
Automatic Addition of Reset in
Asynchronous Sequential Control Circuits

Vikas S. Vij, Kenneth S. Stevens
University of Utah

Abstract—Asynchronous finite state machines (AFSMs) usually
require initialization to place them in a desired starting state. This
normally occurs by toggling a reset signal upon power-up. This
paper presents an algorithm to automatically generate power-up
reset circuitry thus adding reset to an AFSM after technology
mapping. This approach is independent of design methodology
since it is applied to a gate netlist. The algorithm ensures
all combinational cycles and primary outputs in the circuit
are initialized. Options exist in reset generation to minimize
the power or performance impact on the AFSM. Results are
reported for applying this algorithm to designs of varying size
and complexity.

I. INTRODUCTION

The behavior of a sequential circuit cannot be determined
solely by its primary inputs (PIs). Sequential logic can behave
differently for identical input sequences based on the starting
state. Thus it is essential to initialize sequential logic to a
specific state to ensure correct behavior.

The state based behavior of sequential circuits is imple-
mented with state variables. State variables are created with
feedback cycles in the boolean logic descriptions of sequential
asynchronous finite state machines (AFSM). These feedback
cycles are explicitly maintained in the circuit realization
when the design is technology mapped to static logic gates.
Other logic families, such as dynamic logic, can be used
to implement AFSMs which change how state variables are
implemented. This work applies to designs mapped to static
libraries, since they are the most commonly used logic family.

Initialization is implemented with a reset signal that is
asserted upon power up. This is usually a one-time event,
but can also dynamically occur during operation to reset
a sequential circuit back to its starting state. This paper
addresses the former case of power-up reset.

Reset can have a significant impact on asynchronous logic
design in several ways. The implementation of the reset logic
has a direct influence on the power, performance, and area
of a sequential circuit. Hence optimizing reset for power or
performance can improve the design. Second, it is possible to
change the hazard properties of an AFSM through the addition
of reset. Additionally, if not fully automated, reset poses a
significant manual effort in the synthesis and characterization
of asynchronous circuits.

The addition of reset to an AFSM can be performed at
different stages of a design flow. Firstly, it can be added in the
specification of the design and implemented during synthesis.
Secondly, it can be added at the technology mapping phase
of synthesis. Lastly, the addition of the reset signal can be
performed post technology mapping phase. We have chosen
to perform reset at the latest stage in the design methodology
because it allows the reset logic generation to be independent
of the design or synthesis method used. Thus the method
and algorithms presented here can be employed for circuits

designed by hand, or from synthesis tools such as 3D, Petrify
or Minimalist [1], [2], [3], [4].

The major contributions of this paper are as follows. It gen-
erates an AFSM with reset logic resulting in an improvement
in power, area, and performance over the reset logic generated
by other algorithms. This is primarily achieved with a three
step heuristic based on logical effort [5] to optimize the circuit
either for performance or power. A relationship between reset
and topological cycles in a circuit is shown when a design is
exclusively implemented with static logic gates. The algorithm
is agnostic to how the circuit was implemented and technology
mapped, so it can be used with any of the synthesis engines
as well as with hand designed circuits. For the first time reset
can now become part of any AFSM design automation flow.

II. BACKGROUND

Two significant holes currently exist in the CAD tools
used for synthesis of sequential asynchronous circuit designs:
technology mapping and reset generation. Both of these are
interesting and related problems, as technology mapping can
introduce hazards [6], and reset is dependent on the technology
mapped circuit. Without automating these tasks, synthesis and
characterization of asynchronous circuits necessitates manual
intervention.

Many tools and algorithms exist for the synthesis of AFSMs.
The only one that includes integrated reset support is Petrify
[3]. In Petrify the reset logic is performed post synthesis
and is not technology mapped, requiring a final manual step
to create a circuit. This manual step is being addressed by
a tool named Petreset as an academic project. It analyzes
the synthesis results and the design specification. Through
simulation Petreset determines which gate modifications can
be performed to reset the design. The restriction of this tool
is that it only applies to designs which are synthesized with
Petrify; hence its not independent of design methodology. This
work has not yet been published.

Asynchronous finite state machine synthesis algorithms can
theoretically be modified to automatically generate reset be-
havior jointly with the synthesis. However, we are not aware of
any such work reported in the literature. We are also not aware
of any published work that presents an independent algorithm
to add reset for AFSMs to post technology mapped designs.

