
A Demonstration of AZURITE: 

Backtracking Tool for Programmers 
 

YoungSeok Yoon 

Institute for Software Research 

School of Computer Science 

Carnegie Mellon University 

Pittsburgh, PA 15213, USA 

youngseok@cs.cmu.edu 

Brad A. Myers 

Human-Computer Interaction Institute 

School of Computer Science 

Carnegie Mellon University 

Pittsburgh, PA 15213, USA 

bam@cs.cmu.edu

 

 
Abstract—Programmers often need to backtrack, but back-

tracking support in modern programming environments is lim-

ited. Previously, we have conducted a series of studies, which 

discovered that backtracking in programming is in fact prevalent 

and programmers need better backtracking tools. In this demon-

stration, we will present our backtracking tool called AZURITE, 

which provides selective undo and history search and visualiza-

tion features in the Eclipse code editor. The demonstration will 

include the user interface presented in our previous work, as well 

as the new features added in response to user feedback. 

Keywords—selective undo; backtracking 

I. INTRODUCTION 

Programming involves both forward and backward edits on 
source code. Programmers not only need to write new pieces of 
code, but also need to revert some code to an early version for 
various reasons. For example, programmers make mistakes 
while writing code that they need to revert, or they may 
intentionally make temporary changes to the code, either as an 
experiment or to help with debugging. We call the behavior of 
reverting some code to an earlier version backtracking [1]. 

We conducted a series of studies about the backtracking 
practices of programmers. First, we conducted a lab study and a 
survey, which confirmed that backtracking is in fact prevalent 
and programmers often have problems when they want to 
backtrack [1]. As a follow-up, we recently conducted a 
longitudinal study of backtracking, which analyzed 1,460 hours 
of fine-grained code editing history of 21 programmers. The 
results showed that these programmers backtracked 10.3 times 
per hour on average, and 34% of all the detected backtracking 
instances were performed manually without using the undo 
command or any other tool support [2]. 

In fact, backtracking support is limited in modern 
programming environments. For example, the restricted linear 
undo model, which is widely used in most text and code editors, 
is limited in that it can only revert the most recent changes, and 
loses all the undone commands when the user makes new 
changes after undoing. Other support comes from using a 
version control system (VCS) such as Subversion or Git to 
revert some code to a previous version. However, this approach 
relies on the assumption that the desired code is already 
committed to the VCS, which may not be the case. 

These problems can be resolved by having a selective undo 
feature in the code editor. Users could select specific edit 
operations performed in the past, for example the insertions of 
various print statements for debugging, and invoke the 
selective undo command to revert only the code affected by 
those operations. To demonstrate the feasibility of this 
approach, we built a tool called AZURITE (Adding Zest to Un-
doing and Restoring Improves Textual Exploration), an Eclipse 
plug-in that helps programmers to perform various 
backtracking tasks with selective undo. 

In this demonstration, we will present our AZURITE and 
show how selective undo can help programmers to backtrack 
effectively. The demonstrated features will include the user 
interfaces that were previously published [3], as well as newly 
added features designed based on user feedback (Section III). 

II. USER INTERFACES OF AZURITE 

A. Timeline Visualization 

In our previous paper, we presented the initial user interface 
of AZURITE which visualize the fine-grained code edit history, 
and provide the selective undo feature of the code editor. The 
timeline visualization is the basic user interface used to interact 
with the edit history. More details of timeline visualization and 
the other user interfaces can be found in [3]. 

The timeline visualization lets users see and interact with 
the edit history (Fig. 1 shows the updated version of the 
timeline). The horizontal axis represents time, and the edit 
history of each file is shown in a corresponding row. Each edit 
operation is represented as a rectangle, which is color-coded 
according to the type of edit: inserts are green, deletes are red, 
and replacements are blue. Users can click or drag to select one 
or more rectangles. Once some operations are selected, users 
can invoke a popup context menu containing various 
commands including selective undo. 

B. Improvements to the Timeline View 

We made some significant improvements to the timeline 
visualization (Fig. 1). One of the common ways of 
backtracking is to go back to a certain point in the past when a 
specific event happened. As Beck says in his book, “it would 
be great if the programming environment helped me with this, 
working as a checkpoint for the code every time all of the tests 

2014 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

978-1-4799-4035-6/14/$31.00 ©2014 IEEE 225



run” [4]. To support this, AZURITE detects significant coding 
events and displays them in the timeline view. Currently, the 
displayed events are running JUnit tests which pass ( ) or fail 
( ), running the application under development ( ), saving 
files ( ), and version-control system related commands such as 
commit ( ). An event is displayed on the timeline as a vertical 
line with an icon representing that event at the bottom (Fig. 1). 
Further event types can be trivially added in the future. 

