
A Human-Centric API for Programming Socially

Interactive Robots

J. P. Diprose & B. Plimmer
Dept. of Computer Science

University of Auckland

New Zealand

jdip004@aucklanduni.ac.nz

beryl@cs.auckland.ac.nz

B. A. MacDonald
Dept. of Electrical & Computer

Engineering

University of Auckland

New Zealand

b.macdonald@auckland.ac.nz

J. G. Hosking
College of Engineering &

Computer Science

Australian National University

Australia

john.hosking@anu.edu.au

Abstract— Whilst robots are increasingly being deployed as

social agents, it is still difficult to program them to interact socially.

This is because current programming tools either require

programmers to work at a low level or lack features needed to

create certain aspects of social interaction. High level, domain

specific tools with features designed specifically to meet the

requirements of social interaction have the potential to ease the

creation of social applications. We present a domain specific

application programming interface (API) that is designed to meet

the requirements of social interaction. The Cognitive Dimensions

Framework was used as a design tool during the design process and

the API was validated by implementing an exemplar application.

The evaluation of the API showed that programmers with no

robotics knowledge were positively impressed by the notation and

that its organization, domain specific interfaces and object oriented

nature positively affected several Cognitive Dimensions.

Keywords— application programming interfaces, api, usability,

design, cognitive dimensions, human robot interaction, social robot

interaction, humanoid robot.

I. INTRODUCTION

There are many applications for social robots, that is robots

that interact with humans in a human-like way [1]. Examples

include: companions for the aged [2], interactive theatre [3] and

robotic butlers [4]. Despite there being much work in social

robotics, it is still a challenge to create such applications. There

are two reasons for this: first, the tools used to create social

robot scenarios lack support for many social interaction

requirements; second, tools that do support social interaction

requirements often express them at too low an abstraction level.

 Social robot applications are ideally created by combining

social primitives to form higher level social interactions; as

illustrated in Figure 1. Examples of social primitives include:

speaking to people, performing gestures and understanding

human speech and gesture. These primitives can be used to build

higher level social interactions including: dialogue, joint

attention and displaying expression. The end goal of this layered

approach to robot programming is to have domain specific end-

user programming languages for social robotics.

Without support for social interaction, programmers are

unable to adequately express its nuances. For example, a

common task is for a robot to speak to a specific person by

vocalising words and gazing at them [1]. To realize this requires

synthesising speech, specifying who is being spoken to, making

gestures (gaze) and synchronising gestures with speech. If tools

don’t support these requirements, the programmer is unable to

express the nuances of social interaction.

In addition, supporting the requirements of social interaction,

but at lower levels of abstraction than necessary is problematic

as it takes the programmer excessive work to attain goals. For

example, some tools realise important requirements of making

robot speech and gesture, but express them at low abstraction

levels. Rather than simply specifying who the robot is to speak

to and what it should say, a programmer must give detailed

commands for speech synthesis to make it speak, analyse results

FIGURE 1. HIERARCHY OF SOCIAL ROBOT SYSTEMS.

from a face detection algorithm to find where the person’s head

is and use joint control to make the robot gaze at that head.

This paper addresses the problem of designing a social

primitive API that supports social interaction requirements and

expresses them at a high abstraction level. It is an attempt to

make social robotics programming accessible to programmers

with or without robotics-programming experience and could be

used as a platform to create end-user programming languages for

authoring higher level interactions such as dialogue, joint

attention and showing expression.

We start by discussing how related work fails to meet social

primitive requirements and/or express them at an appropriate

abstraction level (Section II). We then describe our approach to

designing an API based on a set of social primitives and

requirements that are important for expressing social interaction

(Section III). Next, we describe our API (Section IV), its

evaluation and results obtained (Section V). Lastly, lessons

learnt from the evaluation are discussed in Section VI.

II. PRIOR APPROACHES

A number of systems have been designed to address problems

related to programming robot social interactions. They include

visual tools to support end-user programming; and software

frameworks, API’s and textual domain specific languages

designed for programmers. We overview several of these tools

analysing their limitations, summarised in Table 1.

A. Choregraphe & NAOqi

Choregraphe is an end-user programming environment for Nao

robots using two visual programming views, a key-frame

animation editor, simulator and a code editor [5]. A flow

diagram is used to combine algorithms together to produce

specific behaviour; e.g., one can make Nao respond verbally to a

word detected by its speech recogniser. A visual timeline is used

to organise animation timing and is often used together with the

key-frame animation editor to create individual animations.

NAOqi [6] is the software framework that Choregraphe is built

on. It can be used with a variety of programming languages

including: C++, Python and Java.