III. ALGORITHM

An algorithm is described that automatically synthesizes re-
set logic for sequential AFSMs regardless of the specification
style or method used to generate the circuit. The inputs to the
algorithm include (a) the sequential circuit technology mapped
to single output static gates, (b) the boolean behavior of static
gates available in the cell library, (c) boolean logic levels for all
signals in the reset state. Two additional inputs may optionally



E7
V7

E8
V8

V1
E1

E9
V9

V2
E2 E10

V10

E11
V11

V3

E3

E13
V13 V6

E6
V5

E5 E12
V12V4

E4

Fig. 1: A Cyclic Directed Graph Example

be included: a set of performance critical paths, and a list
of primary inputs that remain undefined upon application of
system reset. No design specification information is required.

The algorithm presented here is based on the observations
that: (a) State variables will be implemented in a circuit that
use static logic with feedback. (b) Feedback creates cycles
in the circuit. (c) Cycles and undefined inputs are the only
sources of undefined signals in a sequential circuit. (d) Any
gate in a cycle can be used to reset the entire cycle.

This algorithm focuses on identifying combinational cycles
in a circuit which need to be explicitly reset, and then selecting
an optimal location in the cycle to add reset. The cost of
each solution is based on heuristics that employ logical effort
to estimate performance and energy costs. The determination
of which cycles need to be reset is performed by simulating
the design and determining which nodes remain undefined.
Finding a reset configuration is not necessarily simple. Circuit
cycles may interact. By resetting one cycle, the other cycles
that it interacts with may automatically be reset.

The algorithm consists of two main sections. The first
section identifies and resets the cycles and the second one
does the same for paths. Multiple solutions are generated by
adding reset signal to each gate of a cycle (path). Each solution
is compared against the others to obtain the least cost solution
using optimization heuristics based on logical effort.

A. Generate cycles to reset when PI’s are defined
A circuit is represented as a directed graph G where G is the

pair (V,E). V is a finite set of vertices v, representing single
output combinational gates, primary inputs (PI), and primary
outputs (PO) of a circuit. E is a set of edges e mapping V ×V
where e is an ordered pair (vi,v j) where vi is the vertex output
and v j is an input to a vertex. P is a set of paths p where p∈ P
is defined as an ordered sequence of vertices < vi, ...,v j > were
∀vk ∈ p no vertex vk ∈ p is repeated, vk ∈V , and where there
is an edge ek ∈ E between each adjacent vertex in path p. We
also represent path p as Vi

p−→Vj. C is a set of cycles c where
c = pi ∈ P and there exists an edge e j that maps between the
first and last element of path pi.

Each path and cycle has two associated edge sets, internal
edges EInt and external edges EExt . EInt is the set of edges
between each vertex in a path or cycle, and EExt is the set of
edges ei : (vi,v j) where v j ∈ p∧ v j 6∈ EInt . Note that external
edges include fan-in but not fan-out connectivity.

Fig. 1 shows an example cycle consisting of the path
< v1,v2,v3,v4,v5,v6 >. The internal edge set EInt equals
{e1,e2,e3,e4,e5,e6} and the external edge set EExt in the
example is {e7,e8,e9,e10,e11,e12,e13}.

A
1 Y

A
1 Y

A Y

A Y

Fig. 2: Gate conversion example for Lemma 1

Each vertex vi ∈ V is assigned a value in the set {0,1,x}.
The value of each edge ei is derived from the value of vertex
vi where ei : (vi,v j). We use the convention that a vertex (and
its associated fanout edges) is defined when it has a boolean
value of 0 or 1, otherwise it said to be is undefined, and is
assigned the value x. Since gates (vertices) are single output,
the state of all nets in the system are defined once all vertices
are defined. One required input to the algorithm is the boolean
logic level for all vertices in the reset state.

Definition 1: An input of a static single output gate is said
to have a controlling value if it uniquely determines the output
of the gate independent of other gate inputs.

If an input to a gate does not uniquely determine the output
of the gate, it is a non-controlling value. If all inputs are non-
controlling, then a subset of the inputs must be defined to
define the output.

Axiom 1: The output of a static combinational gate is
defined if all the gate inputs are defined

Lemma 1: For input set I, the output of a single output
static combinational gate will be uniquely controlled by input
ii ∈ I when all other gate inputs i j ∈ I are assigned to non-
controlling values and the output remains undefined.

