Gate Sizing in the Presence of Gate
Switching Activity and Input Vector Control

Nathaniel A. Conos, Saro Meguerdichian, and Miodrag Potkonjak
Computer Science Department
University of California, Los Angeles
{conos, saro, miodrag} @cs.ucla.edu

Abstract—We introduce a novel gate sizing approach that
considers both the gate switching activity (SA) and gate input
vector control leakage (IVC). We first extract SA using simulation
and find promising input vectors. Next, in an iterative framework,
we interchangeably conduct gate sizing and refining the IVC. As
dictated by the new objective function, our algorithm conducts
iterative gate freezing and unlocking with cut-based search for the
most beneficial gate sizes under delay constraints. We evaluate
our approach on standard benchmarks in 45 nm technology,
showing promising improvement, achieving up to 62% (29% avg.)
energy savings compared to the traditional objective function.

I. INTRODUCTION

Gate sizing is a powerful optimization technique used to
minimize power and/or area under strict timing constraints
by altering the widths of transistors in gates. Gate sizing
has been extensively studied over the past three decades
[1][2][4] and several approaches have been proposed. Previous
approaches, however, do not consider switching activity (SA)
and the impact of input vector control leakage (IVC), which
greatly impact the overall optimization strategy. Furthermore,
gate sizing is often combined with dual or multi-threshold
techniques which further increases the importance of accurate
power and delay modeling. As a result, the modern design flow
imposes a number of modeling and optimization challenges

A major challenge is the simplification of timing and
power models, which may lead to suboptimal solutions when
mapping out to real designs. Accounting for accurate gate
and interconnect delay and its dependencies on capacitive
load slew are often ignored [4]. Additionally, nominal gate
switching activity and/or average gate leakage are generally
assumed in previous works limiting the potential improvements
by accounting for realistic operating conditions. Moreover,
previous approaches are either dynamic or leakage power-
centric in their optimization flows, which do not address
the varying application usage characteristics present in high-
performance systems (e.g., data-centers, super-computing) to
energy constrained mobile devices (e.g., tablets, smart-phones).

Cell library-based optimization has emerged as the de facto
standard for modeling power and delay of a circuit design.
Many previous approaches, however, utilize simplified timing
models by assuming convex and/or linear delay and power
models [3]. Empirical analysis has shown that accurate timing
models are non-linear/non-convex. Furthermore, optimizing
circuit designs using a discrete cell library, however, leads to
solving an NP-Hard problem [5]. As a result, many heuristics
have been developed in order to address the huge problem

search space. A major drawback of these methods is that they
require heavy parameter tuning and are difficult reproduce,
since they are technology dependent, and are rooted to a
set of sensitivity functions. These methods often perform
iterative per-gate or per-group improvement are too compute
intensive and are impractical to be applied on modern IC sizes,
even with incremental updates. Furthermore, these approaches
mainly perform local optimization (i.e., local-moves) and are
susceptible to be trapped in local minimas [6].

The usage of modern cell libraries, however, have en-
abled the support various supply/threshold voltages, and drive
strengths, enabling a rich performance and energy trade-
off to address the potentially vastly differing device usage
characteristics. However, current tools do not account for
realistic conditions into their objective functions (e.g., gate
activity, duty cycle, input vector control), with respect to their
applications, potentially impacting obtained results.

We improve state-of-the-art sizing methodologies by simul-
taneously considering gate switching activity (SA) and gate
input vector control (/VC). One of our key contributions
is that we demonstrate significant benefits of incorporating
actual gate SA and gate IVC in the objective function over
the equivalent approach that only uses nominal and average
values for switching and leakage weights, and show how the
obtained solution varies when accounting varying duty cycles.

