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Abstract—Diagrams can be an effective means of communi-
cating complex ideas and can aid ontology engineering. Indeed,
domain experts often do not have the expertise required to un-
derstand or create the complex logical statements of an ontology
in description logic (DL). This paper presents a visualisation
method, concept diagrams, geared toward expressing assertions
and class expression axioms alongside providing support for
literals, datatypes and data properties. Property diagrams are
introduced, targeted at object property and data property expres-
sion axioms. We demonstrate that concept diagrams and property
diagrams provide a large coverage of OWL 2 axioms and are,
thus, closely aligned in expressive power.

I. INTRODUCTION

Building ontologies is a challenging task. Tools, such as
Protégé [1] and WebProtégé [2], allow the creation of textual
representations of knowledge domains. However, when people
develop conceptual structures, such as models of knowledge
which will lead to an ontology, they often start by sketch-
ing [3]. This indicates that symbolic and textual notations do
not fulfil all modelling requirements of ontology engineers,
and that visual means of communicating are perhaps more
accessible. Concept diagrams [4] were developed to fulfil this
accessibility need.

While concept diagrams allow the definition of ontologies
in a readily accessible form, they are more expressive than
OWL 2 [5] when defining axioms that involve individuals,
classes and object properties. In addition, concept diagrams
do not provide direct support for object property expression
axioms or any axioms involving literals, datatypes, or data
properties. This paper addresses these issues by presenting
a fragment of concept diagrams that is a close match to
OWL 2 and contains syntax for literals, datatypes and data
properties. The paper also introduces property diagrams which
are designed for defining object and data property expression
axioms. The concept diagram fragment and property diagram
notation combine to form a diagrammatic representation that
has a formal semantics and a translation into OWL 2. The
main contributions of this paper are as follows:

« Identification of a fragment of concept diagrams that
closely aligns with OWL 2 assertions and class expression
axioms. (Sections IV and V.)

« Development of property diagrams, aligning with OWL 2
property expression axioms. (Section VI.)

« Development of extensions to include support for literals,
datatypes and data properties. (Sections IV, V and VI.)
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We now give an example to illustrate some of the contri-
butions of this paper, illustrating potential benefits of concept
diagrams over OWL 2. Fig. 1 represents one named individual,
i, five named classes, C; to Cs, and two object properties, op;
and op,, expressing four OWL 2 axioms:

1) an assertion axiom, visualized by a labelled dot inside
a curve: ClassAssertion(Cy; 1).

2) two simple subsumption-style class expression axioms,
visualized by curve inclusion: SubClassOf (C, C;) and
SubClassOf (Cs Cyg).

3) a disjoint-classes-style class expression axiom, visual-
ized by curve disjointness: DisjointClasses (C: Cs
Cq).

4) a complex subsumption-style class expression axiom,
visualized using a chain of arrows: SubClassOf (C;
AllValuesFrom(op: (ObjectIntersectionOf (Cs
AllValuesFrom(opz Cs))))).

SubClassOf (C; AllValuesFrom(op; C3)) can be
inferred from the OWL axioms; this can be read directly from
the concept diagram: the arrow sourced on Cq, labelled op3,
targets an anonymous subset of Cs, thus expressing that, from
C1, under the relation op;, we can only ‘reach’ things inside
Cs. Other information is also made explicit in the concept
diagram, such as the disjointness of classes C, and Cs, but
again this needs to be inferred from the OWL axioms above.
Statements which can be read directly from the diagram but
must be inferred from the OWL are examples of free rides [6]
and observational advantages [7], which are believed to be a
reason why diagrams are often more accessible representations
of information than symbolic or textual forms.

In terms of scalability, concept diagrams are able to express
large numbers of OWL axioms in a single diagram; [§]
includes a concept diagram which is equivalent to 772 OWL
axioms. In general, a large number OWL axioms can be
expressed in a single diagram, and any given ontology could
be represented by many diagrams. This implies that, as a base
case, concept diagrams are at least as scalable as OWL and
arguably more so.
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Fig. 1. A concept diagram.




Empirical research suggests that concept diagrams are an
accessible notation for ontology engineering, relative to OWL
and DL [9], [10]. The inaccessibility of traditional ontology
engineering languages is recognised by Rector et al. [11]:
“Understanding the logical meaning of any description logic
or similar formalism is difficult for most people, and OWL-DL
is no exception.”

