
Synthesis on Switching Lattices of

Dimension-Reducible Boolean Functions

Anna Bernasconi

Dipartimento di Informatica

Università di Pisa, Italy

anna.bernasconi@unipi.it

Valentina Ciriani Luca Frontini Gabriella Trucco

Dipartimento di Informatica

Università degli Studi di Milano, Italy

{valentina.ciriani, luca.frontini, gabriella.trucco}@unimi.it

Abstract—In this paper we study the switching lattice synthesis
of a special class of regular Boolean functions called D-reducible

functions. D-reducible functions are functions whose points are
completely contained in an affine space A strictly smaller than
the whole Boolean cube {0, 1}n. The D-reducibility of a function
f can be exploited in the lattice synthesis process: the idea is to
independently find lattice implementations for the characteristic
function of the subspace A and for the projection of f onto A,
and to compose them in order to construct the lattice for f .
The overall lattice area can be further reduced exploiting the
peculiar structure of the affine subspaces of {0, 1}n. To this
aim, we propose a method for implementing compact lattice
representations of affine subspaces whose characteristic function
is represented by the product of single literals and EXOR factors
of two literals. The experimental results validate the proposed
approach.

I. INTRODUCTION

In this paper we study the lattice synthesis of D-reducible
(or Dimension-reducible) Boolean functions [3], [4], [5], [6].
A D-reducible function f : {0, 1}n → {0, 1} is a function that
depends on all its n input variables, but can be studied and
synthesized in a space of dimension strictly smaller than n.
More precisely, the minterms of a D-reducible function f are
completely contained in an affine space A strictly smaller than
the whole Boolean cube {0, 1}n, so that f can be written as
f = χA · fA, where A is its unique associated affine space,
χA is the characteristic function of A, and fA is the projection
of f onto A. Notice that f and fA have the same number of
points, but these are now compacted in a smaller space.

The D-reducibility of a function f can be exploited in the
minimization process: the idea is to minimize the projection
fA of f onto the space A, instead of f . This approach thus
requires two steps: (i) deriving the affine space A and the
projection fA; (ii) minimizing fA in a given logic framework.
As shown in [3], the first step can be performed in time
polynomial in the initial representation of f . Previous studies
on this subject [3], [4], [5] focused on the standard SOP
(Sum of Products) minimization of fA and proved how this
approach to the synthesis of D-reducible functions often turns
out to be convenient. They also showed that about 70% of
the functions in the classical ESPRESSO benchmark suite have
at least one output that is D-reducible: although D-reducible
functions form a subset of all possible Boolean functions, a
great amount of standard functions of practical interest falls in
this class.

The aim of this paper is to analyze whether the D-

reducibility structural property can be exploited in the switch-
ing lattice synthesis process as well. A switching lattice is
a two-dimensional lattice of four-terminal switches linked to
the four neighbors of a lattice cell, so that these are either
all connected, or disconnected. A Boolean function can be
implemented by a lattice associating each four-terminal switch
to a Boolean literal, so that if the literal takes the value 1 the
corresponding switch is on and connected to its four neighbors,
otherwise it is not connected; the function evaluates to 1 if and
only if there exists a connected path between two opposing
edges of the lattice, e.g., the top and the bottom edges (see
Figure 1 for an example). The synthesis problem on a lattice
thus consists in finding an assignment of literals to switches
in order to implement a given target function with a lattice of
minimal size. The idea of using regular two-dimensional arrays
of switches to implement Boolean functions is old and dates
back to a seminal paper by Akers in 1972 [1], but recently, with
the advent of a variety of emerging nanoscale technologies,
synthesis methods targeting lattices of multi-terminal switches
have found a renewed interest [2], [8].

Previous studies on this subject have shown how the
cost of implementing a four-terminal switching lattice could
be mitigated by exploiting Boolean function decomposition
techniques. The basic idea of this approach is to first de-
compose a function into some subfunctions, according to a
given functional decomposition scheme, and then to implement
the decomposed blocks with physically separated regions in a
single lattice. Since the decomposed blocks usually correspond
to functions depending on fewer variables and/or with a
smaller on-set, their synthesis should be more feasible and
should produce lattice implementations of smaller size. In
the framework of synthesis on switching lattices, where the
available minimization tools are not yet as developed and
mature as those available for CMOS technology, reducing
the synthesis of a target Boolean function to the synthesis of
smaller functions could represent a very beneficial approach.