B. Interaction Composer

Interaction Composer is a programming environment

supporting collaboration between programmers and end users to

create social interaction scenarios [7]. Programmers perform low

level tasks, such as face recognition; while interaction designers

(akin to end-users) use Interaction Composer, a visual

programming environment, to create the higher level dialogue

and interaction sequences, such as a greeting scenario. The

programmer developed modules are visually represented as

“blocks” which the scenario designers use in the visual

programming environment. It also has textual versions of each

of its visual programming modules.

C. TiViPE

Lourens et al. [8] present an API for programming a Nao

robot paired with a visual programming environment TiViPE.

They use the environment to create a social scenario of a robot

shaking a child’s hand. TiViPE’s social interaction functions

are: control of the robot's LEDs, audio, joint control and serial or

parallel command execution. As with Interaction Composer [7],

Lourens et al. argue programmers and scenario designers can

collaboratively create social robot interaction using TiViPE; the

scenario designer decides what behavioural “blocks” are needed,

and the programmer creates them using the API.

D. Behaviour Markup Language

Behaviour Markup Language (BML) is a textual domain

specific language for specifying the actions of Embodied

Conversational Agents [9], which includes robots [10]. It allows

the definition of behaviours by providing XML interfaces that

control speech, gesture, gaze and body movement [9].

E. Limitations

There are two limitations with these tools. First, most realise

social interaction requirements at a low-mid abstraction level.

Second, all omit abstractions to realise important social

interaction elements. A detailed analysis and comparison of the

four programming tools and our own
1
 is given in Table 1.

Choregraphe [5] and NAOqi [6] realise many social

interaction requirements with low to mid-level abstractions. E.g.,

to make a robot point at a person, one must combine multiple

low level abstractions (inverse kinematics and face detection)

rather than using one abstraction, e.g. a target attribute for a

gesture. They overlook some social interaction requirements, in

particular, abstractions to specify: who is being spoken to;

synchronise gestures with speech; and understand who is

speaking to whom. Interaction Composer realises far fewer

social requirements, but those that are realised are represented at

a high abstraction level. For example, it is possible to specify

gesture targets and synchronise them with speech.

TiViPE Nao API [8] realises the fewest requirements, making

it the least equipped tool for specifying social interaction. It has

abstractions for programming speech synthesis, body language,

facial expressions and running multiple gestures at once. The

last three of these are represented by mid-level abstractions,

suggesting its abstraction level could be raised.

BML [9] implements all requirements for making gestures

and at a high abstraction level. However, it fails to realise many

requirements for making speech and all requirements of the

human feature model, understanding speech and recognising

gestures. Note that no tools implement any of the requirements

for recognising gestures, including our own (due to time

constraints). Adding gesture recognition is a future goal of ours.

1
 Our prototype doesn’t implement all of the social interaction

requirements, but it implements more than any of the other tools.

TABLE 1. ABSTRACTION LEVEL OF SOCIAL ROBOT PROGRAMMING TOOLS. (3) HIGH LEVEL, APPROPRIATELY DESIGNED ABSTRACTION; (2) MID LEVEL, ABSTRACTION NOT APPROPRIATE

FOR REQUIREMENT; (1) LOW LEVEL, HAVE TO COMBINE MULTIPLE INAPPROPRIATE ABSTRACTIONS TO REALISE REQUIREMENT; (0) NO ABSTRACTION TO REPRESENT REQUIREMENT.

S
o
ci
al
 P
ri
m
it
iv
es
 Choregraphe & NAOqi Interaction Composer TiViPE BML Our API

Requirements

(from [1], [11])
A
b
st
 l
v
l

C
o
m
m
en
t

A
b
st
 l
v
l

C
o
m
m
en
t

A
b
st
 l
v
l

C
o
m
m
en
t

A
b
st
 l
v
l

C
o
m
m
en
t

A
b
st
 l
v
l

C
o
m
m
en
t

M
ak
in
g
 S
p
ee
ch
 Synthesise voice 3 tts.say(text) 3 talk(string text) (tab. I [7]) 3 say (fig. 2. [8]) 3 speech tag (fig. 5. [9]) 3

robot.say_to(text,

audience)

Specify how

words are being

said
3 speed, vol, pause ([12]) 0 0 0 0

Specify who is

being spoken to
0 0 0 0 3

robot.say_to(text,

audience)

M
ak
in
g
 G
es
tu
re

Body Language 3
sit down, stand up, wipe

forehead (Choregraphe)
3

pointing, emphasis, big,

small (sec. III c. 1 [7])
2 move or movem (fig. 2. [8]) 3

gesture tag & body tag

postures (fig. 5. [9]),

body part movements

(fig. 4. [9])

3
wave, point-left, point-

right, hips

Facial Expressions 2 ALLeds API 0 2 ledto or ledset (fig. 2. [8]) 3 face tag (fig. 2. [9]) 3 red-eyes, blue-eyes

Synchronise with

speech
0 3

gesture tag in text (sec. IV c.