This insight is backed up by Warren et al. who conducted an
empirical study of the most commonly used OWL constructs,
including class subsumption, disjointness and equivalence
alongside All Values From and other types of simple property
restrictions [12]. These studies revealed that “despite training,
users are prone to certain misconceptions” and “one-third of
[participants] commented on the value of drawing a diagram ...
In the context of [description logics], diagrams offer a strategy
to overcome misconceptions and generally support reasoning.”
Warren et al. also believed that existing visual techniques
promote the visualization of ontology structures rather than
the cognitively more challenging features of description logics,
with concept diagrams singled out as the exception; other
techniques include SOVA [13], VOWL [14], OntoVis [15],
OWLViz [16] and an adapted form of existential graphs [17];
most of these are not able to visualize a significant proportion
of OWL 2 and are often based on node-link diagrams [18].
Paper Outline: We start by giving a brief overview of OWL 2
(§ II). Next (§ III) background on concept diagrams is pre-
sented, followed by (§ IV-A) restrictions and new additions
to closely match concept diagrams with OWL 2. The rela-
tionship to OWL 2 is then investigated (§ V) followed by the
introduction of property diagrams (§ VI).

II. OVERVIEW OF OWL 2

The basic syntactic building blocks of OWL 2 ontologies
are individuals and literals, named classes and datatypes,
object properties and data properties. These are used to build
more complex expressions, often defining anonymous classes
(i.e. sets of elements without a specified name) from which
axioms are defined. OWL 2 axioms are primarily defined
via subsumption relations between classes, datatypes, object
properties and data properties, as well as through making
assertions about individuals and literals.

OWL expressions define axioms over two non-empty uni-
versal sets: the object domain and the data domain. Individuals
and literals represent elements of the object domain and data
domain respectively. Classes and datatypes represent subsets
of the object domain and data domain respectively. Object
properties represent binary relations on the object domain
whereas data properties represent binary relations from the
object domain to the data domain.

In what follows, we present details of the OWL syntax and
semantics following [5]; we omit a description of the seman-
tics where this should be self-evident and do not included
details on expressions involving constraining facets or keys as
they cannot be expressed by concept diagrams.

A. Building Sets and Binary Relations

In order to define a rich variety of axioms, OWL requires

syntax to build complex expressions from basic building
blocks. Object property expressions, together with data prop-
erties, represent binary relations. Class expressions and data
ranges represent sets.
Object Property Expressions: Any object property, typically
denoted by OP, is an object property expression, often de-
noted by OPE. The inverse of an object property is also
an object property expression: ObjectInverseOf (OP).
For example, given the object property isParentOf,
ObjectInverseOf (isParentOf) is an object property
expression.

Data Ranges: ~All datatypes, denoted DT, are data
ranges, denoted DR. OWL 2 has five ways to form
data ranges from datatypes, one of which is formed
using constraining facets and, so, is omitted here:
DataIntersectionOf (DRy DR, ) (.e. the
intersection of n data ranges), DataUnionOf (DR,
DR,), DataComplementOf (DR), and DataOneOf (1t;
1ty) (this is the set containing literals 1t to 1ty).
Given the datatypes Integer and String we can form,
for example, DataUnionOf (Integer String) and
DataComplementOf (Integer). We may also wish to
form a set of specific integers, such as DataOneOf (1 2 3
4 5), or strings, say DataOneOf (Male Female).
Class Expressions: All classes, often denoted by C, are
class expressions, denoted CE. OWL 2 has a large
range of constructors that can be used to form complex
class expressions. The most straightforward of these are:
ObjectIntersectionOf (CE; CE,) (i.e. the
intersection of n class expressions), ObjectUnionOf (CE;
CEn), ObjectComplementOf (CE), and
ObjectOneOf (a; an) (this is the set containing
individuals a; to a,). For example, given the classes
Mammal, EggLayer and Platypus, we can form
ObjectIntersectionOf (Mammal EggLayer), which
will subsume Platypus, ObjectUnionOf (Mammal
EggLayer) and ObjectComplementOf (Mammal). The
class expression ObjectHasSelf (OPE) is the set of all
object domain elements that are related to themselves under
OPE (i.e. the elements that give rise to the smallest reflexive
subset of OPE).