In this paper, we apply an approach based on decomposi-
tion to the class of D-reducible functions: the idea is to inde-
pendently find lattice implementations for the projection fA of
a D-reducible function f , and for the characteristic function
χA of the space A, and then to compose them in order to
construct the lattice for f . To further reduce the overall lattice
area, we exploit the peculiar structure of the function χA, that
represents the minterms of an affine subspace of {0, 1}n. To
this aim, we describe a method for implementing compact
lattice representations of affine subspaces whose characteristic

2016 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC)

978-1-5090-3561-8/16/$31.00 ©2016 IEEE

x
2

x
2

x
2

x
1

x
3

x
3

x
2

x
2

TOP

BOTTOM

(b)

x
2

x
1

x
3

x
3

x
2

x
2

x
2

TOP

BOTTOM

(a)

(c) (d)

x
1

x
2

x
2

x
2

x
2

x
1

x
3

x
3

x
2

TOP

BOTTOM

x
2

x
2

x
2

x
1

x
3

x
3

x
2

x
2

TOP

BOTTOM

x
2

x
1

x
1

Fig. 1. A four terminal switching network implementing the function
f = x1x2x3+x1x2+x2x3 (a); its corresponding lattice form (b); the
lattice evaluated on the assignments 1,1,0 (c) and 0, 0, 1 (d), with grey
and white squares representing ON and OFF switches, respectively.

function is represented by the product of single literals and
EXOR factors of two literals. Experimental results demonstrate
that the synthesis of lattices based on D-reducible Boolean
functions allows to obtain a more compact area. Moreover,
the proposed approach allows to reduce the synthesis time,
demonstrating that a polynomial preprocessing, which reduces
the size of the problem, can be very useful for the overall
computation time.

The paper is organized as follows. Preliminaries on switch-
ing lattices and D-reducible Boolean functions are described
in Section II. Section III shows how a D-reducible function
can be efficiently decomposed and implemented by a switch-
ing lattice. Section IV provides the experimental results and
concludes the paper.

II. PRELIMINARIES

In this section we briefly review some basic notions and
results on switching lattices [1], [2], [8] and D-reducible
functions [3], [4], [5], [6].

A. Switching Lattices

A switching lattice is a two-dimensional lattice of four-
terminal switches. The four terminals of the switch link to the
four neightbours of a lattice cell, so that these are either all
connected (when the switch is ON), or disconnected (when the
switch is OFF). A Boolean function can be implemented by a
lattice in terms of connectivity across it [8]:

• each four-terminal switch is controlled by a literal;

• each switch may be labelled with the constant 0, or 1;

• if the literal takes the value 1, the corresponding
switch is connected to its four neightbours, else it is
not connected;

1

f

f g

0

0

0

…

g

1 1

(a) (b)

Fig. 2. Lattice implementation of f ∨ g (a) and of f ∧ g (b).

• the function evaluates to 1 if and only if there exists
a connected path between two opposing edges of the
lattice, e.g., the top and the bottom edges;

• input assignments that leave the edges unconnected
correspond to output 0.

For instance, the 3 × 3 network of switches in Figure 1
(a) corresponds to the lattice form depicted in Figure 1 (b),
which implements the function f = x1x2x3 + x1x2 + x2x3.
If we assign the values 1, 1, 0 to the variables x1, x2, x3,
respectively, we obtain paths of gray square connecting the
top and the bottom edges of the lattices (Figure 1 (c)), indeed
on this assignment f evaluates to 1. On the contrary, the
assignment x1 = 0, x2 = 0, x3 = 1, on which f evaluates
to 0, does not produce any path from the top to the bottom
edge (Figure 1 (d)).