1 [7])
0 3

mark tag (p100 code

example [13])
3 “<wave> hello </wave>”

Targeted at objects 1
joint control & face detection

(gaze), inverse kinematics &

face detection (point)
3

pointing reference (sec. III

c. 1 [7])
0 3

target attribute of gaze &

gesture tags (fig. 4 & 5

[9])
3

robot.say_to("<point

target={0}>get

him</point>", person,

person1)

Multiple gestures

at once
2 0 2

[a|b] & c | d & e (sec. 2.1

[8])
3

pointing, sitting & gazing

(fig. 5. [9])
0

H
u
m
an
 f
ea
tu
re

m
o
d
el

Body part model 1 ALFaceDetection 0 0 0
No abstractions to

represent body parts of

sensed people.
3

person.head, person.torso,

person.left_hand,

person.right_hand…

U
n
d
er
st
an
d
in
g
 h
u
m
an
 s
p
ee
ch

Verbal commands 2 ALSpeechRecognition 2
isSpeechResult(string result)

(tab. I [7])
0 0 3

person.said_to(meaning,

object)

Continuous natural

language
0 0 0 0 0

How they said it 0 0 0 0 0

Who the speaker is 1
ALSoundDetection &

ALFaceDetection
0 0 0 3

person.said_to(meaning,

object)

Who they are

speaking to
0 0 0 0 3

person.said_to(meaning,

object)

R
ec
o
g
n
is
in
g
 g
es
tu
re
s What the gesture

is
0 0 0 0 0

How they gestured 0 0 0 0 0

Who is gesturing 0 0 0 0 0

Who they were

gesturing to
0 0 0 0 0

As we have described, most of these systems fail to define

primitives at a high level (Choregraphe [5], Interaction

Composer [7] & TiViPE [8]). All fail to implement key

requirements of social interaction. Both of these limitations

hinder the ability of these tools to specify social interaction with

ease. To alleviate these problems we need a programming tool

with primitives set at a high abstraction level that meet more of

the requirements of social interaction than current tools. In the

next section we describe the approach we took to create our API.

III. OUR APPROACH

The most important trade-off when designing an API is

between two design decisions: the expressability vs the usability

of the API [14]. On the one hand, enough features need to be

included in the API so that it can be used to produce solutions

for a particular problem domain [14]. On the other hand it

should be simple enough to learn and use [14].

To ensure enough features were included in the API, we

undertook a two-step process. First, we examined the social

robot literature for primitives that could be used to build social

interaction [11]. We found that a number of social primitives

must be supported to enable robots to interact socially with

humans. These are the same requirements we used to compare

the programming tools in Table 1; more detailed reports on these

can be found in [11] and [1]. Second, to give the API a context,

it was designed and implemented alongside an exemplar use

case: a multiplayer game show (game shows are commonly used

scenarios to explore social robot interaction [15], [16]). In our

scenario a Nao robot hosts a quiz and two human players

compete against each other by answering Nao’s questions.

To ensure the API was simple enough to learn and use, the

Cognitive Dimensions Framework [17] was used as a self-

reflection tool during design and implementation. This was a

useful aid when making design decisions that affected usability.

IV. OUR API

The API is a high-level interface for the social primitives

described in column one of Table 1. It implements functionality

as listed in Table 1 and is composed of a number of important

classes that perform different tasks: Environment, Object (with

subclasses Robot and Person), Query and StateMachine. The

rest of this section overviews these.

A. Environment

The Environment class encapsulates the objects in the robot’s

environment, including the robot itself. These are represented by

two attributes: objects and robot. The former references a list of

the objects in the robot’s environment and is automatically

updated by the underlying platform. The latter references a

Robot instance encapsulating the actions of a robot. The class

and attribute names were chosen to support role expressiveness.

B. Object (Robot, Person)

The Object class encapsulates functions and attributes

common to all objects in the environment. The most important

functions include: distance_to(obj), which finds the distance

between two objects; and standard functions for querying the

spatial relationships of objects, including, left_of(obj),

right_of(obj), infront_of and behind(obj) which return whether

an object (caller) is left-of, right-of, in front or behind another

object (obj) respectively (Table 2). Object has two principle

subclasses already defined for programmers
2
: Robot and Person.