A further 18 styles of class expression can be formed, nine
of which involve object properties and either class expressions
or individuals. ObjectSomeValuesFrom (OPE CE) is
the set of all object domain elements that are related to some
element of CE under OPE. ObjectAllValuesFrom (OPE
CE) is the set of all object domain elements that are
related to only elements of CE under OPE. For example,
given the object property isParentOf, we may wish
to form the set of parents of mammals (i.e. all of the
things that are the parent of at least one mammal):
ObjectSomeValuesFrom (isParentOf Mammal).
The set ObjectAllValuesFrom(isParentOf
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Fig. 2. Two concept diagrams for expressing OWL 2 axioms.

Mammals) comprises the individuals that are the parent of
only mammals; this includes those individuals that are not a
parent of anything.

ObjectHasValue (OPE a) is the set of all object do-
main elements that are related to individual a under OPE.
So, ObjectHasValue (isParentOf Tim) is the set of
Tim’s parents. ObjectMinCardinality(n OPE) and
ObjectMinCardinality (n OPE CE) are the sets of all
object domain elements that are related to at least n elements
under OPE and, in the latter case, these n elements are in CE.
Four more axioms are similar, replacing Min with either Max
or Exact. For example, ObjectExactCardinality (2
isParentOf Mammal) is the set of things that are parents
of exactly two mammals. The last nine class expressions are
similar to the nine just given, where Data, 1t (a literal), DR
(a data range) and DPE (a data property) are substituted for
Object, a (an individual), CE (a class expression) and OPE
(an object property expression), respectively.

B. Axioms

Axioms are formed from object property expressions, class
expressions, and data ranges.

Class Expression Axioms SubClassOf (CE; CEj)
and EquivalentClasses (CE; CE,) are used to
assert a subset or an equality relationship between
classes. DisjointClasses (CE; CEn) asserts
that the classes CE; to CE, are pairwise disjoint.
DisjointUnion (C CE; CE,) expresses that
C is the union of CE; CE, which, in turn, are pairwise
disjoint.

For example, we can express that all platypuses
are egg-laying mammals and that all insects have
at least two legs: SubClassOf (Platypus

ObjectIntersectionOf (Mammal EggLayer)) and
SubClassOf (Insect ObjectMinCardinality (2
hasLeg Leqg)).

Object Property Expression Axioms There are 14 axioms
of this kind; for space reasons we give details on seven,
referring the reader to [5] for details on those omitted,
which cover constraints such as being reflexive and
transitive. Firstlyy, OWL 2 can assert that two object
properties are in a subsumption relationship, equivalent,
or disjoint: SubObjectProperty (OPE;) OPE,,
EquivalentObjectProperty (OPE;) OPE,, and
DisjointObjectProperty (OPE;) OPE,. To illustrate,
SubObjectProperty (hasWing hasLimb) expresses
that the object property hasWing is a sub-property of
hasLimb.

Domain and range information for properties can be
specified using ObjectPropertyDomain (OPE CE)
and ObjectPropertyRange (OPE CE). Properties can
also be functional, meaning that each element in the object
domain is related to at most one element in the object
domain, FunctionalObjectProperty (OPE). The
seventh object property that we cover is the most complex:
SubObjectProperty (ObjectPropertyChain (OPE;

OPE,) OPE). This object property expression axiom
asserts that if OPE; relates yo to yi, ..., and OPE, relates
vn-1 to y, then OPE relates yq to y,. In other words, OPE
is a superset of the composition of OPEj to OPE,,.

Data Property Expression Axioms and Datatype Definitions
Briefly, the first six object property expression axioms
correspond to similar data property expression axioms,
substituting Data for Object. Since data properties are
relations between the object domain and the data domain,
there are no axioms relating to constraints such as reflexivity.
OWL 2 can also define datatypes using data ranges:
DatatypeDefinition (DT DR).

Assertions SameIndividual (a; an) and
DifferentIndividual (a; a,) assert that the
individuals a; up to a,,) are the same or, respectively, distinct.
ClassAssertion (CE a) expresses that a is an element
of CE. For example, ClassAssertion (Platypus Tom)
express that the individual called Tom is a platypus.