The focal point of our approach is a scalable gate sizing
algorithm that considers gate SA and IV C' leakage. The
steps are to: 1) extract the SA of gates based on simulation
of real workloads; and 2) conduct IVC to obtain the input
vector that induces the lowest total leakage energy across
all gates, and 3) an iterative gate sizing approach freezes
maximally-constrained gates (ones that are at high-power states
as determined by SA and IVC) while searching for a sizing
option that best improves the current picture. The objective
function in step 3 to be considered at the iteration depends
on the types of options available and their impacts on both
delay and energy. The algorithm prevents the algorithm from
reaching a local minima by freezing gates as they are sized
until all gates have been frozen, then unfreezes all gates, re-
conducts IVC (since new gates may be energy-dominant), and
reiterates steps 2 and 3 until the solution converges or the delay
constraint cannot be met.

We evaluate our approach on benchmarks included in
ISCAS-85/89, ITC99 and arithmetic units. Our results indicate
over 62% (29% avg.) energy improvement over a method that

A[l] Cin[1] B[0] Al0] Cin[0]

B[2] Al2] Cin[z]f B[1]

Fig. 1: Carry propagation for 3-bit carry-ripple adder.

assumes nominal SA and IV C, demonstrating that gate SA
and IV C play an major role in the guiding sizing decisions.

II. MOTIVATION

We begin by providing a small realistic example demon-
strating the importance of considering both SA and IVC
in the gate sizing optimization process. Consider the carry
propagation of a 3-bit carry-ripple adder, shown in Figure 1.
Assume that 2- and 3-input NAND gates have input-dependent
leakage power consumption values for two possible sizes,
small (X1) and large (X2), shown in Table I. Also assume
that the given input vectors (A = 101, B = 101, and
Cin = 1) are realized throughout the entire duration of the
application. Figure 1 shows the input vectors to each gate.
Therefore, the overall leakage power of the circuit is 288
nW. For simplicity of the example, ignoring load and slew
dependencies, assume that all gates have delay of 10 ps at size
X1 and 5 ps at size X2. Finally, assume that at the beginning of
the optimization process, all gates are nominally sized to size
X1. Therefore, there are eight nominal critical paths (colored),
{G0,G2} — G3 — {G4,G6} — G7 — {G8,G10} — G11,
with nominal delay 60 ps. Consequently, total leakage energy
of the circuit is 1.73 x 10717 J.

As an example, consider a delay constraint of 55 ps, it is
clear that one of gates G3, G7, or G11 should be sized up to
X2, as all critical paths pass through these bottleneck gates
and decrease the delay of each of these gates will decrease
the overall delay. A traditional approach to gate sizing would
consider these gates equally. In other words, increasing the
size of either would decrease delay and increase switching
and leakage power by the same amounts. However, from Table
I, we see that the leakage power of a gate, due to transistor
stacking, strongly depends on its applied inputs, with up to a
43X difference between the lowest-leakage state (input vector
“100”: 1.29 nW) and highest-leakage state (input vector “111”*:
55.8 nW) of a 3-input NAND gate. Furthermore, switching
energy of a gate is directly proportional to its activity factor,
or the likelihood that the gate will switch. Therefore, because
the gates have both different applied input vectors and different
activity factors, sizing up each one will have a different effect
on overall power and energy consumption, so they should not
be weighted equally in the optimization process.

First, consider the case where the duty cycle of the adder is
low and therefore leakage energy dominates. We can determine
from Table I that increasing the size of gates G3, G7, or

TABLE I: NAND gate leakage values (nW) for two sizes (X1, X2)
based on input vector control (IVC) from a single threshold 45-nm
cell library [7], where min and max leakage states are represented by
bold and italicized fonts, respectively.

[[NAND3]

Ve | X X2 |
000 332 1328 | | [NAND-2 |
001 18.18 m73 | [IVC [XI X2 |
010 | 420 16.84 00 3.48 13.93
0T | 3949 157.97 01 748 o)
00 129 515 0 300 1634
01 | 1878 75.03 7i 3720 14883
0 | 3.6 15.04
71 558 22322

G11 will increase leakage power by 9.96 nW, 167.42 nW,
or 56.35 nW, respectively, while decreasing the overall delay
by 5 ps. Therefore, the optimal decision is to increase the
size of gate G3, which will have minimal impact on leakage
energy, increasing leakage power to 298 nW and decreasing
leakage energy to 1.64 x 10717 J. Increasing the size of G7
would instead increase leakage power to 455 nW, increasing
leakage energy to 2.50 x 10~'7 J. Thus, considering IVC in
this example in the optimization algorithm can improve the
energy by roughly 60%.

