
The University of Manchester Research

The Usability of Task Modeling Tools

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Vigo, M., Santoro, C., & Paternò, F. (in press). The Usability of Task Modeling Tools. Paper presented at IEEE
Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2017, Raleigh, United States.

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:24. Apr. 2024

https://research.manchester.ac.uk/en/publications/5a3a098b-2f53-4d56-8f99-ccbad4b8ca75

The Usability of Task Modeling Tools
Markel Vigo

School of Computer Science
University of Manchester

Manchester, United Kingdom
markel.vigo@manchester.ac.uk

Carmen Santoro
HIIS Laboratory

CNR-ISTI
Pisa, Italy

carmen.santoro@isti.cnr.it

Fabio Paternò
HIIS Laboratory

CNR-ISTI
Pisa, Italy

fabio.paterno@isti.cnr.it

Abstract—User interface modeling tools can play a useful role
for engineering interactive systems. However, little is known
about how these tools are used, the strategies and workarounds
employed, and whether usability problems are encountered. To
start answering this question, we run a user study with software
engineers carrying out task modeling activities. The analysis
of the data generated by an instrumented CTTE and an eye-
tracker uncovers five workflows that illustrate how the task
model hierarchy is populated and edited, operators are added
to tasks, and when model consistency is checked. These findings
inform design implications for task modeling tools and formulate
hypotheses for future work.

Keywords—Log mining, eye tracking, usability, CTTE.

I. INTRODUCTION

Task analysis enables to conceive and understand what users
want to achieve through the use of software artifacts. It is
consequently a fundamental activity to design user interfaces.
Formalizing the outcomes of tasks analysis contribute to
discussions amongst the stakeholders who are involved in the
design of such artifacts because it documents the outcomes of
the analysis in a clearer manner than just informally reporting
them. This formalization is often implemented through task
models, which provide designers with means of represent-
ing and manipulating a formal abstraction of the activities
that should be performed. This is particularly useful e.g.
for designing interactive safety-critical applications where the
design needs to be carefully specified in order to prevent user
generated errors that can have catastrophic effects.

The notations for representing task models describe the
possible activities in a hierarchical manner so that more
general tasks are decomposed into more specific ones that
provide more precise indications about how to accomplish
the tasks. Task modeling notations such as CTT [1], GTA [2]
and MAD [3] explicitly indicate the temporal relationships
amongst the tasks as a way to describe users’ behavior. These
notations establish relationships such as whether tasks have
to be performed sequentially, concurrently or whether a given
task can interrupt another one. There is also the possibility
to add conditions that should happen before and after task
completion. Existing tools such as CTTE [4], CogTool [5]
and HAMSTERS [6] alleviate the complexity of task modeling
notations and support designers in building sophisticated task
models.

While task modeling does not have a widespread uptake,
it has a user base of user interface specialists developing

complex interactive systems. For example, the modeling en-
vironment studied in this paper, the ConcurTaskTrees Envi-
ronment (CTTE), has been downloaded +26K times and has
a user base of +10K registered users as of April 2017. It is
both used in academia, government and industry, especially
by companies with an interest in ERP and safety-critical
systems (e.g. air traffic control systems). Unfortunately, we
know very little about how effective task modeling tools are
in supporting designers to build models and we know even
less about their usability. In one of the few studies where
task modeling environments were evaluated [7], the findings
were within the scope of the expressivity of the notation, its
syntactic validity and verification of resulting models. While
this is useful to advance on task modeling notations, the lack
of empirical studies on the use of task modeling tools prevents
the community from moving forward. This is critical as novel
applications of modeling tools are emerging in fields such as
the Internet of Things and ubiquitous computing [8].

The lack of previous work and underlying theory led us to
run a data-driven exploratory study with no hypotheses where
findings would emerge from a variety of sources including
user interface events, eye-tracking and self-reported data. Con-
sequently, we contribute to theory and formulate hypotheses
through:
• The identification of the activities designers carry out

when building task models.
• Design recommendations for task modeling tools.

II. THE STUDY

The study was run on a Windows7 PC with the Tobii X2-60
eye-tracker installed on a 21.5” monitor. A post-study ques-
tionnaire collected demographic information, the perceived
complexity of the tasks and the participants’ familiarity with
the modeling notation and the environment.

A. Apparatus

1) Instrumented CTTE: We modified CTTE in order to
log user interface events whereby each logged line contains a
timestamp, the name of the area where the event was triggered,
the event and the object of the event. The log excerpt below
illustrates a real sequence from this study where (1) a task of
the category ‘Interaction’ is added to the model, (2) this task
is selected, (3) the ‘Task properties’ modal dialog is opened
and (4) the default task name given by CTTE (i.e. ‘Task 10’)
is replaced by ‘Open messages’.