Instances of are automatically populated by the underlying

framework into the robot and objects attributes of the

Environment class respectively. We have implemented several

functions for the Robot and Person classes that support the

social primitives described in column one of Table 1.

TABLE 2. EXAMPLES OF OBJECT FUNCTIONS.

distance_to

Parameters obj (Object)

Example person.distance_to(robot)
>> 1.1

left_of

Parameters obj (Object)

Example

Explanation

person.left_of(robot)
>> True
person is to the left of robot

behind

Parameters obj (Object)

Example

person.behind(robot)
>> False

Explanation person is not behind robot

The most important function for the Robot class is say_to;

(Table 3) which makes the robot speak and gesture to a person

or a group of people. Once the robot has made eye contact with

2
 New objects can be supported by sub-classing Object.

a person specified by the audience parameter (specifies who is

being spoken to) it begins synthesizing the text in the text

parameter. If more than one person is supplied by the audience

parameter, whenever a new sentence is reached, the robot

changes its gaze to another person. As well as being designed

with the Cognitive Dimensions principles in mind, the high level

say_to was designed to fulfil the requirements of robot speech

and gesture from column 1 of Table 1. These include: synthesise

voice, specify who is being spoken to, synchronise gestures with

speech and the ability to gesture.

TABLE 3. ROBOT SAY_TO FUNCTION.

say_to

Parameters text (String), audience (Object, Query)

Examples robot.say_to('Hello', people)
robot.say_to('<wave> Hello </wave>', people)
robot.say_to('<point target={0}> Who is
that? </point>', people, person1)

The text supplied to the text parameter can optionally be

marked up with gesture tags to make the robot gesture in time

with its speech. This fulfils most gesture making requirements,

including: body language, facial expressions, synchronise with

speech and target gesture at an object. The following list has

example gestures, including both body language (wave, hands

on hips, point) and facial expressions (red-eyes, blue-eyes):

• Wave: "<wave> Hello human </wave>"

• Hands on hips: "<hips> I am angry with you </hips>"

• Point arm to right: "<point-right> look at that over there

</point-right>"

• Point arm to left: "no that <point-left> thing looks more

interesting </point-left>"

• Change eye colour to red: "<red-eyes> I am the start of the

robopocalypse </red-eyes>"

• Change eye colour to blue: "<blue-eyes> maybe not

</blue-eyes>"

The function name was chosen to reinforce role

expressiveness; say_to(text, audience) suggests the robot is able

to say something (text) to one or more people (audience). The

gesture markup language syntax was chosen to closely map to

the act of synchronising gestures with speech, one of the social

interaction requirements. To achieve this, tags surround the text:

opening tags specify a gesture start “<wave>” and closing tags

“</wave>” when it stops. Gesture tags are specified by the

name of the gesture to keep the notation terse. Other systems

such as Interaction Composer [7] and BML [9] use a more

diffuse syntax, e.g. “<gesture type=’wave’> <gesture>”.

The last relevant function for the Robot class is

associate_utterances_with_meaning. This function associate’s

utterances people say with higher level meanings to enable

verbal commands. An example is shown in Table 4, two

meanings are created: greet and insult. Different synonyms for

these are created by associating a set of utterances people could

say with those meanings. For example, ‘hello’ and ‘hi’ are both

greetings, while ‘stupid robot’ and ‘shut up’ are insulting.

TABLE 4. ROBOT ASSOCIATE_UTTERANCES_WITH_MEANING FUNCTION.

associate_utterances_with_meaning

Parameters utterances (list), meaning (Enum)

Example meanings = Enum(‘greet’, ‘insult’)
robot.associate_utterances_with_meaning([‘he
llo’, ‘hi’], meanings.greet)
robot.associate_utterances_with_meaning([‘st
upid robot’,‘shut up’], meanings.insult)

The most significant function for the Person class is said_to

(Table 5). It is used to find out if a specific person (who the

speaker is) said an utterance with a particular meaning (verbal

commands) to another object, such as the robot (who they are

speaking to). It returns a Boolean indicating if this is true or not.

Realising this on a mobile robot uses sound source localisation,

tracking and separation to isolate an audio stream for each

person; each audio track is then processed individually by a

separate speech recogniser. This fulfils three requirements of

understanding human speech: verbal commands, who the

speaker is and who they are speaking to.