Proof: This holds due to Axiom 1. Since only one gate
input is undefined, once that signal becomes defined all gate
inputs are defined and the output must switch to a known value
of 0 or 1 based on the combinational function.

Lemma 1 allows any complex static gate to be represented
as a simple inverter or buffer based on the value of input ii
if, when all other gate inputs are defined, the output is still
undefined. Fig. 2 shows examples of this representation. The
NAND gate acts as a simple inverter when ii is signal A since
all other signals are at a high voltage. Similarly the AND gate
can be modeled as a buffer.

Lemma 2: If all edges in EExt of a path (cycle) are set to
logic 0 or 1, then the path (cycle) can be represented as a
path (ring) consisting of inverters or buffers.

Proof: Follows Lemma 1.
Theorem 3: If all the edges in EExt for a cycle are defined

then all the signals in EInt are either defined or undefined.
Proof: Assume that the set of external inputs EExt for

cycle c are set such that none of the vertices in c are defined. In
this case, all internal edges EInt of the cycle will be undefined.
Assume the case above where a single edge ei ∈ EExt is
modified such that ei = (vi,v j) is controlling or the value
of vertex v j becomes defined. This results in edge e j ∈ EInt
becoming defined. According to Axiom 1, this results in the
vertex (gate) vk becoming defined where e j = (v j,vk). This
continues around the ring until all vertices (gates) become
defined to a boolean value.

Theorem 4: If the set vertices in a cycle c0 is a proper
subset of the vertices in another cycle c1, then the cycle c0



contained in the bigger cycle c1 must be reset to reset both
the cycles.

Proof: Assume all edges in both the rings are undefined.
Let V0 and V1 be the set of vertices in cycles c0 and c1,
EInt0 ,EExt0 and EInt1 ,EExt1 the internal and external edges.
The smaller ring is the ring where Vi = V0 ∩V1. This results
in a condition where Theorem 3 does not hold since some
vertex vk will have ei = (vi,vk)∈EInt0 ,EExt1 and e j = (v j,vk)∈
EInt1 ,EExt0 which are both undefined. Assume c0 is the smaller
cycle, and e j is the undefined external input to vertex vk. If
we assume that e j is defined, cycle c0 can be reset, which
will result in edge ei becoming defined. This results in all
external edges in EExt1 becoming defined, so that Theorem 3
can hold on the larger cycle. Since c0 is a proper subset of
c1,∃el = (vi,vl) where vl ∈V1∧vl 6∈V0, so the larger cycle c1
will automatically become reset from the smaller cycle.

Theorem 4 allows the number of vertices (gates) that require
reset to be smaller than the number of cycles in a sequential
circuits that are undefined without reset. Also note that sequen-
tial circuits may have many cycles that overlap each other
in various ways, not just as proper subsets. Theorem 4 may
also be extended to reset interacting cycles that are not non-
proper subsets. However, the code developed here only applies
optimization of multiple cycles according to this theorem, and
thus may not generate the solution with the fewest number of
reset vertices (gates). Such an extension is left for related work.
Further, due to Theorem 4, this algorithm generates reset logic
for cycles based on the smallest vector set cardinality first.
This ensures that larger concentric cycles will automatically
be reset by their smaller cycles.
B. Generate paths to reset when PIs are undefined

This section removes the initial condition which requires
all the PIs to be defined during cycle reset generation. This
was necessary to ensure that all signals in EExt are defined.
The netlist generated in the previous section is used, since it
guarantees all the cycles in the circuit are defined iff all the
PIs are defined. The reset problem now becomes a path based
rather than a cycle based problem.

Lemma 5: For output o and input set I of a single output
static combinational gate, if o is undefined then at least one
of the inputs in i ∈ I is undefined.

Proof: Applying transposition to Axiom 1.
Definition 2: An undefined path is a path were ∀ei ∈ EInt ,

the value of ei is undefined.
Lemma 6: Consider there are no undefined edges in a

circuit when all the PIs are defined. If a PI is marked
undefined, and this results in a set of POs of the circuit being
undefined, then there exists at least one undefined path from
the PI to each undefined POs.

Proof: The input netlist of this section considers that if
all the PIs are defined then all the wires in a circuit including
the POs are defined. Hence if a PI is undefined which results
in a subset of the POs being undefined, then there must be an
undefined path from the PI to each undefined PO.