978-1-5386-0443-4/17/$31.00 © 2017 IEEE

1: 71345, Task palette, Add_task, Interaction
2: 74982, Central area, Select_task, Task_10
3: 75261, Central area, Open_task_properties, Task_10
4: 87735, Task properties, Set_identifier, Open messages

User interactions can be described in the logs by using
different levels of abstraction, which can range from input
device events (e.g. key pressed) to goal related (e.g. ‘submit a
form’). Following the framework by Hilbert and Redmiles [9]
we logged 40 different types of events that belong to the
categories of user interface events and abstract interaction level
– the latter are semantically more meaningful than the former:
• Add tasks to a model. Tasks can be of the following

categories according to CTT: abstraction, application,
interaction and user.

• Add operators to tasks. There are 12 operators with their
own semantics including choice, option and iteration.

• Set the identifier and category to tasks.
• Set the insertion mode for the next task to be added,

which can be set as a parent task, as a child task or as a
(left/right) sibling task of the currently selected task.

• Edit operations with tasks including copy subtree, cut
subtree, and cut, copy, paste, drag and delete a task.

• Environment commands such as open a file, save, undo,
redo, maximize the window, etc.

2) Eye-tracker: Eye tracking data has long been used
to identify usability problems. Specifically, the number of
fixations is an indicator of search problems and the duration of
fixations signals cognitive load [10]. We, therefore, collected
these values along with their timestamp and area of interest
where fixations occurred. The areas of interest (henceforth
AOI) are used to compute aggregates of fixation data in
particular areas. In the case of CTTE, these areas are clearly
demarcated as shown by Figure 1.
• The ‘Drawing area’ is the container of the task hierarchy,

their relationships and their operators.
• The ‘Left menu’ contains the task palette to establish

the category of task, and the operator palette to set
the operator between the current task and its rightmost
sibling.

• The ‘Top menu’ contains the main menu bar, a horizontal
palette with edition commands and a button to set the
insertion mode of the next task to be added (as a parent,
sibling or child of the currently selected task).

• The ‘Overview’ shows the structure of the hierarchy in
the drawing area.

Figure 1 also shows the dialogs that were defined as AOIs:
‘Dialog - 1’ is the drop-down menu that unfolds when clicking
on the main menu bar, ‘Dialog - 2’ opens up on mouse right
click to perform editing operations (cut, paste, delete) and
‘Dialog - 3’ is the ‘Task properties’ dialog, where the identifier
and the category of the current task can be set and modified.
When the simulator is run, a new window is opened whereby
the designer can run the simulator stepwise and see the output
of the simulation at the same time. The syntactic problems of
the model can also be viewed after the model checker is run.

Dialog - 1!

Dialog - 2!

Dialog - 3!

Left menu!

Top menu!

Overview!

Drawing area!

Fig. 1. The areas of interest defined in CTTE

B. Participants, Procedure and Tasks

Thirteen individuals (five female), whose average age was
30 (SD = 6.78), took part in the study. Regarding their
expertise with CTTE four participants had built >8 models
before, four 4–7, four 1–3 and one of them had never built one
even if he was familiar with the notation and the environment.
Participants were given the opportunity to view a short video
and a manual containing a crash course on the functionalities
of the environment, which were free to consult at any time.

Three tasks with an increased level of complexity – both
cognitive and in terms of the amount of work – were given to
participants. In order not to expose them to foreign domains,
the modeling tasks were about common smartphone function-
alities. Participants were told to check the consistency of the
models at the end of every task although they were free to run
the checker at any time.
Task 1. An existing task model had to be refined and extended.
Task 2. A new and optional task had to be inserted between
existing tasks.
Task 3. An existing task had to be extended by adding new
tasks. The task had to be moved so that it became a child of
another existing task.

III. RESULTS

Median completion time for Task 1 was 6:37 (SD = 8:33),
10:42 (SD = 3:25) for Task 2, and 15:37 (SD = 6:55) for
Task 3, where a higher standard deviation indicates a higher
variability on Task 1. The perceived median difficulty was
2, 3 and 4 for Tasks 1–3 respectively. Completion times
are correlated with perceived complexity only for Task 3,
where the Spearman’s test yields a moderate and significant
correlation, ρ = 0.55 and p < 0.05. The number of times the
manual was consulted was strongly correlated with completion
times ρ = 0.70, p < 0.01. That is, it took longer to complete the
tasks to those who checked the manual more often. Previous
experience is negatively correlated with manual checking times
ρ = -0.62, p < 0.05 – suggesting that the manual was consulted
by those who were less experienced. Experience and overall
completion times are also negatively correlated ρ = -0.64, p
< 0.05 indicating that the less experienced participants were
slower in completing their tasks.