TABLE 5. PERSON FUNCTIONS.

said_to

Parameters meaning (Enum), other (Object)

Example person.said_to(meanings.greet, robot)
>> False

C. Query

The Query class is used to filter objects from the

environment. Objects can be filtered by type (e.g. Person

objects) or by distance (e.g. objects closer than 2m); sorted by an

attribute (e.g. closest object); and selected (e.g people who said

“yes” to the robot). It uses syntax similar to Microsoft’s LINQ

[18] called Python-ASQ [19]; examples of queries are shown in

Table 6.

D. StateMachine

Dialogue is a cooperative process of communication that

shares information between two or more individuals [1]. It is a

higher form of interaction that emerges when social interaction

primitives from both the Robot and Person classes are combined

(Figure 1). A dialogue management system is needed to create

social applications from the social primitives. We use an event

driven state machine for this purpose (Table 7), which is popular

with other programming tools, including Interaction Composer

[7] and Robot Behaviour Description Language [20].

TABLE 6. QUERY FUNCTIONS.

query

Parameters iterable (Iterable)

Example q = query(env.objects)

of_type

Parameters class (Class)

Examples ppl = q.of_type(Person)

where

Parameters predicate (lambda)

Examples ppl.where(lambda p: p.distance_to(env.robot))
< 2)
ppl.where(lambda p: p.said_to(meanings.greet,
env.robot)

order_by

Parameters predicate (lambda)

Example ppl.order_by(lambda p: p.distance_to(env.robot))

order_by_descending

Parameters predicate (lambda)

Example ppl.order_by_descending(lambda p:
p.distance_to(env.robot))

TABLE 7. STATEMACHINE EXAMPLE.

sm = StateMachine(env)

class Listen(State):

 def create_transitions(self, next_state):
 q = people.where(lambda p: p.said_to(meanings.greet, robot))

 event = QueryEvent(q)
 self.add_transition(event, next_state, id = ‘greeted’)

class Respond(State):

 def create_transitions(self, next_state):
 self.next_state = next_state

 def execute(self, e):

 if e.id == ‘greeted’:

 robot.say_to(‘Hello, nice to meet you!’, people)
 return Transition(self.next_state)

listen = Listen() #Define states

respond = Respond()
listen.create_transitions(respond) #Define transitions

respond.create_transitions(listen)
sm.add_state(listen, first = True) #Add to StateMachine

sm.add_state(respond)
sm.start() #Start

In the StateMachine, dialogue is represented across a number

of states, by the class State. States contain social interaction

primitives, such as robot.say_to commands, that are run when a

state is run by the state machine. To make the state machine

transition between states, the programmer combines Query,

Event (QueryEvent) and Transition classes. For example, one

could write a query that searches for a person that insults the

robot. The Query is supplied to a QueryEvent, which fires when

one or more people are returned by the Query. When the

QueryEvent fires, the state machine transitions. In this new state,

the robot interacts with the specific person who insulted it, for

example, the robot could say to its insulter “you nasty human,

you should be more careful - haven’t you seen the Terminator?”

In summary, our API allows social interactive primitives to be

programmed with the Environment, Object (Robot, Person) and

Query classes. Dialogue is programmed with the StateMachine

and its associated classes. In the next section we describe the

evaluation of our API.

V. EVALUATION

We evaluated our API by a usability study where

programmers used our API to create a social application and

then reflected on their experience. There were 9 participants in

the study (P3 - P11)
 3
. All were expert programmers with 3 to 10

years programming experience, except one, who withdrew due

to a lack of object oriented programming experience. Five of the

participants were male, three were female and the majority had

no experience programming robots (one had six months

experience working on a robotics related research project).

The specific tool used to evaluate the usability of our API was

the cognitive dimensions questionnaire optimised for users [21].

The questionnaire is designed to present Cognitive Dimensions

(CDs) in a way that end users of notations can readily

understand [21]. The goal, is to enable end users, rather than

designers, to evaluate a system with the CDs Framework [21].

A. Method

Before participants started the study, they completed a

background questionnaire concerning their programming

experience (summarised above). The study itself consisted of

four phases:

1. Play game show with researcher and robot (5 minutes).

2. Read API documentation (20-30 minutes).

3. Complete a set of tasks (30-40 minutes).

4. Reflect on experience by completing a Cognitive

Dimensions Questionnaire Optimised for Users (30

minutes).