ObjectPropertyAssertion (OPE a; aj)
NegativeObjectPropertyAssertion (OPE a;
a,) ) asserts that a; is (resp. not) related to a, under OPE. To

(resp.

illustrate, ObjectPropertyAssertion (isParentOf
Tom Finn) expresses that Tom is the parent of
Finn. DataPropertyAssertion (DPE a; 1t)
and NegativeDataPropertyAssertion (DPE
a; 1lt) are similarly defined. So,

DataPropertyAssertion (hasAge Tom 3) expresses
that Tom is aged 3.

III. CONCEPT DIAGRAMS

A brief introduction to the core syntax and semantics of
concept diagrams is given here via examples. Individuals are
denoted by labelled dots (or, more generally, trees), and the
location of a dot indicates the set in which the individual lies.
Closed curves represent sets, ie. classes in OWL. Properties
(i.e. binary relations) are represented by arrows. Individuals,
classes and properties can be named or anonymous.

Suppose that we wish to axiomatize the following: Igor
and Sid are two different people; Igor is married to only
Sid; Sid is a parent of at least three things, two of which
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Fig. 3. Dashed arrows and shading.

are Sid’s daughters; and the property isChildOf subsumes
isDaughterOf and isSonOf. This information is captured
by the two concept diagrams in Fig. 2. The lefthand diagram
expresses the first three statements and includes similar syntax
to Fig. 1. Here, though, we see the use of two boundary
rectangles rather than just one. Semantically, spatial relation-
ships only carry meaning within a common boundary rectangle
and each such rectangle represents the top class, Thing.
Therefore, whilst this diagram expresses that Sid and Igor
are different people, it provides no information about whether
Sid’s children (identified using isParentof) are different
from Igor, for instance. Likewise, the diagram does not assert
that the three children are not people, which it would do
if this configuration of curves was contained by a single
rectangle. The use of multiple boundary rectangles is useful
when one does not wish to assert distinctness of individuals
or disjointness/subsumption relationships between classes.
Focussing on the (solid) arrows, their targets represent
the set of things, or the single thing, to which the source
is related under the named object property. So, the target
of the isMarriedTo arrow represents the single thing,
ie. Sid, to which Igor is married. Likewise, the target
of isParentOf is the set of all Sid’s children. The ar-
row labelled isDaughterOf~, denoting the inverse of
isDaughterOf, builds the set of things that are Sid’s
daughters'. In general, solid arrows can also be sourced on
curves (see Fig. 1): a solid arrow sourced on curve C; with
label op and target C, expresses that, between them, the things
in C; are related to all and only the things in C, under op.
The righthand diagram in Fig. 2 includes explicit
quantification, in the form of ‘For all Thing, t’ written
outside of the box. Here, the curve targeted by 1sChildOf
encloses the target of isSonOf, expressing ‘the set of
things to which t is related under isChildOf include
all of the things to which t is related under isSonOf’;
informally, anything which is the son of t is also a
child of t. Since t is any individual, we have expressed
SubObjectPropertyOf (isSonOf isChildoOf).
Similarly, SubObjectPropertyOf (isDaughterOf
isChildOf) is also expressed, but the diagram tells
us nothing about the relationship between isSonOf and
isDaughterOf; to assert their disjointness, one would
simply ensure that their targeted curves do not overlap.
Concept diagrams use dashed arrows as well as using solid
arrows to represent property restrictions. Dashed arrows are
used when we do not wish to express complete information
about the set of things to which the source is related. For
example, we may wish to express that Igor loves somebody,

'A more elegant modelling solution would introduce a new property, say
hasDaughter, defined to be the inverse of i sDaughterOf.

without identifying the set of things Igor loves: the left of
Fig. 3 represents the loved anonymous individual by an unla-
belled dot. The arrow connects diagrammatic syntax placed in
different boxes to ensure that we have not asserted Igor loves
someone different from himself. In general, dashed arrows can
also be sourced on curves: a dashed arrow sourced on curve
C, with label op and target C, expresses that, between them,
the things in C; are related to all the things in C, under op,
and possibly some other things. The other diagram in Fig. 3
illustrates the use of shading: in a shaded region, all things
are represented by dots. So, this diagram asserts that Sid is
the parent of exactly three things. Fig. 4 asserts an object
property chain axiom: SubObjectPropertyOf (
ObjectPropertyChain (isParentOf isParentOf)
isGrandparentOf) using second-order quantification (al-
though this axiom is also expressible in first-order logic) and
a logical operator, implication.