Now, consider the high duty cycle scenario, where switch-
ing energy is the dominant factor. Again, for simplicity, assume
that all gates consume 10 nJ and 20 nJ of switching energy at
nominal activity factor 1.0 for a given application at sizes X1
and X2, respectively. Figure 1 shows the activity factors («) for
each gate. Therefore, overall switching energy consumption at
the nominal size is 35.5 nJ. In this case, increasing the size
of gate G7 is the optimal decision, since it has the lowest
activity factor and consumes less switching energy than when
up-sizing either G3 or G11. In fact, this decision results in a
switching energy of 36.5 nJ, whereas increasing the size of
G11 would result in a switching energy of 41.5 nJ. Therefore,
the decision that considers SA performs roughly 14% better.

To present these motivations, we have made a number of
assumptions that when relaxed make the optimization much
more complex in practice. It is reasonable to assume that
additional information (gate switching, input vector state)
can be readily obtained by modern CAD tools and/or by
implementing a simple gate-level simulator. Such information
is beneficial since it enables the simultaneous consideration
of low duty cycle and high duty cycle scenarios, as in real
use cases at current and pending deep-submicron feature sizes,
leakage and switching may both have significant impacts on
overall energy. For example, sizing up G7 in the high duty
cycle scenario may in reality not be optimal, since its input
gates have higher values for « than, the input gates of G3, and
thus their switching energies would increase by larger factors.
Thus, this IVC depends on how the circuit is sized and its duty-
cycle. Therefore, a feedback loop exists between gate sizing
and IVC that must be addressed simultaneously during the
optimization. The simple example here demonstrates that both
IVC and SA are crucial considerations in gate sizing for energy
optimization in the presence of delay deadlines.

III. RELATED WORK

We now cover a set of related gate sizing approaches that
have considered a variant of SA or IV C. Several approaches
exist that address continuous and discrete gate sizing. Common
methods to solve the gate sizing problem have been convex op-
timization [3], Lagrangian Relaxation [1][2][18], and gradient
and sensitivity-based optimization [8][19].

Gate sizing methods have also been combined with V4
and V;;, assignment to minimize power under various gate S A
ratios [9][10]. These works, however, have only considered
average leakage values when accounting for leakage and have
not explored real application activity factors when considering
gate switching activity. Leakage minimization using IV C is a
popular technique for due to its strong dependency on the input
vector state [11]. IV C' and gate replacement techniques have
also been combined [12] by replacing gates at their worse-case
leakage state with equivalent gates with lower leakage power.
The technique is further combined with circuit aging in pre-
and-post silicon phases. [13][20]. IVC has also been explored
in the presence of uncertainty [14].

To the best of our knowledge, we are the first to consider
gate sizing in the presence of both SA, IVC, and duty
cycle. Prior approaches have at most considered one or two
terms accurately [17], and/or do not differentiate between
the duty cycle with respect to switching and leakage energy
weights, leaving many approaches to be either dynamic or
leakage power-centric. For example, the state-of-the-art gate
sizing contest considers only nominal leakage power [4]. Our
technique minimizes total energy, such that both the switching
and leakage energy components are accurately accounted for
in accordance to their usage or duty cycle.