The synthesis problem on a lattice consists in finding an
assignment of literals to switches in order to implement a
given target function with a lattice of minimal size. The size
is measured in terms of the number of switches in the lattice.
A switching lattice can similarly be equipped with left edge to
right edge connectivity, so that a single lattice can implement
two different functions. This fact is exploited in [2] where
the authors propose a synthesis method for switching lattices
simultaneously implementing a function f according to the
connectivity between the top and the bottom plates, and its
dual function fD according to the connectivity between the
left and the right plates. Recall that the dual of a Boolean
function f depending on n binary variables is the function

fD such that f(x1, x2, . . . , xn) = fD(x1, x2, . . . , xn). This
method produces lattices of size r × s, where r and s are
the number of products in an irredundant SOP representations
of fD and f , respectively. For instance, the lattice depicted
in Figure 1 has been built according to this algorithm, and it
implements both the function f = x1x2x3+x1x2+x2x3 and
its dual fD = x1x2x3 + x1x2 + x2x3.

The time complexity of the algorithm is polynomial in the
number of products. However, the methods does not always
build lattices of minimal size for every target function, since
it ties the dimensions of the lattices to the number of products
in the SOP forms. In particular this method is not effective for
Boolean functions whose duals have a a very large number of
products. Another reason that could explain the non-minimality
of the lattices produced in this way is that the algorithm does
not use Boolean constants as input, i.e., each switch in the
lattice is always controlled by a Boolean literal. In [8], the
authors have proposed a different approach to the synthesis of
minimal-sized lattices, which is formulated as a satisfiability
problem in quantified Boolean logic and solved by quanti-
fied Boolean formula solvers. This method uses the previous
algorithm to find an upper bound on the dimensions of the

2016 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC)

1
x1 x2

00

01

11

10

1

1 0

0

1

1

x3

1

0

x1 x2

x3 x4

00

01

11

10

00 01 11 10

0 0

0

0 0

0 0

0 1

01

1 0

1

1

0

0

Fig. 3. Karnaugh maps of a D-reducible function f and its corre-
sponding projection fA.

lattice. It then searches for successively better implementations
until either an optimal solution is found, or else a preset time
limit has been exhausted. Experimental results show how this
alternative method can decrease lattice sizes considerably. In
this approach the use of fixed inputs is allowed, moreover the
lattice considers only the top-to-bottom paths and implements
the function f , but not its dual.

Finally, we recall from [8] that given the switching lattices
implementing two functions f and g, we can construct the
lattices representing their disjunction and their conjunction
using a padding column of 0s and a padding row of 1s,
respectively, as shown in Figure 2. Indeed, the column of 0s in
Figure 2 (a) separates all top-to-bottom paths in the lattices for
f and g, so that the accepting paths for the two functions never
intersect. This, in turn, implies that there exists a top-to-bottom
connected path in the lattice for f + g if and only if there is
at least one connected path for f or for g. If the lattices for f
and g have a different number of rows, we add some rows of
1s to the lattice with fewer rows, so that each accepting path
can reach the bottom edge. Similarly, the padding row of 1s
in the lattice in Figure 2 (b) allows to join any top-to-bottom
accepting path for f with any top-to-bottom accepting path for
g, so that the overall lattice evaluates to 1 if and only if both f
and g evaluate to 1. As before, if the lattices have a different
number of columns, we add some columns of 0s to the lattice
with fewer columns, so that an accepting path for one of the
functions can never reach the opposite edge of the lattice if
the other function evaluates to 0.

B. D-reducible Boolean functions

D-reducible functions are functions whose points are com-
pletely contained in an affine space A strictly smaller than the
whole Boolean cube {0, 1}n:

Definition 1: The Boolean function f : {0, 1}n → {0, 1}
is D-reducible if f ⊆ A, where A ⊂ {0, 1}n is an affine space
of dimension strictly smaller than n.

Recall that an affine space is a vector space, or the translation
of a vector space. Formally, given a vector subspace V of
({0, 1}n,⊕), and a point α in {0, 1}n, then the set A = α ⊕
V = {α⊕v | v ∈ V } is an affine space over V with translation
point α [3].

Let f be a D-reducible function. The minimal affine space
A containing f is unique and it is called the associated affine
space of f . The function f can be represented in the following
way: f = χA ·fA, where fA ⊆ {0, 1}dimA is the projection of
f onto A and χA is the characteristic function of A. Moreover,

as shown in [7], an affine space can be represented by a simple
expression, called pseudoproduct, consisting in an AND of
EXORs or literals. In particular, an affine space of dimension
dimA can be represented by a pseudoproduct containing (n−
dimA) EXOR factors.