The syntax of concept diagrams (not all of which has been
illustrated in full here) is summarised as follows. Dots or
trees visualize named or anonymous individuals, which can
be joined by = to assert equality. Closed curves visualize
named or anonymous classes. Boundary rectangles enclose
the dots, trees and closed curves. Arrows, which are dashed or
solid, visualize restrictions on named or anonymous properties
or their inverses; these may be sourced and targeted on
boundary rectangles, dots or trees, and closed curves only.
Shading is placed in regions to represent upper bounds on
cardinality. Standard logical operators — negation, conjunction,
disjunction, implication and bi-implication — form compound
expressions. Quantification, universal or existential, is used
over anonymous individuals, classes and properties. A full
formalization is in [4].

IV. TARGETING CONCEPT DIAGRAMS TOWARDS OWL 2

As we have just seen, concept diagrams are second-order
and they make explicit use of logical operators. Despite
their high expressiveness, though, they fail to support literals,
datatypes and data properties. The purpose of this section is
to identify a fragment of concept diagrams that closely aligns
with OWL 2.

A. Supporting Literals, Datatypes and Data Properties

We start by noting that OWL 2 cannot make assertions
about the relationships (i.e. subsumption, disjointness and
equivalence) between datatypes (or, generally, data ranges) and
classes. Thus, we extend concept diagrams to permit the use
of datatypes as labels for curves provided they do not appear
within a boundary rectangle containing classes or individuals.
Literals are represented similarly to individuals, but must be
placed inside boundary rectangles containing datatypes. We
also allow the use of arrows labelled by data properties pro-
vided the source (resp. target) is within a boundary rectangle
containing classes or individuals (resp. datatypes or literals).
An example is given in Fig. 5, which expresses:

e ClassAssertion (ObjectIntersectionOf (Cy

Cz) 1),
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Fig. 5. Datatypes and data properties.
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Fig. 6. First-order quantification.

e SubClassOf (ObjectOneOf (1)
DataAllValuesFrom(dp DT)), and
e DataPropertyAssertion(dp 1 1t).

B. A Fragment of Concept Diagrams for OWL 2

Concept diagrams, prior to the inclusion of literals,
datatypes and data properties, are expressively equivalent to
a well-defined fragment of dyadic second-order logic [4]. In
particular, they can freely quantify over sets and binary rela-
tions (as well as elements), going well beyond the capabilities
of OWL 2. Even the first-order quantification aspect leads to
over-expressivity issues. For instance, the diagram in Fig. 6
involves alternating quantifiers, expressing that for every car
there is a wheel that is not a wheel of the car, which is not
expressible in OWL 2; however, the similar statement ‘there is
a wheel that is not the wheel of any car’ is OWL 2 expressible.
The main point, though, is that the first-order fragment of
concept diagrams allows arbitrary alternations of quantifiers,
leading to high expressivity beyond the limits of OWL 2.

The use of logical operators also allows the creation
of diagrams that are inexpressible in OWL 2. For
instance, Fig. 7 expresses that if there is exactly one
car then there are exactly four wheels, using =-. The
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Fig. 7. Using connectives in a non-OWL-like fashion.

Fig. 8. A diagram with no explicit quantification and no connectives.

lefthand diagram expresses EquivalentClasses (Car

ObjectOneOf (_:x71)). The righthand dia-
gram expresses EquivalentClasses (Wheel
ObjectOneOf ( :x, X3 X4 :Xs5)) and
DifferentIndividuals( :xX; :X3 X4 :Xs5).

Whilst the concept diagram uses =, OWL 2 does not
have free use of logical operators and cannot use them in
the standard (inductive) way. This means that we cannot
simply join the above two OWL axioms with = to form the
expression made by the diagram. Given the discussion so far,
we therefore place the following restrictions on the syntax
of concept diagrams: prohibit the use of quantifiers, both
first-order and second-order, and prohibit the use of logical
operators. Of particular note is that recent empirical evidence
established that the use of explicit quantification in concept
diagrams is detrimental to human cognition and suggested
that the use of operators could be cognitively difficult [19].
Therefore, these restrictions are not only useful for achieving
good alignment with OWL 2, but also yield a more usable
diagrammatic notation.