Participants first interacted with the robot to understand the

types of interactions Nao was capable of. This interaction was a

multiplayer game show (Figure 2) where the Nao robot acts as

the game show’s host. Nao interacts with two teams of people

autonomously, asking aloud a multiple choice question for each

round of the game (making speech). As Nao speaks to people, it

gazes at them and makes gestures synchronised with its speech

(making gestures). Each team has a button to press to answer a

question. A team’s verbal response is recognized (understanding

human speech): If the answer is correct then Nao increases the

team’s score, otherwise Nao does one of two things: give the

other team a chance to answer or subtract points from the team

that got the question wrong (dialogue). After a set number of

questions Nao announces the winner and loser of the show.

After interacting with the robot, participants spent 20-30

minutes reading the API documentation; class documentation

and an example program. This overviews the API’s most

3
 P1 & P2 were pilot testers; their results were not included in

the analysis.

important classes, what their salient functions and attributes do

and how they are used. In the example program, the robot greets

a person and responds positively or negatively based on the

user’s response. The example is provided with step-by-step

explanations of how each part works.

FIGURE 2. GAME SHOW SETUP.

The participants then conduct a series of tasks to convert the

example program into a new scenario, a number guessing game.

Here, Nao asks a person to guess what number Nao is thinking

of. The person responds with a number from one to three. If the

response matches Nao’s number, Nao tells them they were

correct, otherwise Nao tells them they were wrong. Participants

were observed while they completed the tasks; during this time

the researcher took notes and asked questions if there was a need

to clarify why they programmed in a particular way.

At the conclusion of the tasks, participants were given the

questionnaire [21] to reflect on their experience using our API to

program social interaction.

B. Results

Results analysis consisted of classifying questionnaire

responses by whether they were positive, equivocal or negative;

based on how Blackwell & Green analysed responses in [21].

This was further broken down into general positive and negative

responses and specific positive and negative responses. General

responses just indicate whether the notation was acceptable with

respect to a particular dimension; “yes”, “no”, “easy” and “hard”

are examples of this [21]. Specific responses show how specific

usability features perform against a particular dimension [21].

The general responses indicate an overall positive impression

of the notation. Participants responded with 49 general positive

comments and only 3 general negative comments. Specific

reasons why participants had a positive impression include: its

object oriented nature (P6); it is clear, concise and the class

definitions are well thought out (P6, P8, P10); the notation is

easy to understand (P10); and it allows programmers to express

emotional emphasis and empathy on the robot (P8). Individual

dimensions with the most general positive comments include

role expressiveness (9), visibility & juxtaposability (8),

closeness of mapping (6) and progressive evaluation (6).

The specific responses provide formative feedback about how

specific usability features perform with respect to a particular

dimension. Participants’ positive and negative responses were

fairly even, with 51 specific positive and 53 specific negative

comments. The specific positive comments focused on a number

of factors, including: the programming environment; the APIs:

organisation, object oriented nature, and its “well thought out”

domain specific nature; and being able to test interactions with

the robot. The following paragraphs discuss these factors in the

context of the Cognitive Dimensions Framework.

1) Visibility & Juxtaposability. Unsurprisingly participants

stated that the programming environment (Eclipse) benefited

visibility & juxtaposability. They didn’t state how Eclipse

specifically increased notation visibility, just that “programming

in an IDE is convenient & familiar”. In terms of juxtaposability,

Eclipse allows a programmer to compare different parts of the

notation side-by-side “using multiple windows.” Participants

also noted that the organisation of the API benefited visibility &

juxtaposability, for example, when asked how easy it is to find

various parts of the notation P10 responded that it was “simple

because the organisation of the notation is clear and concise.” A

social application is organised so that general things such as

setting up the environment and global queries are at the top,

whereas defining states are further down (P8).

2) Closeness of Mapping. Participants indicated that the

domain specific aspects of the notation had a close mapping to

the programs they created, for example P4 stated that the

notation was “pretty close in some parts (e.g. robot.say_to).”

These parts of the API had a positive effect on the diffuseness &

terseness of the notation (discussed next).

3) Diffuseness & Terseness. Participants’ responses here

indicate that the domain specific aspects of the API had a

positive effect on the terseness of the notation. For example, P4

stated that the API lets you say what you want reasonably briefly

because the notation “is domain specific”. This is likely because

domain specific languages have a close mapping to the problem

domain they describe, allowing programmers to express what

they want with fewer primitives than a non-domain specific

language. Similarly, P6 said that the API was “Brief & concise

as the API is well-written” and P8 said the notation lets you say

what you want reasonably briefly because “Each element (class

definition) was well thought out.”

4) Role Expressiveness. The notations object oriented nature

had a positive effect on role expressiveness. For example, P3

stated that it was easy to tell how each part of the API fits into

the overall scheme of things because “the structures in this API

are similar to those in any OO language.”