A. UI Events and Workflow Analysis

In order to find regularities in the 4 737 user interface
events that were logged, we mined the logs using N-gram
analysis [11]. The workflows were isolated after (1) selecting
only those N-grams that occurred more often than the number
of participants in the study (i.e. thirteen), (2) removing the
permutations and (3) merging same subsequent events: for
instance, a Select task event after another Select task event
was transformed into one Multiple task selection event – this
merging rule was applied to all sequences of same events
regardless of their length. As a result of this analysis, we
identify five main workflows. Figure 2 shows three of the
workflows depicted as a finite state machine where user
interface events are conveyed by states and arrows between
states indicate a transition between events. We can define
the sequence of events as a Markov chain by computing the
probabilities between states/events to convey the likelihood of
a given transition between two events [12].

1) Set task insertion mode: Because CTT is a hierarchical
task model notation, before adding a new task, one has to
specify whether the next task is going to be a parent, a sibling
or a child of the currently selected task. The button to set the
insertion mode is implemented as a looping carousel following
this sequence: ‘insert sibling to the left’, ‘insert sibling to the
right’ and ‘insert child’. This means the mode must be set by
clicking the button as many times as it is necessary so that
the current insertion mode is the one desired by the designer.
If the current insertion state is set to ‘insert child’ and the
user wants to insert a sibling to the right they have to click
two times. This was captured by the workflow and its specific
implementations:

Set insert mode w1: Set insert sibling→Set insert sibling→Set insert child

Set insert mode w2: Set insert sibling→Set insert child

Set insert mode w21: Set insert mode w2→Add task(s)

2) Populate and edit: Participants created tasks to right
after name them or set their category. There are several options
to accomplish this: through the ‘Dialog - 3’ modal dialog,
which triggers the Open task properties event or through the
‘Current task panel’ on the ‘Top menu’, where the name can
be set without having to open a dialog. Surprisingly, 74% of
the times participants decided to open the modal dialog, while
11% of the times the ‘Current task’ panel was used when
naming the tasks. Opening a dialog requires an extra step, so
this may be due to individual preferences or because users
ignore there is a more efficient way of giving a name to a
task. Note the high probabilities after setting the identifier and
category (0.86 and 0.59 respectively) leading to task selection.
There are four implementations of this workflow:

Edit identifier w1: Select task(s)→Open task properties→Set identifier

Edit identifier w2: Select task(s)→Set identifier

Edit category w : Select task(s)→Open task properties→Set category

Add task edit w : Add task(s)→Edit identifier w1

3) Add operators to tasks: This workflow describes the
activities by which relationships between tasks are established.

After selecting a task there is a probability of 0.22 to add an
operator to the task and a probability of 0.73 to select another
task right after. Note that this transition is not reflected in
Figure 2 to prevent clutter:

Add operator w : Select task(s)→Add operator

4) Check model consistency: This workflow enables users
to check whether the model conforms to the grammar and
rules defined by the CTT language. The model is checked
after setting the category of a task or after adding operators to
tasks. Often, those who did not get any consistency problem
save the current environment after checking the model:

Check model w1: Add operator→Check model

Check model w2: Set category→Check model

Check model w11: Add operator w→Check model

Check model w21: Edit category w→Check model

5) Cut, paste and delete: These are typical workflows in
any activity involving user interfaces. In CTTE these events
happen, understandably, after selecting tasks. Interestingly,
some transitions are reflexive: paste occurs after pasting 31%
of the time while cutting the selected tasks occurs 15% after
cutting tasks. Again, for clarity’s sake we do not include these
workflows in Figure 2 although, again, the implementations
are simple:

Cut task w : Select task(s)→Cut selection

Paste task w : Select task(s)→Paste task

Delete task w : Select task(s)→Delete task

The above workflows indicate that adding new tasks to
the model and setting their name, category and adding
operators between tasks are the central activities for task
modeling. These activities are often preceded with setting the
insertion mode for the next task(s) and concatenated with
model checking workflows. It was observed that tasks are
first added in a batch (typically in a breadth-first fashion) to
be later either renamed and then have the operators between
tasks added (i.e. Add task edit w + Add operator w) or
have the operators between tasks added and then the tasks
renamed, i.e. Add operator w + Edit identifier w1.