Of course, placing such restrictions on the syntax
is (deliberately) designed to reduce the expressive
power of concept diagrams. However, these restrictions
mean some important, commonly occurring, axioms
can no longer be expressed or must now be
expressed in cumbersome ways. Fig. 8 illustrates
some of the consequences. It expresses the following:
SubClassOf (C, C1), DisjointClasses (C; C3),
SubclassOf (C; ObjectAllValuesFrom(op: Cs)),
and SubclassOf (C, ObjectSomeValuesFrom (op;
C3) ). The first three axioms are directly expressed, but the
SomeValuesFrom restriction requires the use of inverse: the
dashed arrow explicitly says ‘the things in C, are each related
to, by something in Cs3, under op, ’. This is equivalent to
saying ‘the things in C, are each related to something in Cj,
under op,’, the required OWL 2 axiom. Moreover, without
quantifiers, concept diagrams can no longer make more
general cardinality restrictions, such as SubclassOf (Cq4
ObjectMinCardinality (2 op Cs)); the lefthand
diagram in Fig. 9 shows how quantification can be used to
express this axiom.

Our solution is to introduce new arrow annotations to allow
cardinality restrictions, of which some values from axioms are
a special case, to be expressed without the use of inverse, as
shown on the right of Fig. 9. Here, the arrow annotation, > 2,
asserts that each element of C4 is related, under op, to at least
two elements of the target set which, in this case, is a subset



For all Cy, ¢
C4 C5 C4 CS

G =) O

SubclassOf (Cy

Fig. 9. Two  ways of  expressing
ObjectMinCardinality (2 op Cs)).

C Op21 ”731

Fig. 10. SubClassOf (C ObjectSomeValuesFrom (op
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of Cs, as required. In summary, we augment the syntax of
concept diagrams with arrow annotations — in particular < n,
=n, and > n — to support the expression of OWL 2 axioms.

Consider now the removal of logical operators. Dia-
grams are well-known for effectively making conjunctive
statements and, through the use of spatial relations, can
effectively convey negative assertions as well. However,
they are often less well suited towards making disjunc-
tive statements. In the case of concept diagrams, this
has implications when we do not wish to assert the dis-
tinctness of individuals. For example, suppose we wish
to assert SubClassOf (C ObjectSomeValuesFrom (op
ObjectOneOf (a; az))). Since, in concept diagrams, dis-
tinct dots (naturally) represent distinct individuals, with the
original syntax we can only make this assertion using a dis-
junction of diagrams, accounting for the different possibilities
concerning the equality or distinctness of a; and a,; using
disjunction in this way was not ideal anyway. By contrast
OWL 2 adopts the standard approach of symbolic notations:
the distinctness of individuals must be explicitly asserted. We
therefore introduce further new syntax to concept diagrams to
allow the possibility for the distinctness or equality of two
individuals in the same boundary rectangle to be unspecified.
Fig. 10 shows an example.

C. Summary: New Syntax for Concept Diagrams

The adapted version of concept diagrams, geared towards
OWL 2, has the following syntax, with the additions shown
in italics. Dots or trees visualize named or anonymous in-
dividuals or literals, which can be joined by = to assert
equality which is augmented with ? if equality or distinctness
is unknown. Closed curves visualize named or anonymous
classes or datatypes. Within a boundary rectangle, only (a)
individuals, classes and object properties or their inverses, or
(b) literals and datatypes can be visualized. Each boundary
rectangle is either a class rectangle or a data rectangle, as
determined by its contents in the obvious way. Arrows, which
are dashed or solid, visualize restrictions on named object
properties, their inverses, or data properties. Arrows labelled
by an object property or its inverse must be sourced and
targeted on a class rectangle or syntax within such a rectangle.
Arrows labelled by a data property must be sourced (resp.

DR,
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Fig. 11. Data ranges.

Fig. 12. Constructing data ranges from literals.

targeted) on a class (resp. data) rectangle, or syntax within
such a rectangle. Arrows can, optionally, be annotated with
cardinality constraints of the form < n, = n, or > n. Shading
can be placed in regions.