IV. CELL LIBRARY ENERGY AND DELAY

The total energy of a CMOS integrated circuit can be char-
acterized into two main components: 1) dynamic (switching)
energy due to charging of input pin/output load capacitance’s;
and 2) static (leakage) energy, which we model from the
dominant sub-threshold leakage and gate leakage currents.
Thus, the total energy consumed can be computed as:

Eswitch + Eleak (l)
N N

Z es(gi)a
i

Bleak = »_el(g:) (2)
7

es and el represent the switching and leakage energies, respec-
tively, for gate g;. es is the product between probability that a
gate’s input pin j will switch, a (SA), and the estimated full-
cycle (ef.) power consumed from propagating a signal from
input pin j to output pin k. el is the sum of leakage energies
consumed at each possible leakage state of a gate, which is
also dependent the ratio of the total time spent at each leakage
state for both active and standby (idle) periods. The total time
(T) is directly proportional to product of the circuit delay (D)
and total cycles, where D represents the critical output-pin
arrival time (rise or fall) of a primary output gate ot (g;):

Etotal =

Eswitch =

D = max(ot™ (g;)) st gi € Gout (3)

Switching Activity Extraction

y

Performance
Target

\—V Gate Sizing Optimization

4
Result

Input Vector Control

Fig. 2: Gate sizing optimization flow.

Gyt Tepresents a circuit’s set of primary output gates. There-
fore, the delay of a circuit can be determined by solving:

ot™ (g;) = dI™ (g;) + max(ot(finf’r)) 4)

finjf- " is the fall, rise arrival time of a fan-in gate j in the set
FI; of gate g;. Note that the propagation of delay depends on
the unateness assumption. For simplicity, we assume all cells
are negative unate, thus, rise (r) and fall (f) gate delays are
propagated as assumed to the next stage.

We use a cell table library look-up as [4] to model gate rise
and fall delay (dl™7) as a function of its input slew (transition
time), and driving load. However, we use an alternate 45-
nm cell library (Nandgate) [7] to account for switching and
input vector dependent leakage power, which are obtained in
a similar look-up table fashion, provided per-input pin accurate
switching, and input vector state probabilities, which can be
obtained using gate-level simulation.

V. TECHNICAL APPROACH

Our gate sizing procedure is composed of three major
phases (Figure 2). The first phase extracts gate switching
activity factors (S A) for a given circuit by performing event-
driven gate simulation from a set of input bit vectors. Figure
3 illustrates an example S A extraction for a carry-look-ahead
unit (cla4) from two applications (mpeg2enc/dec). The second
step identifies a primary input bit vector that places gates in
low leakage states in order to minimize the total energy of
the circuit, which accounts for leakage consumption for both
active (obtained from SA) and idle periods. IVC techniques
range from random simulation to satisfiability (SAT) and
model counting-based formulations. The final component is
the gate sizing algorithm, where the goal is to minimize total
energy consumption under a delay constraint. The approach is
iterative; at each iteration, gates are either frozen or unlocked
based on their leakage (IVC) and switching (SA) impact, while
a search is conducted for the most beneficial current move.

Our algorithm is sensitivity-based in nature in terms of
determining which move or set of moves to perform. A gate
sizing move can have 1 of 3 effects (increase, decrease, have
no effect) on 2 parameters (energy and delay), leading to a
total of 9 separate possible classes for a move. The algorithm
classifies each move to a class and enforces a priority in terms
of selecting a move that has higher precedence. There are three
precedence levels, where level 1 is the highest priority. Moves

Gate Activity Histogram: CLA4-32
0.6

0.5 4 B mpeg2dec
E mpeg2enc;

0.4 -

0.3

0.2

Ratio of Gates

0.1 ~

o thhtthmﬂ H

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Activity Factor

Fig. 3: Gate switching activity for a 32-bit CLA circuit when using
real mpeg2enc/dec application input stimulus. Shown are varying dis-
tribution of gate activity within a circuit and across two applications.

that improve both parameters are at precedence 1, moves that
improve just one parameter and do not affect the other are at
precedence 2, and moves that improve one parameter at the
expense of degrading another are of precedence 3. Note that
moves that degrade both parameters are never selected. Each
precedence level has its own objective function for selecting
the best move: 1) the product of the respective improvements;
2) the single improvement; and 3) the normalized ratio of
improvement and degradation.

The algorithm considers a cut of M gates at a time and
restricts one gate to be sized per group visit. Once a size move
is committed, the gate is locked and is no longer considered
within that phase. The completion of a phase is defined as
having locked all gates, or having no more acceptable moves
among sizable gates that improve the objective function. The
algorithm terminates after the solution converges or if a target
delay (Diqrget) can not be met after a number of phases. All
gates are unlocked before the start of each new sizing phase.

