Carter, “Classifying immersed curves,” in Proc. Amer. Math. Soc, vol.
111, 1991, pp. 281–287.

[10] P. Bottoni, G. Costagliola, M. De Rosa, A. Fish, and V. Fuccella,
“Euler diagram codes: interpretation and generation,” in Proc. VINCI
2013. ACM, 2013. [Online]. Available: http://dx.doi.org/10.1145/
2493102.2493116

[11] A. Fish and J. Flower, “Abstractions of Euler diagrams,” in Proc. Euler
2004, ser. ENTCS, vol. 134, 2005, pp. 77–101.

[12] A. Fish, J. Flower, and J. Howse, “The semantics of augmented
constraint diagrams,” JVLC, vol. 16, pp. 541–573, 2005.

[13] G. Cordasco, R. D. Chiara, and A. Fish, “Fast region computations
for reducible Euler diagrams,” Computation Geometry: Theory and
Applications, vol. 44, pp. 52–68, 2011.

[14] P. Bottoni, G. Costagliola, and A. Fish, “Euler diagram encodings,” in
Proc. Diagrams ’12, pp. 148–162.

[15] R. Clark, “Fast zone discrimination,” in Proc. VLL 2007, ser. CEUR,
vol. 274, 2007, pp. 41–54.

[16] K. Weiler, “Polygon comparison using a graph representation.” Com-
puter Graphics (SIGGRAPH ’80), vol. 14, no. 3, pp. 10–18, 1980.

[17] M. Wang, B. Plimmer, P. Schmieder, G. Stapleton, P. Rodgers, and
A. Delaney, “Sketchset: Creating euler diagrams using pen or mouse,”
in Proc. VL/HCC 2010. IEEE, 2010, pp. 75–82.

[18] P. Simonetto, D. Auber, and D. Archambault, “Fully automatic visu-
alisation of overlapping sets,” Computer Graphics Forum, vol. 28, pp.
967–974, 2009.

[19] G. Stapleton, P. Rodgers, J. Howse, and L. Zhang, “Inductively gen-
erating euler diagrams,” Transactions on Visualization and Computer
Graphics, vol. 17, no. 1, pp. 88–100, 2011.

[20] J. Flower, A. Fish, and J. Howse, “Euler diagram generation,” JVLC,
2008.

[21] C. Collins, G. Penn, and S. Carpendale, “Bubble sets:revealing set
relations with isocontours over existing visualisations,” IEEE Trans.
Visual. and Computer Graphics, vol. 15, no. 6, pp. 1009–1016, 2009.

[22] C. Gauss, “Werke,” Band 8. Teubner, 1900.
[23] G. Cairns and D. Elton, “The planarity problem for signed Gauss

words,” J. of Knot Theory and its Ramifications, vol. 2, no. 4, pp.
359–367, 1993.