For instance, consider the function f = {0010, 0100, 0110,
1011, 1101} in the Karnaugh map on the left side of Figure 3.
The function f is D-reducible, i.e., we can project it onto a
space of dimension three (the space marked with circles in
the Karnaugh map). We can therefore study the new function
fA that depends only on three variables, represented in the
Karnaugh map on the right side of Figure 3. Notice that f
and fA have the same number of points, but these are now
compacted in a smaller space. If we synthesize f and fA in
the classical SOP framework we obtain f = x1x3x4+x1x2x4

+x1x2x3x4+x1x2x3x4 , and fA = x2x3+x1x2+x2x3 . (Note
that f depends on all the variables x1, . . . x4.) The new and
more compact form for f is then f = (x1⊕x4)(x2x3+x1x2+
x2x3) . The EXOR (x1⊕x4) represents the new Boolean space
where we study fA.

The test that establishes whether a function f is D-
reducible and the computation of the smallest affine space
containing f can be performed in polynomial time, by finding
the reduced row echelon form of a matrix derived from any
SOP representation of f (see [5] for more details). Moreover,
the projection fA of f onto A can be simply derived from f
by deleting dimA variables. It is important to note that fA
can be computed starting from any SOP representation of f
without generating all its minterms.

III. SWITCHING LATTICES FOR D-REDUCIBLE FUNCTIONS

In this section we will discuss how to obtain a lattice for a
D-reducible function implementing the characteristic function
of the affine space A and the projection fA with physically
separated regions in a single lattice. Recall from Section II-B
that a D-reducible function f can be written as f = χA ·
fA, where A is its unique associated affine space, χA is the
characteristic function of A, and fA is the projection of f onto
A.

Given the two switching lattices implementing χA and fA,
we can easily construct the lattices representing their conjunc-
tion using a padding row of 1s, as shown in Figure 4. Indeed,
the row of 1s allows to join any top-to-bottom accepting path
for the characteristic function of A with any top-to-bottom
accepting path for the projection fA, so that the overall lattice
evaluates to 1 if and only if both χA and fA evaluate to 1. Of
course, if the lattices for χA and fA have a different number
of columns, we add some columns of 0s to the lattice with
fewer columns, so that an accepting path for one of the two
functions can never reach the opposite edge of the lattice if
the other function evaluates to 0.

Since the two functions fA and χA depend on fewer
variables than the original function f , their synthesis should be
more feasible and should produce lattice implementations of
smaller area. In the framework of switching lattice synthesis,
where the available minimization tools are not yet as developed
and mature as those available for CMOS technology, reducing
the synthesis of a target Boolean function to the synthesis of
smaller functions could represent a very beneficial approach.

2016 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC)

ϰ
A

0

1 1 1 ... 1

f
A 0

ϰ
A

f
A

1 1 1 ... 1

(a) (b)

Fig. 4. Lattice implementations of a D-reducible function f = χA·fA.
(a) Composition scheme when the lattice for χA has fewer columns.
(b) Composition scheme when the lattice for fA has fewer columns.

To further reduce the overall lattice area, we could exploit
the peculiar structure of the function χA, that represents the
minterms of an affine subspace of {0, 1}n, building its lattice
representation block by block. More precisely, we have two
possible approaches for the synthesis of a minimal-sized lattice
for χA: (i) directly apply one of the synthesis methods pre-
sented in [2] and in [8], or (ii) build and compose the lattices
representing each EXOR factor, or group of EXOR factors,
occurring in χA. For this second approach, we now describe a
method for implementing a compact lattice representation of
affine spaces that can be represented by a 2-pseudoproduct, i.e.,
a product of EXOR of at most two literals. Observe that the
class of D-reducible functions whose affine subspace can be
described with a 2-pseudoproduct is particularly interesting as
EXOR factors are considered technologically feasible if they
contain a bounded number of literals, typically 2 [9].