The algorithm initially freezes the top K energy-critical
gates by setting them to their minimal sizes at the beginning
of the phase. We note that this initial set potentially restricts
some delay critical gates, as improving the delay of these gates
may be required in meeting a deadline. To relax this constraint
(i.e., if a solution cannot be obtained), K is relaxed through
a locking threshold ratio v, where a new K is computed
(eg, K = K), thereby, enabling potentially more delay
critical gates to be reduced. It is crucial to identify the top
K energy-critical gate, which in turn depends on both SA and
IVC,; this maximally-constrained gate locking is one of the key
innovations of the approach, and prevents being trapped at a
local minima by encouraging global circuit optimization.

We utilize an epsilon tree to minimize circuit delay updates
(€patn), Which consists of gates that were on the critical path
during the last accurate delay computation (Figure 4a). Since
the critical path may change during optimization, we also
include the immediate fan-out gates of each critical gate (e.g.,
nodes 1 and 3), fan-in nodes may be added for greater accuracy
as their slews may also impact timing propagation. The figure
shows bold-outlined nodes (e.g., 7, 8, 9, 5 and 6) are the
primary outputs (G,:), and are transitively connected to at
least one node belonging to the critical path (e.g., 0, 2, 4,
8). Thus, the delay cost of sizing a gate on the €4, can
be estimated by the sum of its d; respect to the target delay

Runtime

/'blS

Runtime (min)

¢Gate Count

—Linear (Gate Count)

0 20000 40000 60000 80000 100000
Circuit Gate Count

(b)

Fig. 4: (a) An example of € critical path (€pq¢p); the critical path
in red; transitive fan-out output nodes in bold outlines; and e;
corresponds to the absolute delay difference w.r.t to the target delay
used for estimating delay cost of a move. (b) The linear run-time of
the new gate sizing approach.

(Diarget) 1s used to estimate the delay impact of each move
via a delay cost formula, as shown below:

Dcost = ZLGOM‘ (61 - Dtarget)2 (5)

This formulation enables very efficient delay estimation by
only considering the delay impact of a small subset of gates
at a time. A drawback of this approach, however, is that a
potentially new critical path may emerge. This remains to be a
major challenge for existing gate sizing techniques that attempt
to maintain delay accuracy during optimization [8][18][19].
To address this issue, the frequency of delay updates can be
increased by adjusting M and y to be larger values, as we have
done. These parameters can be adjusted, to trade-off accuracy
vs run-time. Our used values of M and 7 achieved a delay
accuracy to be within 5%, while achieving linear run-time
scaling with respect to circuit size (Figure 4b).

VI. EXPERIMENTAL RESULTS

We evaluated our gate sizing approach on a set of bench-
marks in ISCAS-85/89, ITC-99 suites, as well as integer
arithmetic units consisting of adders (carry ripple, carry-look-
ahead, Kogge-Stone) and multipliers (array, Dadda). All units
were synthesized using a single threshold (HVt) 45-nm open
cell library from [7] under the typical cell configuration. An
in-house timing/power engine was implemented in C++ and
was correlated to an industrial tool, Synopsys PrimeTime, to
be within 10~3ps. All results were optimized using identical
rules such as ensuring no slew or load violations exists in the
final design, as presented in [4]. The only differences in our
framework is the choice in cell library, which was done in order
to enable accurate IVC computations, as well as the choice of
circuit benchmarks. In handling slew and load violations, we
adopt an iterative approach as proposed in [19].