The path may be represented as a set of inverters, and
resetting any vertex will result in all downstream vertices

Fig. 3: Example 1 circuit implementation before reset

becoming defined. This can be shown using a similar approach
as was done for cycles. Therefore, to reset a path, any vertex
in the path may be reset.

C. Gate Modifications for Reset Insertion
Each gate in a path (cycle) is a candidate for reset insertion.

Therefore every gate is evaluated for the cost and potential of
adding reset to that gate. The reset signal must be inserted as
a controlling value to the gate, and the resultant gate must be
a member of the static gate library employed in the design.

Three separate transformation cases are employed to insert
a reset signal into a cycle, but only the first two transformation
cases can be applied to paths. These are selected based on the
type of optimization being performed and the gate type.

Case1: If the gate is an inverter (buffer), it will be converted
into a NAND or NOR (AND or OR) gate depending on the
required value of the output of the gate after reset. The asserted
reset signal will become the controlling value for the gate.

Case2: This is a generalized condition for Case1 that will
add reset to any static single output gate. The input ei ∈ EInt
in the path (cycle) is identified. The behavior of the gate will
be represented in a sum-of-products format. If the output of
the gate is inverting, and the desired output is 1, then an active
low reset will be ANDed with edge (signal) ei. If the desired
output is 0, then an active high reset signal will be ORed with
the full gate function. A similar transformation is performed
for non-inverting gates. The new gate is used as a possible
solution if it is present in the cell library.

Case3: If the vertex (gate) vi is an inverter, and the inverter
drives an edge (gate) that is not an element of the path (cycle),
this transformation can be employed. This transformation
creates a duplicate inverter v j, disconnects vi from the cycle,
and applies the Case1 transformation to the new inverter v j.
This case is only applied to performance optimization of cycles
requiring reset as defined in Sec. III-A.

Fig. 4a and 4b illustrate these transformations on the circuit
in Fig. 3. The Case1 example can be seen where the inverters
U3 and U7 have been converted into NOR gates in Fig. 4a
using an active high reset because the desired output values
for these gates are 0. Case2 is not directly illustrated because
it results in an inferior solution according to logical effort.
However, assume U2 is being evaluated. This is an inverting
gate, and the desired output value of the gate is 1. Active
low reset will be ANDed with rr ∈ EInt , changing U2 from an



(a) Power Optimization (b) Performance Optimization (c) Petrify Implementation

Fig. 4: Example 1 circuit implementation with reset

AOI21 gate into an AOI31 gate. Since this gate was present
in our library, it is a valid transformation. However, because
this solution is of higher cost than a Case1 transformation on
gate U3 in this cycle, it will not be used in the final solution.
The Case3 transformation is illustrated with the new gate U11
added to the design in Fig. 4b when the performance path
lr

p−→ rr is provided. The new gate becoming a branching load
to the performance path, but adds more area to the design.
Since the structure of the circuit is modified, it is possible
this transformation adds a hazard to the circuit. Hence in our
design flow a formal verification step is performed to ensure
hazard fidelity of the design.

A special condition applies to all of these design cases when
the input edge in a cycle passes through an inverter that is
inside a gate. The Case2 transformation is applied as usual.
Additionally, the gate is split into two gates with the inverter
becoming an explicit external gate that is added to the cycle.
Case1 is then applied to the inverter, and Case2 is applied to
the second gate. This is illustrated with the design of Fig. 5a.
The inverter bubble has been split into a separate inverter in
Fig. 5b with the Case1 transformation applied.

D. Optimization Heuristics for selecting the Best Solution
Power and performance optimizations are based on heuris-

tics that use logical effort [5]. Logical effort theory provides a
first-order approximation of the sizes (power) of the gates and
the delay for a circuit path (performance). The optimization
uses a priority based approach with Delta Logical Effort hav-
ing the highest priority and Performance/Power Optimization
having the lowest priority. If a heuristic solution is better than
the previous best solution then no other solution costs are
compared.

1) Delta Logical Effort: Logical effort often favors simpler
gates over more complex gates due to their high cost. Hence
the first step of optimization looks at the relative increase in
logical effort of modifying any gate which we name as Delta
Logical Effort (∆LE).