5) Progressive Evaluation. The notation performed well

with respect to two aspects of progressive evaluation: the ease of

stopping and testing a notation and checking progress made

when programming a solution. First, only a “basic structure is

needed to run” a program, making it easy to stop in the middle

to check your work (P4). Second, participants found it is easy to

test their progress because they could directly interact with the

robot to see if it was behaving how they wanted, for instance P7

stated that it was possible to test the progress she had made by

“test[ing the] interaction directly with the robot” (P7).

The number of specific negative comments almost equalled

the specific positive comments; however, over 60% of the

specific negative responses (31 of 53) were related to one aspect

of the API: the StateMachine. The purpose of the StateMachine

and its associated classes and functions are to perform dialogue

management; a higher level aspect of social interaction than the

social primitives. The dimensions with the most specific

negative responses for the StateMachine include: hard mental

operations (5), diffuseness & terseness (6), error proneness (5)

and premature commitment (4); these are discussed below.

1) Hard Mental Operations. Specific negative responses

indicated programming state changes to perform dialogue

management required much mental effort (5). E.g. P4 said

“Probably moving between States in the state machine &

passing arguments to the state” required the most mental effort.

Other participants had similar views, but that the notation was

easily grasped if this was understood. P3 commented he had

“Some difficulty with queries/events/ State changes at first, but

once that was figured out it was all fairly simple.”

2) Diffuesness & Terseness. Responses about diffuseness &

tersness indicated that the code required to transition the state

machine was diffuse (6). For example, p4 responded that “many

similar/grouped actions/events” took a lot of space to describe.

Users have to instantiate several classes (Query, QueryEvent)

and call several methods to create an event based state transition,

which is likely the reason why this part of the notation is diffuse.

3) Error Proneness. Most responses here related to dialogue

management via the state machine (5). Users reported they

misnamed state id’s, made mistakes due to copy and pasting

queries, events and state transitions, left query & event

declarations unused.

4) Premature Commitment. Lastly, the responses about

premature commitment indicated participants thought that using

the state machine forced them to think ahead and make decisions

about dialogue before they needed to (4). For example, P3

commented “You would need to have an idea of what States you

need in the app, and how you move between them. This would

be easier to sketch out first rather than doing it within the API.”

The remaining 22 specific negative comments were largely

related to minor usability issues such as inappropriate function

names and easily fixable inconsistencies.

In summary, the evaluation demonstrates users had an overall

positive impression of the notation and that they specifically

appreciated the programming environment, the API’s

organisation, its object oriented nature and domain specific

interfaces. The part of the API that received the majority of

specific negative comments was the method of managing

dialogue and is an area for future improvement.

VI. DISCUSSION AND CONCLUSIONS

We have described our API for programming robot social

interactions. Our API overcomes many of the disadvantages of

existing tools for programming social interaction as it provides

high level, domain specific interfaces for programming social

interaction. It also supports a broader range of social interaction

requirements than other existing tools. These include

requirements for making speech, making gestures, modelling the

human body and understanding human speech.

The evaluation demonstrates that users had an overall positive

impression of the notation, as the vast majority of general

responses were positive. Specific factors that users thought

benefited the notation include the programming environment,

the API’s organisation, its object oriented nature, it’s “well

thought out” domain specific interfaces and being able to test

interactions directly with the robot. These positively affected:

visibility & juxtaposability, closeness of mapping, diffuseness &

terseness, role expressiveness and progressive evaluation.

The majority of specific negative responses related to one of

notational aspect, its means to express dialogue, a higher level

aspect of social interaction than social interaction primitives.

This negatively affected hard mental operations, diffuseness and

terseness, error proneness and premature commitment. This

shows a better language for managing robot dialogue is needed;

for both programmers and end users. For end users, a possible

solution is to represent dialogue with a visual language.

Our API is a first step in a more general study of tools for

programming human robot interaction. Our intention is to extend

the API to target other aspects of human robot interaction. By

examining other scenarios such as social interaction, a fetch &

carry task and a robot guide scenario, we expect to create a more

general framework to program human robot interaction that has

a much higher abstraction level and better support for the

requirements of human robot interaction than existing tools such

as Choregraphe [5], Interaction Composer [7] and BML [9].

ACKNOWLEDGEMENT

The authors thank the reviewers for their helpful feedback,

the University of Auckland PhD Scholarship programme for

financial support, the participants of the user study, Chandan

Datta and Adam Roughton for advice and the University of

Auckland HCI Research group for their feedback on the paper

(particularly Andrew Luxton-Reilly).