The SA of gates and IVC for each circuit were ob-
tained from simulation of random input vectors. However,
real application switching activity factors were obtained from
mpeg2enc/dec benchmarks from recorded operand values from
each unit type, running ARM7TDMI-ISA mpeg2-enc/dec
traces [15][16]. The initial simulation parameters set were, K
= 25%, M = twice the length of average critical path, v =
0.2, and were fixed across all benchmarks. The delay target
for each circuit was set as the median between the achieved
delay when all gates were set to their maximal size, and the

[y
N

2 §
]
1 Target Delay 1|
<+SA + IVC
3 ®Actual - B
@ 08 ctual - Base
g «~Perceived - Base
w06
-
g o MAQ ™
T 04 Dt
g IS AmA o
2 02
r 1
0 4 : o ; :
0.825 0.875 0.925 0.975 1.025

Normalized Delay

Fig. 5: Energy vs delay plot of c2670. The SA+IV C approach
consistently outperforms the Base method.

1
o ’_./I—I—/
0.8 ; / /j.*/é/:/
§ 06 /
%5 i / /'—./- +SA+IVC (sw)
g™ 7/'//-/-/'_'“ ASAHIVC (IK) ||
& 02 | ®Base (sw) | |
HA eBase (lk)
0 —

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Normalized Switching Energy

Fig. 6: Cumulative distribution of leakage and switching energy after
sizing for gates in ¢2670. The accurate SA+IV C approach results
in a higher percentage of gates at lower energy.

achieved delay when all gates are at their minimal size. Five
duty cycle scenarios (D0=10%, D1=20%, D2=33%, D3=50%,
and D4=100%) were considered.

We evaluate our sizing algorithm under two gate sizing
assumptions: 1) SA+IVC, which considers gate switching ac-
tivity factors and input vector control in the objective function;
and 2) Base, where the objective function uses only nominal
gate switching (50%) and average gate leakage values for
total energy computation. Table IT compares the two methods,
where Max (%) savings corresponds to the maximum energy
improvement achieved over the Base method across the five
duty cycle cases (DO to D4) for each circuit under the same
timing constraint. As expected, the maximum improvement
observed varies across duty cycles and circuits, motivating the
advantage of utilizing accurate power and delay knowledge.

Table IV provides overall energy improvements across the
benchmarks suite. The results generated by the new approach
achieved a max energy improvement of 62% for circuit c2670
and 29% average overall for the same delay. Figure 5 pro-
vides a normalized energy and delay plot for c2670, which
illustrates the advantage of using more accurate power and
delay information. A delay of 0.87 shows that the Perceived
(green) energy deviates from the trend of the Actual (red)
energy plot. In performing move-trace analysis, we noted that
Base method caused the algorithm to over-size a few selected
critical paths and encountered a timing wall much earlier,
where as SA+IV C was able to efficiently trade-off delay for
an additional 0.05 delay units, as shown.

TABLE IV: Overall energy savings with respect to benchmark suite.

Benchmark | Max Tot | Avg. Tot | Avg. Sw | Avg. Lk
Suite (%) (%) (%) (%)
ISCAS-85 62.64 29.70 30.58 26.74
ISCAS-89 53.20 28.33 29.99 26.96
ITC-99 58.83 29.23 30.90 24.15
Arith 57.19 30.48 33.23 33.15

Figure 6 shows a cumulative distribution of gate switching
and leakage energies of the max improved result for SA +
IV C over Base for circuit ¢2670. Our approach shows that
accurate knowledge enabled the algorithm to efficiently guide
the circuit to a lower energy state, as shown with higher
percentage of gates falling under lower energy profiles for
both leakage and switching energy. This is important to note
since due to the difficulty of comparing gate sizing algorithms,
many existing algorithms are sensitivity-based in nature, thus,
the ability to guide an algorithm to determine more promising
“moves” greatly impacts the optimization procedure.

Table III presents results comparing the minimal configura-
tion found by SA + I'VC and the perceived minimal configu-
ration obtained by Base. The minimum energy configuration
determined was cla432 and dad8, optimized under the same
timing constraints determined by the the multiplier. For these
configurations, our approach shows additional savings in both
leakage and switching categories where the majority of the
savings for both cases (15% mpeg2enc, 25% mpeg2dec) were
achieved by the multiplier circuit.