The problem of the minimization of the number of literals
in the characteristic function χA of the affine space A has
been addressed in [4]. The representation of an affine space is
not unique, and different pseudoproducts can be characteristic
functions of the same affine space. Unfortunately, finding a
minimal pseudoproduct, in terms of number of literals, repre-
senting an affine space is an NP-hard problem [4], therefore,
in the same paper, a greedy heuristic algorithm has been
designed. Thus, to avoid the presence of EXOR factors with an
unbounded number of literals in the function χA, we can first
heuristically find an optimal representation of the affine space,
and then remove from it all EXOR factors with more than two
literals. In this way we obtain the algebraic representation of a
new affine subspace A′ that contains the original affine space
A, and we can still decompose f as f = χA′ · fA′ .

In the following analysis we will then restrict our attention
to D-reducible functions decomposed w.r.t. an affine subspace,
not necessarily the smallest, represented by the product of
single literals and EXOR factors of two literals. The presence
of at most two literals in each EXOR factors gives us a simple
method for partitioning the variables in order to determine a
compact lattice for χA. First of all, observe that the pseudo-
product describing A corresponds to a linear system, whose
solutions are exactly the minterms in A. For instance, the
pseudoproduct (x1 ⊕ x3) · (x2 ⊕ x4) · x5 · (x1 ⊕ x8), which
describes an affine subspace of {0, 1}8, is represented by the
system











x1 ⊕ x3 = 1
x2 ⊕ x4 = 1

x5 = 1
x1 ⊕ x8 = 1

that can be rewritten as










x1 = x3

x2 = x4

x5 = 0
x1 = x8

From this system we immediately derive the following equal-
ities

x1 = x3 = x8

x2 = x4

x5 = 0 ,

that suggest a natural partition of a subset of the input
variables:

{{0, x5}, {x1, x3, x8}, {x2, x4}} ,

where each subset of the partition contains a set of literals
(or the constant 0) that get the same value on A. The input
variables missing from the partition (x6 and x7 in the example)
are the variables that can assume all the possible values on A.
In particular, in our example x5 must be always equal to 0,
while x1, x3, and x8 must have the same value (0 or 1), as
well as x2 and x4.

As this example clearly suggests, it is always possible to
describe an affine space A, described by an EXOR of at most
two literals, through a partition PA of the input variables,
where two variables, possibly complemented, are in the same
subset of the partition if and only if they are equal on A. This
partition can now be exploited to build the lattice for χA.

Theorem 1: Let A be an affine subspace of {0, 1}n de-
scribed by the product of single literals and EXOR of two
literals, let PA be the partition of the subset of input variables
that defines A, and let n′ ≤ n be the number of distinct
variables occurring in PA. Suppose that PA contains ℓ subsets
of literals, in addition to the subset C with the constant 0.
Finally, let c be the number of literals in C. Then A can be
implemented with a lattice of area r× 2, where the number r
of rows is given by

r =

{

n′ if c ≥ ℓ− 1
n′ + ℓ− 1− c if c < ℓ− 1

Proof: Let S ∈ PA, be one of the ℓ subsets of PA without
the constant 0. The literals in S must be equal to each other on
A, thus this subset can be described by the disjunction of two
products: the product of all literals in S and the product of the
complement of each literal. Thus we can easily build the lattice
for S, using two columns representing the two products, that
have the same length. Since the two switches on each row are
controlled by a variable and its complement, the top-to-bottom
accepting paths cannot intersect the two columns, therefore we
do not need the padding column of 0 between the two terms of
the disjunction. Now, let us consider the set C that contains the
c literals that are constant and equal to 0 on A. This set can
be implemented with a single column lattice, with a switch
assigned to each literal of C. Since this one column lattice
must be composed with the previous two column ones, we
can extend it with a second column, identical to the first one.
Observe that each of the n′ literals in PA occurs in exactly
one subset of the partition, and therefore in exactly one row
of the lattice.

2016 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC)

x
8

x
4

x
1

x
3

x
4

x
2

x
1

x
2

x
3

x
5

x
8

x
5

x
4

x
3

x
8

x
4

x
2

x
3

x
2

x
8

x
5

x
1

x
5

x
1

x
3

x
1

x
5

x
8

x
3

x
1

x
8

x
5

x
4

x
2

x
4

x
2

(a) (b)

Fig. 5. Lattice implementations of the function χA = (x1 ⊕ x3) ·
(x2 ⊕ x4) · x5 · (x1 ⊕ x8): (a) lattice derived applying Theorem 1;
(b) lattice synthesized with the algorithm described in [2].