Users can also “tag” the current point in time, so that it can 
be easily referred back to when needed, which was one of the 
most requested features from our preliminary field study 
participants. A tag works exactly same as the other events, and 
shows a tag-shaped icon ( , Fig. 1 at 5:16pm). Users can give 
a name to each tag (shown on mouse hover), or leave it 
anonymous. 

Users can left-click on any event or tag icon to move the 
time marker (shown in orange) to that location to see how the 
code looked at that point. Right-clicking any of the icons brings 
up a context menu with convenient commands such as “undo 
all files to this point,” which can be viewed as a lightweight, 
automatic versioning feature. 

C. Interactive Selective Undo Dialog 

We designed another user interface called the interactive 
selective undo dialog in response to feedback from our 
preliminary user studies. The design was inspired by Eclipse’s 
refactoring wizard, which shows a preview of all changes to be 
made before actually changing the code. Similar to a typical 
refactoring wizard, our interactive selective undo dialog shows 
a side-by-side “diff” view where the left panel shows the 
current code and the right panel shows the preview of the 
selective undo with the currently selected rectangles in the 
timeline. On the top panel is the list of all the affected files and 
chunks within each file in a tree form. 

The interactive selective undo dialog is modeless, and the 
rectangles can be added to and/or removed from the selection 
while the dialog is open, which immediately updates the 
preview result shown in the dialog. By allowing this, users 
need not worry about selecting the exact set of rectangles on 
their first attempt. Users can manipulate the selection until the 
preview shows the desired result. 

Additionally, the interactive selective undo dialog offers a 
convenient way for users to “keep some code unchanged” 

when performing selective undo. Users can select an arbitrary 
region of the code in the left panel, right-click to bring up the 
context menu, and select “Keep this code unchanged”. Doing 
this searches for all operations affecting that selected region of 
code and excludes those operations from what will be undone. 
This feature provides a significant usability improvement, 
because users can easily get the desired results by roughly 
over-specifying the selected operations, and then marking all 
the code fragments desired to be in the resulting code. 

D. Regional Undo Shortcut 

The interactive selective undo dialog is the most flexible 
and powerful user interface we provide. However, the com-
plexity of a dialog interface might incur unnecessary overhead 
for relatively simple tasks. We have found that the most popu-
lar form of selective undo is reverting a specific region of code 
to an old version, which has been referred to as “regional undo” 
[5]. In the current version of Azurite, users can select some 
region in the regular code editor and use a keyboard shortcut 
(Ctrl+Alt+Shift+Z by default) one or more times to perform 
selective undo on that region directly within the code editor. 

III. CONCLUSION 

Although selective undo can be a powerful way to back-
track, this idea has not been implemented in any popular code 
editors, due to the specific challenges of selective undo for text 
editing. We present a novel selective undo tool called Azurite 
for helping programmers to backtrack more easily. We expect 
that demonstrating this tool would generate constructive dis-
cussion on the usefulness of the tool and ways to improve the 
existing user interfaces. AZURITE is available for general use as 
an Eclipse plugin (http://www.cs.cmu.edu/~azurite/). 

REFERENCES 

[1] Y. Yoon and B. A. Myers, "An Exploratory Study of Backtracking 
Strategies Used by Developers," Proc. CHASE 2012, pp. 138-144. 

[2] Y. Yoon and B. A. Myers, "A Longitudinal Study of Programmers' 
Backtracking," Proc. VL/HCC 2014, to appear. 

[3] Y. Yoon, B. A. Myers, and S. Koo, "Visualization of Fine-Grained Code 
Change History," Proc. VL/HCC 2013, pp. 119-126. 

[4] K. Beck, Test-Driven Development: By Example, Addison-Wesley 
Professional, 2002. 

[5] R. Li and D. Li, "A Regional Undo Mechanism for Text Editing," Proc. 
IWCES 2003. 

 

 
Fig. 1. The updated timeline visualization with automatically captured significant coding event icons shown just above the timecodes on the bottom. The 

displayed events from left to right are (1) file save, (2) run/debug application, (3) a user-defined tag, (4) run/debug application again, and (5) file save. 

226

http://www.cs.cmu.edu/~azurite/