VII. CONCLUSION

We present a new gate sizing approach that includes
the switching activity (SA) and input vector control (IVC)
to minimize overall energy. The new objective function has
several ramifications on the optimization procedure, including
the need for reiteration between gate sizing and input vector
selection and freezing and unlocking of high-power gates. On
a comprehensive set of benchmarks, from ISCAS-85/89, ITC-
99, and arithmetic units, synthesized using 45 nm technology,
we reduce average actual energy consumption by 30%. The
approach is generic in the sense that thermal impacts and
multi-V};, can be easily addressed using the new optimization
procedure.

REFERENCES

[1] H. Shiyan et al., “Gate Sizing For Cell Library-Based Designs,” DAC
pp. 847-852, 2007.
[2] M. M. Ozdal et al.,, “Gate sizing and device technology selection

algorithms for high-performance industrial designs,” ICCAD, pp. 724—
731, 2011.

[3] S. Joshi, “An Efficient Method for Large-Scale Gate Sizing,” TCSI, pp.
2760-2773, 2008.

[4] M. M. Ozdal et al., “The ISPD -2012 Discrete Cell Sizing Contest and
Benchmark Suite,” In Proceedings of ISPD pp. 161-164, 2012

[S] W. N. Li, “Strongly NP-hard discrete gate-sizing problems,” ICCD,
pp.1045-1051, 1993.

[6] A. Agarwal et al., “Statistical timing based optimization using gate
sizing,” DAC, pp. 400405, 2005.
[7] Nangate FreePDK45-nm Library, http://www.si2.org/, 2011.

[8] O. Coudert, “Gate sizing for constrained delay/power/area optimization,”
VLSI, pp. 465-472, 1997.

TABLE II: Energy improvements when considering gate SA and IV C' during the gate sizing procedure over the Base method.
The obtained switching and leakage energies are presented for the SA+IV C. The maximum energy deltas (A %), corresponds
to the max difference in energy profile “perceived” by the Base method during optimization.

Max Energy Improvement SA+IVC
Circuit | No. Gates | Total Sw Lk Sw Max. Lk Max. | Duty | Delay
(%) (%) (%) (W) (A% |) (A%) | Cycle | (ns)
c880 383 8.14 8.16 8.05 125.11 31.22 | 15.75 3.01 D2 0.73
cl355 554 1435 15.01 13.26 264.13 31.12 | 16479 15.19 D1 0.74
c1908 932 13.41 1372 9.41 405.7 29.57 | 32.06 6.75 D4 1.14
c7552 3568 43.65 44.02 41.32 1685 30.27 | 284.6 3.21 D2 1.20
c5315 2330 5872 59.1 54.57 855.6 3293 | 87.58 3.19 D4 1.34
c432 168 30.15 3524 22.35 68.54 33.15 | 53.55 23.67 D1 0.62
¢2670 1202 62.64 62.74 60.78 407.6 3191 | 24.62 1.39 D4 0.85
¢3540 1703 28.84 29.66 24.14 799.1 31.09 | 152.2 2.47 D2 0.79
s1488 698 46.38 46.49 44.81 182.6 3554 | 14.09 12.05 D2 0.42
s1494 692 355 36.08 33.84 2839 3636 | 1033 12.55 D1 0.42
s15850 10547 31.34 30.76 34.48 3803 33.69 | 662.1 498 D3 222
s838 473 32.49 38.89 27.17 139.3 3176 | 199.8 10.84 D1 1.64
s5378 3054 16.76 30.08 15.06 826.6 36.2 7876 26.34 DO 0.68
$9234 5897 50.19 50.52 47.23 2041 32.51 | 2425 4.43 D3 1.50
s38417 23963 532 5385 46.17 6661 30.65 | 714.2 8.58 D3 1.29
$35932 21035 2227 2231 21.25 8317 29.28 | 332.1 37.26 D3 0.80
$38584 18161 29.01 31.52 28.75 5820 32.24 | 59720 4.77 DO 1.52
bl10 204 44.69 45.06 32.43 40.56 34.45 1.55 54.83 D2 0.36
bll 633 35.53 35.79 31.74 2509 3237 | 18.77 61.52 D2 1.10
bl2 1183 2291 27.89 3.31 3140 37.03 | 107.3 60.54 D1 0.61
bl13 375 22.05 2278 15.01 161.23 31.85 18.4 55.33 D1 0.33
bl4 6498 28.42 28.65 26.21 3024 33.22 | 320.7 5494 D2 1.31
bl5 8920 27.62 277 26.75 1666 3899 | 166.1 5424 D3 1.58
bl17 28911 21.25 25.29 20.79 8.53 38.76 | 80.58 55.99 D3 1.68
bl18 85188 7.02 8.67 5.96 4454 37.84 71.4 54.72 D1 2.10
b20 14322 27.85 28.57 24.07 3.66 33.2 0.74 55.8 D2 2.08
cra32 225 3832 4514 37.76 6.72 4490 | 9222 32.09 DO 2.08
cla432 305 2225 25.02 12.18 10.18 42.87 3.28 13.62 D2 0.35
ks32 611 242 23.18 24.63 17.64 44776 | 40.83 14.6 DO 0.30
arr8 512 3596 36.3 23.18 178.5 34.69 | 22.84 21.29 D1 0.81
dad8 542 30.35 30.99 36.33 101.3 35.83 9.12 11.98 D2 0.62