To compose the sublattices and build the overall lattice
representing A, we can exploit the particular structure of the
sublattice for C to save padding rows of 1s. Indeed, thanks to
the presence of the two identical columns, the two switches
on each row of the sublattice for C are controlled by the
same Boolean literal. Thus, each single row can be directly
inserted between two sublattices representing EXOR factors,
as the repeated literal allows to extend any accepting path that
reaches the bottom of the first sublattice to the top of the
other sublattice, whenever the literal gets the value 0 (i.e., its
complement is true). In other words, the sublattice for C is
split and each row is inserted between two sublattices for the
other subsets of PA, in order to save padding rows of 1s. Now
observe that to join the ℓ sublattices representing the subsets
of PA other than C, we would need ℓ − 1 padding rows of
1s, that can be all saved if C contains enough literals, i.e., if
c ≥ ℓ − 1. In this case, the overall number of rows is given
by the number n′ of literals occurring in the partition PA.
Otherwise, if c < ℓ−1, we must insert ℓ−1− c padding rows
of 1s.

Applying the construction described in this theorem to our
running example χA = (x1⊕x3) ·(x2⊕x4) ·x5 ·(x1⊕x8), we
get the lattice of size 12 depicted in Figure 5 (a). Observe that
we do not need the two padding rows of 1s after and before
the row whose switches are controlled by the same Boolean
literal x5, and that the number of rows is equal to the number
of distinct variables occurring in the characteristic function
χA. Figure 5 (b) shows the lattice of size 24 for χA, obtained
using the synthesis algorithm described in [2]. The method
based on SAT, described in [8], synthesizes a lattice of size
12, equivalent to the one obtained applying Theorem 1.

Now, consider the affine space χA = x1x2(x3⊕x4) ·(x5⊕
x6) · (x7 ⊕ x8) · (x9 ⊕ x10), corresponding to the partition
PA = {{0, x1, x2}, {x3, x4}, {x5, x6}, {x7, x8}, {x9, x10}}.
In this example, c < ℓ − 1, as c = 2 and ℓ = 4. Thus, the
lattice for χA, built applying Thereom 1, contains a padding
row of 1s, in addition to the n′ = 10 rows associated to the
literals occurring in PA, as shown in Figure 6 for a lattice with
left-to-right connectivity.

With the construction described in Theorem 1, it is possible
to derive lattices more compact than those synthesized with
the method presented in [2], with a gain in area that increases
with the number ℓ of subsets in the partition associated to the
affine space A. Consider for instance an affine space described

x
3

x
4

x
1

x
5

x
6

x
7

x
8

x
2

x
3

x
4

x
1

x
5

x
6

x
7

x
8

x
2

x
9

x
10

x
9

x
10

1

1

Fig. 6. Left-to-right lattice implementation of the function χA =
x1x2(x3 ⊕ x4) · (x5 ⊕ x6) · (x7 ⊕ x8) · (x9 ⊕ x10).

by exactly ℓ EXOR of two literals, with no literal in common.
Applying our method, we can synthesize a lattice of area (2 ℓ+
ℓ−1)×2 = 6 ℓ−2, while the algorithm proposed in [2] would
synthesize a lattice of area 2ℓ×2 ℓ = 2ℓ+1ℓ, since the minimal
SOP forms for this affine space and for its dual contain 2ℓ and
2 ℓ products, respectively.

In general, the affine subspaces containing EXOR of more
than two literals in their characteristic function, have a more
complex structure, which cannot be simply described with a
partition of the input variables. In this case, we can build a
lattice implementation composing the lattices derived for each
EXOR factor, or group of EXOR factors, in the characteristic
function χA of the given affine space A. More precisely, we
can implement a lattice representing the product of the single
literals and of the EXOR factors of two literals occurring
in χA applying Theorem 1, and compose it with the lattice
implementations of the other EXOR factors. Moreover, we can
use the recursive method developed in [2] for the specific case
of the parity function, to implement an EXOR of m literals
with a lattice of area m×2m−1, instead of the general method
that would synthesize a lattice of dimension 2m−1 × 2m−1.
Finally, we can use the rows controlled by single literals to
join the sublattices of the different EXOR factors, in place of
the padding rows of 1s.