V. RELATIONSHIP TO OWL 2

We systematically consider the OWL 2 syntax, as given
in [5], comparing its capabilities with concept diagrams as
proposed in section IV-C. First we establish how to visualize
OWL 2 expressions, then we consider the visualization of
OWL 2 axioms. However, building explicit representations of,
say, class expressions, is often not necessary when visualizing
OWL 2 axioms using concept diagrams. This is important
to note since, in what follows, some of the diagrammatic
constructions for class expressions are cumbersome whereas
the representation of axioms involving them can be consid-
erably more succinct; we will return to this point during our
discussions below. We start by observing that we have access
to ObjectInverseOf through the use of ~. Further, we
have not currently considered support for constraining facets or
keys. Object and data property expression axioms are not well-
supported by concept diagrams without access to quantifiers,
so we focus on these in section VI.

A. Data Ranges

OWL 2 has four different constructors for
data ranges, excluding one that employs con-
straining facets: DataIntersectionOf (DR

DR,), DataUnionOf (DR; DR,),

DataComplementOf (DR) and DataOneOf (1t;
1t,). These are all comprehensively supported by concept
diagrams. In the first three cases, one can construct a concept
diagram containing the datatypes used to build any given data
range, DR. Then there is a region in the diagram corresponding
to DR. In the fourth case, a diagram is built containing the
literals inside an unlabelled, shaded curve. Fig. 11 builds
DatalIntersectionOf (DR; DataUnionOf (DR,

DR3) ) ; the lines highlight the required region (a convention
we adopt to indicate the region of interest). Fig. 12 shows
DataOneOf (1t; 1t,).

B. Class Expressions

Many OWL 2 class expressions can be visualized by
regions in concept diagrams, sometimes in much the same
way as for data ranges. As these OWL 2 expressions
are built inductively, given an expression that includes
class expression CE, we determine whether any given
expression can be visualized under the assumption that
CE can be visualized. Assuming we can build a diagram
containing regions for CE; ... CE,, then we can also build
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diagrams that visualize ObjectIntersectionOf (CE;
CEL), ObjectUnionOf (CE; CEL), and

ObjectComplementOf (CE) similar to the illustration for

data ranges in Fig. 11. Likewise, ObjectOneOf (a;

a,) can be visualized similarly to Fig. 12.

The statements ObJjectSomeValuesFrom(op CE)
and ObjectAllValuesFrom (op CE) have constructions
given in Fig. 13, where CE is a class, which are not
particularly effective from the perspective of cognition.
However, these are classic examples of where the construction
is typically not required when creating OWL 2 axioms; see
Fig. 14. Constructions for the remaining class axioms,
with the exception of ObjectHasSelf (OPE) which

is not supported, are similar to these examples and
are omitted for space reasons. In summary, we can
build concept diagrams to represent class expressions

provided they do not involve ObjectHasSelf (OPE) or
DatatypeRestriction (DT F; 1t; Fn 1t,).

C. Class Expression Axioms

There are only four kinds of class expression axioms:
SubClassOf (CE; CEj), EquivalentClass (CE;
CEn), DisjointClasses (CE; CEn)
and DisjointUnion (CE; CE,). If we wish merely
to establish whether there exists a concept diagram
for any given OWL 2 axiom, we can build directly
on the insights revealed in the previous subsection:
provided we can build diagrams representing the class
expressions in question, the axiom can be visualized.
Fig. 14 illustrates subclass axioms and Fig. 15 gives
examples for the other styles — EquivalentClasses (C;
Cz), DisjointClasses (SomeValuesFrom (op
ObjectHasValue(a)) C) and DisjointUnion (C;
ObjectSomeValuesFrom(op; Cy)
ObjectSomeValuesFrom(op, C3)) — where the
axioms are expressed by building diagrammatic components
for the class expressions involved; as previously indicated,
these need not be the most effective diagrams for these

axioms, but are merely shown to illustrate that the axioms
can indeed be visualized.

D. Datatype Definitions

Datatype definitions can only take one form in OWL 2:
DatatypeDefinition (DT DR). Trivially, these can all
be expressed using concept diagrams, provided the data range
involved does not incorporate a constraining facet. An exam-
ple for DatatypeDefinition (DT DataUnionOf (DR,
DR;) ) is given in Fig. 17.