REFERENCES

[1] T. Fong, I. Nourbakhsh, and K. Dautenhahn, “A survey of

socially interactive robots,” Robot. Auton. Syst., vol. 42, no. 3–4, pp.

143–166, Mar. 2003.

[2] C. D. Kidd, W. Taggart, and S. Turkle, “A sociable robot to

encourage social interaction among the elderly,” in Proc. 2006 IEEE

ICRA, Florida, USA, 2006, pp. 3972–3976.

[3] N. Mavridis and D. Hanson, “The IbnSina Center: An augmented

reality theater with intelligent robotic and virtual characters,” in Proc.

18th IEEE RO-MAN, Toyama, Japan, 2009, pp. 681–686.

[4] K. Dautenhahn, S. Woods, C. Kaouri, M. L. Walters, K. L. Koay,

and I. Werry, “What is a robot companion - friend, assistant or butler?,”

in Proc. 2005 IEEE/RSJ IROS, Edmonton, Canada, 2005, pp. 1192–

1197.

[5] E. Pot, J. Monceaux, R. Gelin, and B. Maisonnier, “Choregraphe:

a graphical tool for humanoid robot programming,” in Proc. 18th IEEE

RO-MAN, Toyama, Japan, 2009, pp. 46–51.

[6] Aldebaran Robotics, “NAOqi modules API’s.” [Online].

Available: http://www.aldebaran-robotics.com/documentation/naoqi/.

[7] D. F. Glas, S. Satake, T. Kanda, and N. Hagita, “An interaction

design framework for social robots,” in Proc. Robotics: Science and

Systems, Sydney, Australia, 2012, vol. 7, p. 89.

[8] T. Lourens and E. Barakova, “User-Friendly Robot Environment

for Creation of Social Scenarios,” in Foundations on Natural and

Artificial Computation, Springer, 2011, pp. 212–221.

[9] S. Kopp, B. Krenn, S. Marsella, A. N. Marshall, C. Pelachaud, H.

Pirker, K. R. Thórisson, and H. Vilhjálmsson, “Towards a Common

Framework for Multimodal Generation: The Behavior Markup

Language,” in Intelligent Virtual Agents, Springer, 2006, pp. 205–217.

[10] A. Holroyd and C. Rich, “Using the Behavior Markup Language

for human-robot interaction,” in Proc. 7th ACM/IEEE HRI, Boston,

USA, 2012, pp. 147–148.

[11] J. P. Diprose, B. Plimmer, B. A. MacDonald, and J. G. Hosking,

“How People Naturally Describe Robot Behaviour,” in Proc. ACRA,

Victoria Univ., Wellington, New Zealand, 2012.

[12] Acapela Group, “Text Tag Documentation, Acapela TTS For

Mobile.”

[13] H. Vilhjálmsson, N. Cantelmo, and J. Cassell et. al., “The

Behavior Markup Language: Recent Developments and Challenges,” in

Intelligent Virtual Agents, Springer, 2007, pp. 99–111.

[14] D. Roberts and R. Johnson, “Evolving Frameworks: A Pattern

Language for Developing Object-Oriented Frameworks,” in Pattern

Languages of Program Design 3, Boston, MA, USA: Addison-Wesley,

1997.

[15] Furhat - a robot that plays quiz games. 2013.

[16] I. Kruijff-Korbayová, G. Athanasopoulos, and A. Beck et. al.,

“An Event-Based Conversational System for the Nao Robot,” in Proc.

of the Paralinguistic Information and its Integration in Spoken

Dialogue Systems Workshop, Springer, 2011, pp. 125–132.

[17] T. R. G. Green and M. Petre, “Usability Analysis of Visual

Programming Environments: A ‘Cognitive Dimensions’ Framework,”

J. Vis. Lang. Comput., vol. 7, no. 2, pp. 131–174, Jun. 1996.

[18] Microsoft Corporation, “LINQ (Languge Integrated Query

System).” [Online]. Available: http://msdn.microsoft.com/en-

us/library/vstudio/bb397926.aspx.

[19] R. Smallshire, “asq - A Python implementation of LINQ and

parallel LINQ to objects.” [Online]. Available:

https://code.google.com/p/asq/.

[20] C. Datta, B. A. MacDonald, C. Jayawardena, and I.-H. Kuo,

“Programming Behaviour of a Personal Service Robot with Application

to Healthcare,” in Social Robotics, Springer, 2012, pp. 228–237.

[21] A. F. Blackwell and T. R. Green, “A Cognitive Dimensions

questionnaire optimised for users,” in Proc. 12’th Annu. Psychology of

Programming Interest Group, 2000, pp. 137–152.