save
0.18

add
operator

check
model

0.11

0.14

0.42

add
task(s)

select
task(s)

set
identifier

open task
properties

set
category

0.69
0.39

0.11

0.74

0.16

0.86

0.59

0.23set
insert
sibling

0.36

set
insert
child

0.23

0.22

0.33

0.28

Fig. 2. Exhibited workflows: ‘Set task insertion mode’ (orange), ‘Populate
and edit’ (green), ‘Check the consistency of the model’ (blue)

B. Eye-Tracking Data Analysis

The ‘Drawing area’ receives 67% of the fixations and
therefore it is the area where participants’ attention dwelled for
a longer time (68% of the time). This was expected due to the
large amount of space allocated to this area, and also because
it is the area where the task model is actually rendered. The
manual also receives considerable attention, 13% of fixations.
Friedman tests indicate an effect of AOI on dwell time χ2(2)
= 68.6, p < 0.001 and on the number of fixations received
χ2(2) = 70.81, p < 0.001. Due to the layout of CTTE the
area allocated to the AOIs is unbalanced: if we look at the
AOIs of the main screen on Figure 1, the ‘Drawing area’ takes
70% of the area while the ‘Left menu’ takes a 3%. In order
to compare the areas of the main screen, Table I normalizes
dwell time and number of fixations per 1 000 pixels. This data
shows some interesting insights: while the ‘Drawing area’ is
24x larger than the ‘Left menu’, it only gets 2.5x dwell time
and 2x fixations when data is normalized. This suggests that,
in terms of how the attention is allocated on the screen, the
‘Drawing area’ is overrepresented and the ‘Left menu’ should
be allocated more space if needed.

TABLE I
DWELL TIME AND NUMBER OF FIXATIONS ON CTTE’S MAIN SCREEN

AOI Area % Normalized
Dwell time Fixations Dwell time Fixations

Drawing area 73% 93.6 92 3.07 9.91
Left menu 3% 1.5 1.9 1.23 4.91
Overview 1% 0.3 0.2 0.6 1.84
Top menu 23% 4.6 5.5 0.47 1.86

IV. IMPLICATIONS FOR DESIGN

While the identified workflows fall within the scope of
CTTE, we assume that similar activities will be exhibited in
other task modeling environments. Indeed, the modeling tools
discussed in Section I have a common set of functionalities
which include hierarchical task decomposition, the use of
operators to indicate temporal relationships between tasks, the
possibility of specifying various attributes to characterize the
tasks, etc. Consequently, the following implications for design
would apply to the common denominator set of functionalities.

A. Support an Efficient Population of the Model

Through the ‘Cut, paste and delete’ workflow participants
copy existing subtrees in the task hierarchy, paste them else-
where and modify their names and categories as a strategy
to avoid repetition. Currently CTTE supports the edition of
multiple task operators through a single action, which was used
by nine participants. The frequency of the ‘Populate and edit’
workflow (385 instances) suggests that more effective mecha-
nisms to populate the model need to be provided. For instance,
the workarounds exhibited by users could be mimicked: they
copied and pasted existing hierarchies and edited them in order
to speed up the creation of task models. This suggests that du-
plicating hierarchies or allowing for the creation of templates
would be beneficial in order to populate task models. Bulk
editing could also be facilitated if the model was specified

using spreadsheets and their typical functionalities including
duplication, making minor modifications of entities effectively
and arranging the elements of the model hierarchically [13].
Spreadsheets could then be loaded to populate the graphical
model for later refinement and model checking purposes.

B. Facilitate a More Direct Manipulation of the Model

We refer to the possibility of moving a task to a different
place of the model by replacing the current workaround of
employing the ‘Cut, paste and delete’ workflow with a drag
and drop functionality. This is not as straightforward as it may
look like: the drag and drop functionality can be ambiguous
since it can be used for improving the presentation of the task
model and, also, for updating the position of a given task in
the logical structure of the model. To give usable support in
both cases, the tool should be able to correctly interpret the
intention of the designer.

C. Embed Help and Guidance in the Workflows

After the ‘Drawing area’, the manual was the area that was
looked for a longer time. Also, it took longer to complete
the tasks to those who checked the manual more often.
The screen recordings indicate that participants checked the
manual before adding operators to tasks, before adding a task
between two tasks and before adding categories to tasks. This
suggests that a more effective support should be given to users.
Note that CTTE already has a user guide, which is a large
document whose consultation disrupts the current workflow.
Further information about operators and categories could be
implemented in two ways: guidance should be embedded in
the ‘Left menu’. Despite its central role, the drawing area
is overrepresented and allocates a larger area than it should.
Therefore, sacrificing this allocation in favor of the ‘Left
menu’ would not be a hindrance. Alternatively, help could
be provided as an option through a modal dialog that would
open when mouse right clicking the operator or category.