Cost = ∆LE = New LE - Old LE (1)
2) Relative load on a gate: Logical effort can be used

to estimate the necessary drive strength (also referred to as
size) of a gate by calculating the gate’s output load. The load

estimate is calculated by computing the sum of the logical
effort of a gate and the logical effort of the inputs of all the
successor gate to which the wire goes. This heuristic penalizes
the modification of a gate which drives a big load and thus
prefers simpler gates with small output load.

Cost = LE of gate + LE load on gate output (2)
3) Performance or Power Optimization: The solution for

this step is selected based on the optimization selected by the
user. The heuristics to calculate the cost of the solution for
each optimization is described as follows.

Performance Optimization - All three reset transformation
cases are applied for performance optimization. However,
Case3 is only applied on performance critical paths such as
lr

p−→ rr that are optionally supplied by the user.
The quality of the solution for each cycle (path) requiring

reset is the delay for each input to output path in the design.
The total cost of solution is the sum of the delay of all
the performance critical paths in the design. Hence the final
solution is selected based on the least overhead cost which is
calculated by the following heuristic.

Performance cost = ∑
all paths

N ∗F1/N +P (3)

where Delay of N-stage path = N ∗ F1/N + P and F =
G ∗B ∗H [5]. This heuristic assumes electrical effort H for
each path to be 1. This can result in sub optimal results if the
fanout load of the circuit output is big.

Power Optimization - Power consumption of a design
depends on the total capacitance of the circuit that needs to
be switched. We approximate the capacitance with the logical
effort G of each gate, where a higher logical effort implies
a larger input capacitance. Thus the total solution for power
optimization is calculated as follows.

Power cost = ∑
all paths

i−1

∑
0

Avg. input LE for gate Vi on a path

(4)
IV. EXAMPLES

A. Example 1

The initial circuit for this example is shown in Fig. 3.
For this example, lr, ra, U1, U3, U7 have a logic level 0
while U0, U2, U4, U5, U6 have a logic level 1 at reset
state. It consists of six cycles: < U0,U1 >, < U2,U3 >,



(a) Circuit without reset (b) Power/Performance Optimization (c) Petrify Implementation

Fig. 5: Example 2 Circuit Implementations with and without reset

< U6,U7 >, < U0,U1,U2,U3 >, < U0,U1,U6,U7 >, and <

U0,U1,U6,U7,U2,U3 >.
Cycle < U0,U1 > does not need to be reset because it is

defined by signals in the external signal set EExt = {lr, rr, csc0}.
Of the other five cycles, only two need to be reset due to
shared paths in the cycles. By reseting cycle < U2,U3 > and
< U6,U7 >, the (U2,U3) and (U6,U7) edges become defined,
resetting the remainder of the cycles.

Fig. 4a shows the result applying the power optimization
heuristic. The case1 optimization results in the best solution
for both <U2,U3> and <U6,U7>. This optimization modifies
U3 and U7 from inverters to a NOR gates.

Results of performance optimization for the same circuit is
shown in Fig. 4b. The path from lr

p−→ rr (<U6,U7,U2,U3 >

and <U0,U1,U2,U3 >) and lr
p−→ la (<U0,U1 >) are defined

as performance paths. Thus Both Cycle2 and Cycle3 are
candidates for Case3 optimizations, that can push the added
complexity of the reset gates off the critical path. Gates U3
and U7 are first duplicated to add U10 and U11 in the feedback
of both these cycles. These duplicate gates are then converted
to NOR gates that reset the cycles.

This example so far has assumed that the PIs are all
defined. Consider the power optimization case when input
lr is initially undefined. The algorithm then starts with the
circuit of Fig. 4a, marking lr as undefined. This results in the
output of U0 and U1 being undefined resulting in la output
being undefined. Applying the optimizations results in the
gate U1 being changed into a NOR gate with reset. If the
performance optimization solution is considered then the path
<U6,U7,U2,U3 > is also undefined resulting in gate U7 being
converted into a NOR gate with reset. Note that this results in
an inferior solution since there are 2 NOR gates performing the
same task. Hence the application of undefined input solution
is the best for power optimization, but can result in an inferior
solution for performance optimization in certain cases.