IV. EXPERIMENTAL RESULTS AND CONCLUSION

In this section we report the experimental results for the
synthesis of lattices of D-reducible functions, as described in
Section III. The aim of our experimentation is to determine
if and how much the lattice implementation based on the
projection onto affine subspaces is more compact than the
implementation of plain lattices [8]. As already mentioned,
EXOR factors are considered technologically feasible if they
contain a bounded number of literals, typically 2 [9]. For
this reason, in our experiments we have considered only D-
reducible functions decomposed with respect to affine sub-
spaces, not necessarily the smallest, represented by the product
of single literals and EXOR factors of two literals. In the
following, we will refer to these functions as 2D-reducible
functions.

The algorithms have been implemented in C. The experi-
ments have been run on a machine with two AMD Opteron
4274HE for a total of 16 CPU at 2.5 GHz and 128 GByte of
main memory, running Linux CentOS 6.6. The benchmarks are
taken from LGSynth93 [10]. We considered each output as a
separate Boolean function, for a total of 385 functions. Due to
the limited space available, we report in the following only a
significant subset of the functions as representative indicators
of our experiments. To synthesize the lattices of the bench-
marks and of their projection onto the affine subspaces, we
used a collection of Python scripts for computing minimum-

2016 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC)

TABLE I. LATTICE SIZES FOR 2D-REDUCIBLE BENCHMARK CIRCUITS: A COMPARISON OF PLAIN AND DECOMPOSED LATTICES.

[8] 2D-Red

Benchmark X Y Area Time Xtot Ytot Areatot Time Xχ Yχ Areaχ XZ YZ AreaZ

addm4(0) 9 12 108 0.32 3 8 24 27.4 1 3 3 3 5 15

addm4(1) 22 23 506 87.14 22 23 506 24.42 1 1 1 22 22 484

addm4(2) 33 36 1188 92.85 33 36 1188 1089 1 1 1 33 35 1155

amd(3) 4 5 20 446.04 3 7 21 36.79 1 1 1 3 6 18

amd(4) 10 14 140 723.56 10 14 140 55.98 1 1 1 10 13 130

amd(5) 6 2 12 37.72 2 8 16 1 2 6 12 2 2 4

amd(6) 6 3 18 1686.65 3 8 24 0.34 1 5 5 3 3 9

amd(7) 5 5 20 88.57 3 6 18 4.13 1 1 1 3 5 15

exam(4) 9 25 225 78.26 9 20 180 1286.98 1 2 2 9 18 162

exp(6) 5 4 20 1118.05 3 7 21 16.1 1 2 2 3 5 15

exp(10) 6 12 72 3361.18 6 5 30 294 1 2 2 5 4 20

exp(11) 6 12 72 2058.63 5 8 40 248 2 4 8 5 3 15

gary(2) 12 14 168 0.03 12 15 180 152.15 2 2 4 12 12 144

gary(3) 5 12 60 253.35 5 12 60 76.3 1 2 2 5 10 50

in2(6) 39 36 1404 0.1 39 35 1365 0.1 1 2 2 39 33 1287

in2(7) 17 26 442 0.03 17 26 442 0.06 1 1 1 17 25 425

in2(8) 27 31 837 0.06 27 31 837 0.08 1 1 1 27 30 810

in2(9) 40 36 1440 0.11 40 36 1440 0.11 1 1 1 40 35 1400

in5(6) 5 4 20 1129 3 7 21 1.03 1 3 3 4 4 16

m2(5) 8 9 72 1222.7 4 6 24 975 1 1 1 4 5 20

t1(0) 6 9 54 1409.76 3 8 24 1416.78 1 1 1 3 7 21

t1(1) 7 9 63 236.07 7 9 63 831.62 1 1 1 7 8 56

t1(3) 3 4 12 0.97 3 5 15 0.33 1 1 1 3 4 12

t1(4) 3 3 9 0.31 3 4 12 0.04 1 1 1 3 3 9

t1(5) 5 3 15 12.77 3 5 15 10.24 1 1 1 3 4 12

6997 14044.23 6706 6458

area switching lattices, using transformation to a series of SAT
problems [8]. The lattice implementation of the characteristic
functions of the affine subspaces have been derived applying
Theorem 1, as they are described by products of EXOR factors
of at most two literals.