E. Assertions

Similarly to datatype definitions, all OWL 2 assertions
can be expressed by concept diagrams provided any
class expression involved can be built diagrammatically.
This observation means that six of the seven assertions
can always be visualized: SameIndividual (a;

an), DifferentIndividuals (a; an),
ObjectPropertyAssertion (op a; az),
NegativeObjectPropertyAssertion(op a; az),
DataProapertyAssertion(dp a 1t) and, lastly,
NegativeDataPropertyAssertion(dp a 1t).
Examples for each of these, along with the seventh style of
assertion, ClassAssertion (CE a), are in Fig. 18.

FE Summary

Concept diagrams, as adapted in this paper, now have a close
alignment with OWL 2. They can build all data ranges that do
not involve constraining facets and all class expressions that do
not involve ObjectHasSelf or DataTypeRestiction
expressions. Following from this, concept diagrams are ca-
pable of defining any class expression axiom, any datatype
definition, and any assertion that does not involve one of the
aforementioned constructions.

VI. OBJECT AND DATA PROPERTY EXPRESSION AXIOMS

Whilst concept diagrams are now capable of defining
a multitude of OWL 2 axioms, they cannot define most
property and data expression axioms. Property diagrams are
now introduced to express these axioms. They exploit a limited
form of universal quantification through the use of a single
variable, . Two examples are given in Fig. 16. The lefthand
diagram expresses’ SubObjectPropertyOf (op, op:)
and DisjointObjectProperties (op; ops);itis also
possible to see that DisjointObjectProperties (op;
ops) holds directly from the diagram. The righthand
diagram expresses ObjectPropertyRange (op:
ObjectIntersectionOf (C; Cy)).

In general, property diagrams adopt much of the basic
syntax of concept diagrams, and are now informally defined.
Property diagrams always include a boundary rectangle that
contains the variable ¢, which is the source of arrows, and

2Formally, the diagram expresses that for each ¢, the set of things to which
t is related under op, is subsumed by the similarly defined set under op1,
giving the SubOb jectPropertyOf axiom. Likewise, a similar reading of
the property diagram gives the DisjointObjectProperties axiom.
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Fig. 17. Datatypes.

nothing else; this instance of ¢ is called the initial t. Other
boundary rectangles can include curves which are labelled or
not; within any given rectangle, the labels used must be either
classes or datatypes but not both. Each boundary rectangle is
either a class rectangle or a data rectangle, as determined by
its contents in the obvious way. Class rectangles may include
at most one instance of ¢. Each arrow must have its source and
target in different boundary rectangles. No chain of arrows can
form a cycle; essentially, this means that the arrows induce
a partial order on the boundary rectangles, with the rectangle
containing the initial ¢ being the least element. Arrows labelled
with a data property must be sourced on the initial ¢. Arrows
can, optionally, be annotated with < 1 allowing functional
axioms to be visualized.

Fig. 19 shows how to define all of the object property
expression axioms. From these illustrations, it should be clear
that all such OWL 2 axioms, except for domain and range,
can be expressed by property diagrams. In the case of domain
and range, the class expression involved needs to be formed
from either named classes or anonymous classes that are not
built using properties. Data property expression axioms can be
similarly specified using property diagrams.

VII. CONCLUSION

In recognition of the effective nature of diagrams for con-
veying information, this paper has closely aligned concept
diagrams with OWL 2, making them suitable for defining
assertions and class expression axioms. They have also been
extended to provide support for literals, datatypes and data
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Fig. 18. Diagrams for each type of OWL 2 assertion axiom.
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Fig. 19. Visualizing object property expression axioms.

properties. Recognising the importance of being able to define
property expression axioms, property diagrams have been in-
troduced for this purpose. Both concept and property diagrams
are, to a considerable extent, well-matched and exhibit free-
rides which are considered important features of cognitively
effective diagrammatic notations. By comparing them to OWL
and SOVA - an alternative ontology visualization method
based on the commonly used node-link diagrams — we posit
that concept and property diagrams are likely to be a relatively
effective means of visualizing OWL axioms.

An important aspect of making concept and property dia-
grams a practical ontology engineering tool is the provision of
tool support. Such a tool should provide a number of features,
including automated conversion from OWL to diagrams and
automated conversion from diagrams to OWL, allowing the
use of both notations. The former is particularly challenging,
as it includes the requirement to automatically lay out concept
and property diagrams. It will be important to empirically
understand which layout features yield cognitively effective
diagrams (e.g. avoiding crossings between arrows) and to sub-
sequently incorporate suitable heuristics into computationally
efficient layout algorithms.
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