Petrify is used to apply reset to this sample circuit. Reset
is achieved by using generic AND and OR gates as shown
in Fig. 4c. U10, U11 and U12 are added to initialize Cycle1,
Cycle2, and Cycle3 respectively. Notice that gate U10 is not
required, resulting in an inferior solution in terms of power
and performance.
B. Example 2

The second example circuit is shown in Fig. 5a. For this
example, lr, ra, U1, U4 have a logic level 0 while U0, U2, U3

have a logic level 1 at reset state. It consists of 4 cycles <U0>,
< U4 >, < U3,U4 > and < U0,U3,U4 >. Assuming the PIs
are defined, only the <U4 > cycle needs to be reset, because
reset values for lr and rr define Gate U3. Fig. 5b and 5c
show the solution for this algorithm and Petrify respectively.
The optimized circuit generated by this reset algorithm is the
same for both power and performance optimizations since the
reset is not on a critical path. Petrify adds the OR gate U5.
This increases the latency on the ra

p−→ rr resulting in a 10%
increase in the backward latency and thus a 5% increase in
the cycle time.

V. RESULTS

The results of adding reset initialization with this algorithm
is compared against Petrify. Benchmark circuits for GCD,
PostOffice and PSCSI were employed as well as a set of
128 untimed four-cycle handshake controllers generated by
concurrency reduction [7]. Each design in the controller set
was tested as a four deep FIFO. All of these designs are
synthesized and technology mapped with Petrify with and
without reset addition. Our algorithm is applied to these
circuits without reset. Petrify adds generic gates for reset
addition, hence for comparison these gates are technology
mapped using a script. The technology mapping is applied
to the academic Artisan library for the IBM 65nm process.

This algorithm resulted in functionally correct circuits for
all designs to which power optimization was applied, while ap-
plication of performance optimization resulted in two circuits
that failed due to hazards that were introduced. Petrify failed
to generate a working circuit for one of the FIFO controllers
since it assumed all the inputs to be defined at logic level 0
upon reset.

Performance, power, and area comparisons are performed
by using timing driven optimization in commercial EDA tools.
The flow is structured and automated in a way that will
produce results that are as fair as possible. The flow uses
Design Compiler for sizing, SoC Encounter for place and
route, and Modelsim and Primetime for performance and
power evaluation using VCD and SPEF files.

The example set ranges in complexity from 4 to 71 gates,
and up to 77 cycles. The maximum runtime for the algorithm
was less than three seconds for the gcd example, which
contains 11 inputs, 9 outputs, 71 gates, and 22 cycles. Critical
paths from lr

p−→ rr and lr
p−→ la were provided for the 128



TABLE I: RESULTS COMPARISON FOR BENCHMARK CIRCUITS

Petrify Power Optimization Performance Optimization Power Benefits Performance Benefits

Benchmark Area Energy/ SimTime Area Energy/ SimTime Area Energy/ SimTime Area Energy/ SimTime Area Energy/ SimTime

Circuit (um2) token (pJ) (ns) (um2) token (pJ) (ns) (um2) token (pJ) (ns) (um2) token (pJ) (ns) (um2) token (pJ) (ns)

gcd 298.3 0.50 303.76 287.2 0.50 297.56 285.4 0.46 298.33 1.04 1.00 1.02 1.05 1.08 1.02

postoffice-rcv-setup 36.0 0.02 87.14 27.4 0.02 85.70 31.7 0.03 84.98 1.31 1.20 1.02 1.14 0.89 1.03

postoffice-sbuf-send-ctl 132.0 0.38 317.85 100.3 0.30 315.62 109.7 0.32 319.69 1.32 1.28 1.01 1.20 1.19 0.99

pscsi-isend 185.2 0.36 244.45 172.3 0.35 276.23 198.0 0.43 256.25 1.07 1.03 0.88 0.94 0.84 0.95

pscsi-trcv-bm 114.0 0.19 143.07 99.5 0.15 136.08 98.6 0.15 135.37 1.15 1.24 1.05 1.16 1.29 1.06

pscsi-tsend-bm 140.6 0.28 202.83 134.6 0.25 213.86 139.7 0.26 208.73 1.04 1.11 0.95 1.01 1.10 0.97

pscsi-tsend 147.5 0.24 203.12 145.7 0.25 191.28 145.7 0.25 191.28 1.01 0.99 1.06 1.01 0.99 1.06