In Table I for each benchmark we compare the area of
the lattice for the plain benchmark with the area of the lattice
built applying the decomposition based on the D-reducibility
property (see Figure 4). In more detail, the first column reports
the name of the benchmarks. The following four columns
report the dimensions (X ,Y), the area (Area) and the synthesis
time (Time, in seconds) of plain lattices. The other columns
report the dimensions of the lattices obtained applying the
decomposition scheme. In particular we report the dimensions
of the overall lattice and the synthesis time (Xtot, Ytot,
Areatot, T ime), the dimension of the lattice implementation
of the affine spaces (Xχ, Yχ, Areaχ), and the dimension of
the projection of the benchmark on the affine space (XZ , YZ ,
AreaZ). In column eight we have bolded the values where we
obtain a more compact area. In the last row we report the sum
of the corresponding columns.

Results demonstrate that the lattice synthesis of 2D-
reducible Boolean functions allows to obtain a more compact
area in 15% of the considered cases, with an average gain
of about 24%. In particular, considering only the subset of
functions whose affine subspace description contains at least
one EXOR of two literals (i.e., not only single literals), we
obtain a more compact area in about 11% of the cases, with
an average gain of about 40%. Moreover, our results show that
for 2D-reducible functions we can reduce the synthesis time of
the lattices of about 50%, with respect to the time needed for
the synthesis of plain lattices. This is due to the fact that the
proposed approach is based on a polynomial-time computation
of the lattice implementation of the affine spaces, and this
is useful to reduce the dimension of the considered problem,
allowing to reduce the overall time needed to compute the
solution.

In conclusion, in this paper we propose a novel approach
for the synthesis of switching lattices of D-reducible Boolean
functions. Results demonstrate that we can obtain a more com-
pact area, computed with a reduced synthesis time. In future
work we will extend the experimental results, considering the
whole class of D-reducible Boolean functions, defined with
respect to affine spaces with EXOR factors of fan-in greater
than two. Another interesting research direction would be
assessing the impact of other types of decompositions.

V. ACKNOWLEDGMENTS

This project has received funding from the European
Unions Horizon 2020 research and innovation programme un-
der the Marie Skłodowska-Curie grant agreement No 691178.

REFERENCES

[1] S. B. Akers, “A rectangular logic array,” IEEE Trans. Comput., vol. 21,
no. 8, pp. 848–857, Aug. 1972.

[2] M. Altun and M. D. Riedel, “Logic synthesis for switching lattices,”
IEEE Trans. Computers, vol. 61, no. 11, pp. 1588–1600, 2012.

[3] A. Bernasconi and V. Ciriani, “DRedSOP: Synthesis of a New Class
of Regular Functions.” in Euromicro Conference on Digital Systems

Design (DSD), 2006, pp. 377–384.

[4] ——, “Logic synthesis and testability of d-reducible functions,” in
VLSI-SoC, 2010, pp. 280–285.

[5] ——, “Dimension-reducible boolean functions based on affine spaces,”
ACM Trans. Design Autom. Electr. Syst., vol. 16, no. 2, p. 13, 2011.

[6] ——, “Autosymmetric and dimension reducible multiple-valued func-
tions,” Multiple-Valued Logic and Soft Computing, vol. 23, no. 3-4, pp.
265–292, 2014.

[7] V. Ciriani, “Synthesis of SPP Three-Level Logic Networks using Affine
Spaces,” IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 22, no. 10, pp. 1310–1323, 2003.

[8] G. Gange, H. Søndergaard, and P. J. Stuckey, “Synthesizing optimal
switching lattices,” ACM Trans. Design Autom. Electr. Syst., vol. 20,
no. 1, pp. 6:1–6:14, 2014.

[9] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design.
Addison-Wesley Publishing Company, 1993.

[10] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide
Version 3.0,” Microelectronic Center, User Guide, 1991.

2016 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC)