D. Provide More Effective Task Insertion Modes

The ‘Set task insertion mode’ workflow suggests that a more
effective way of indicating where to place the next task in
the model is needed. Users sometimes were found to make
mistakes when adding a new task in the intended position
within the model. While the insertion mode carousel described
earlier is to blame for this, these errors could be prevented if on
hovering, tasks in the ‘Drawing area’ would show actionable
outgoing arrows from the current task to the parent, sibling
and child tasks. Clicking on the arrows would add a task to
its corresponding location.

V. CONCLUSION

The lack of evidence about how designers use task modeling
tools prevents us from knowing whether there are barriers
to effective use. This seminal study addresses this gap by
identifying five workflows that illustrate how software engi-
neers go about their task modeling activities. These workflows
inform implications for design for the next generation of task
modeling tools and constitute hypotheses for future research.

REFERENCES

[1] F. Paterno, Model-Based Design and Evaluation of Interactive Applica-
tions, 1st ed. London, UK, UK: Springer-Verlag, 1999.

[2] G. C. van der Veer, B. F. Lenting, and B. A. Bergevoet,
“GTA: Groupware task analysis modeling complexity,” Acta
Psychologica, vol. 91, no. 3, pp. 297 – 322, 1996, usage of Modern
Technology by Experts and Non-professionals. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0001691895000658

[3] D. Scapin and C. Pierret-Golbreich, “Towards a method for task descrip-
tion: MAD,” Work with display units, vol. 89, pp. 371–380, 1989.

[4] G. Mori, F. Paterno, and C. Santoro, “CTTE: support for developing and
analyzing task models for interactive system design,” IEEE Transactions
on Software Engineering, vol. 28, no. 8, pp. 797–813, Aug 2002.

[5] B. E. John, K. Prevas, D. D. Salvucci, and K. Koedinger, “Predictive
human performance modeling made easy,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’04. New York, NY, USA: ACM, 2004, pp. 455–462. [Online].
Available: http://doi.acm.org/10.1145/985692.985750

[6] C. Martinie, P. Palanque, and M. Winckler, Structuring and Composition
Mechanisms to Address Scalability Issues in Task Models. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 589–609. [Online].
Available: https://doi.org/10.1007/978-3-642-23765-2 40

[7] S. Caffiau, D. Scapin, P. Girard, M. Baron, and F. Jambon, “Increasing
the expressive power of task analysis: Systematic comparison and
empirical assessment of tool-supported task models,” Interacting with
Computers, vol. 22, no. 6, pp. 569–593, 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.intcom.2010.06.003

[8] M. Halbrügge, M. Quade, K.-P. Engelbrecht, S. Möller, and S. Albayrak,
“Predicting user error for ambient systems by integrating model-based ui
development and cognitive modeling,” in Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing,
ser. UbiComp ’16. New York, NY, USA: ACM, 2016, pp. 1028–1039.
[Online]. Available: http://doi.acm.org/10.1145/2971648.2971667

[9] D. M. Hilbert and D. F. Redmiles, “Extracting usability
information from user interface events,” ACM Comput. Surv.,
vol. 32, no. 4, pp. 384–421, Dec. 2000. [Online]. Available:
http://doi.acm.org/10.1145/371578.371593

[10] C. Ehmke and S. Wilson, “Identifying web usability problems from
eye-tracking data,” in Proceedings of the 21st British HCI Group
Annual Conference on People and Computers: HCI...But Not As
We Know It - Volume 1, ser. BCS-HCI ’07. Swinton, UK, UK:
British Computer Society, 2007, pp. 119–128. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1531294.1531311

[11] C. Buchta, K. Hornik, I. Feinerer, and D. Meyer, “tau: Text analysis
utilities. Available at http://cran.r-project.org/web/packages/tau/.”

[12] H. Thimbleby, P. Cairns, and M. Jones, “Usability analysis
with markov models,” ACM Trans. Comput.-Hum. Interact.,
vol. 8, no. 2, pp. 99–132, Jun. 2001. [Online]. Available:
http://doi.acm.org/10.1145/376929.376941

[13] K. S.-P. Chang and B. A. Myers, “Using and exploring hierarchical
data in spreadsheets,” in Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems, ser. CHI ’16. New
York, NY, USA: ACM, 2016, pp. 2497–2507. [Online]. Available:
http://doi.acm.org/10.1145/2858036.2858430