TABLE III: Energy improvement of (SA + IV (') over Base using extracted gate switching activity and input vector control
from mpeg2enc/dec applications assuming a (D2) “33%” duty cycle. The units represent an single-adder (32b) and multiplier
(8b) configuration of an ARM7TDMI core [16].

[91

[10]

(11]

(12]

[13]

[14]

[15]

Energy Improvement cla432 dad8

Total Sw Lk Sw Sw Imp. Lk Lk Imp. Sw Sw Imp. Lk Lk Imp.
Application | (%) (%) (%) |) (%) @) (B | @) %) @) (%)
mpeg2enc | 1531 17.15 855 | 742.7 4.73 628.7 1.09 2267 20.61 498.6 13.92
mpeg2dec | 25.10 29.89 6.21 | 11.02 6.42 24.30 1.20 101.4 30.99 9.24 21.58

A. Srivastava et al., “Power minimization using simultaneous gate sizing,
dual-Vdd and dual-Vth assignment,” DAC, pp. 783-787, 2004.

H. Yu-Hui et al., “Switching-activity driven gate sizing and Vth assign-
ment for low power design,” ASPDAC, pp. 24-27, 2006.

A. Abdollahi et al., “Leakage current reduction in CMOS VLSI circuits
by input vector control,” VLSI, pp. 140-154, 2004.

L. Yuan et al., “A combined gate replacement and input vector control
approach for leakage current reduction,” VLSI, pp. 173-182, 2006.

Y. Wang et al., “Leakage power and circuit aging cooptimization by
gate replacement techniques,” VLSI, pp. 615-628, 2011.

Y. Alkabani et al., “Input vector control for post-silicon leakage current
minimization in the presence of manufacturing variability,” DAC, pp.
606-609, 2008.

C. Lee et al., “MEDIABENCH: a tool for evaluating and synthesizing

multimedia and communicatons systems,” MICRO, pp. 330-335, 1997.

[16] T. Mudge et al., “The SimpleScalar-Arm power modeling project,”
http://eecs.umich.edu/panalyzer/.
[17] C. Tsui et al., “Minimizing the dynamic and subthreshold leakage power
consumption using least leakage vector assisted technology mapping,”
VLSI Journal, pp. 76-86, 2008

L. Li et al., “An efficient algorithm for library-based cell-type selection
in high-performance low-power designs,” ICCAD, pp. 226-232, 2012

[18]

[19]

J. Hu et al., “Sensitivity-guided metaheuristics for accurate discrete gate
sizing,” ICCAD, pp. 233-239, 2012

S. Wei et al., “Aging-based Leakage Energy Reduction in FPGAs,” FPL,
pp. 277-277, 2013

[20]