Average Benefit 1.14 1.12 1.00 1.07 1.05 1.01

TABLE II: CONTROLLER CIRCUIT COMPARISON

Average Case Best Case Worst Case

Optimization Power Performance Power Performance Power Performance

Forward Latency 1.00× 1.08× 2.33× 2.33× 0.63× 0.69×

Backward Latency 1.05× 1.12× 1.47× 1.72× 0.61× 0.71×

Cycle Time 1.03× 1.06× 1.39× 1.69× 0.54× 0.54×

Area 1.21× 1.12× 1.91× 1.66× 0.70× 0.69×

Energy/token 1.24× 1.12× 2.19× 1.84× 0.64× 0.64×

FIFO controllers.
Tables I and II show the average benefits for both optimiza-

tions with respect to Petrify. Performance optimization results
in an improvement of 8%, 12% and 6% in forward latency,
backward latency and cycle time for the 128 FIFO circuits.
The benchmark circuits show only 1% improvement in per-
formance (reported as simulation time – SimTime). A 12%
reduction in area and energy/token for the FIFO controllers is
observed, as compared to a 7% and 5% reduction in area and
energy/token respectively for the benchmark circuits.

Power optimization results in no improvement in forward
latency, and minor improvements in backward latency and
cycle time for FIFO controllers as well no performance benefit
(SimTime) for the benchmark circuits. However, there is a
significant improvement in terms of area and energy. A 21%
and 24% reduction in area and energy/token respectively
are seen for the FIFO controllers, while a 14% and a 12%
reduction was seen for the benchmark circuits.

VI. CONCLUSIONS

Sequential circuits require a reset signal to initialize them
to their correct starting state. An algorithm was developed and
implemented in C++ to generate reset logic for asynchronous
finite state machines. The algorithm defines the relationship
between reset and topological cycles in a circuit. The new
algorithm also provides heuristics to optimize the reset logic
for power or performance. It requires that the design has been
technology mapped to the desired implementation library, and
that the library consists of single output static logic gates.
Inputs to the algorithm include the design netlist, the logic
level of all circuit nets, and the behavior of the gates in the
technology library. Optional inputs include a set of critical
paths for performance optimization, and a set of inputs that
may initially be undefined upon reset.

The algorithm is applied to a set of seven large benchmark
circuits and a set of 128 pipeline controllers that are configured
into linear FIFOs. The designs range in complexity of up to
71 gates and 77 cycles. Maximum runtime for the tool is less
than three seconds. Results are compared against Petrify. Per-
formance heuristics show just a 1% performance improvement
for the benchmark circuits. The FIFO designs show a 6%
performance improvement and a 12% and 8% improvement
for backward and forward latency. Power heuristics show an
average improvement of 14% and 12% in area and energy
per token for the benchmark circuits, and an average area and
energy per token improvement of 21% and 24% for the FIFO
controllers.

The algorithm is agnostic to how the circuit was imple-
mented and technology mapped, so it can be used with
any of the synthesis engines as well as with hand designed
circuits. For the first time reset can now become part of any
asynchronous finite state machine design automation flow.

VII. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant Number 1218012 and the
Semiconductor Research Corporation under Grant Number
2235.001.

REFERENCES

[1] K. Y. Yun and D. L. Dill, “Automatic Synthesis of Extended Burst-Mode
Circuits: Part I (Specification and Hazard-Free Implementation),” IEEE
Transactions on Computer-Aided Design, vol. 18, no. 2, pp. 101–117,
Feb 1999.

[2] ——, “Automatic Synthesis of Extended Burst-Mode Circuits: Part II
(Automatic Synthesis),” IEEE Transactions on Computer-Aided Design,
vol. 18, no. 2, pp. 118–132, Feb 1999.

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Petrify: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers,” IEICE Transactions on Infor-
mation and Systems, vol. E80-D, no. 3, pp. 315–325, 1997.

[4] R. M. Fuhrer and S. M. Nowick, Sequential Optimization of Asynchronous
and Synchronous Fininte State Machines: Algorithms and Tools. Kluwer
Academic, 2001, minimalist reference.

[5] I. Sutherland, R. Sproull, and D. Harris, Logical effort: designing fast
CMOS circuits. Morgan Kaufmann, 1999.

[6] S. M. Burns, “General Conditions for the Decomposition of State Holding
Elements,” in Advanced Research in Asynchronous Circuits and Systems
(ASYNC-96), March 1996, pp. 48–57.

[7] S. Nagasai, K. S. Stevens, and G. Birtwistle, “Concurrency Reduction
of Untimed Latch Protocols – Theory and Practice,” in International
Symposium on Asynchronous Circuits and Systems. IEEE, May 2010,
pp. 26–37.


