Intelligent Embedded and Real-Time ANN-based
Motor Control for Multi-Rotor Unmanned Aircraft
Systems

George Michael*, Nectarios Efstathiou®, Kyriacos Mantis*, Theocharis Theocharides*T and Danilo Paut
*Department of Electrical and Computer Engineering, University of Cyprus
TKIOS Research and Innovation Center of Excellence
fAdvanced System Technology, STMicroelectronics, Agrate Brianza

Abstract—Constant technological advancements in commercial
multirotor unmanned aerial vehicles (drones) resulted in their
deployment in more and more applications, ranging from en-
tertainment to disaster management and many more domains.
However, in contrast to their powerful and diverse entrance
into our lifestyle and society, they do not yet provide sufficient
intrinsic fail-safe mechanisms to prevent accidents that may occur
due to technical problems or unforeseen flight incidents such as
turbulent winds, inexperienced pilots, and so on. Therefore, in
the current study, we propose the use of an integrated intelligent
motor controller, which is trained to recognize incidents directly
from the on-board sensors (barometer, gyroscope, compass and
accelerometer) and react in real-time, adjusting the drone’s
motors. The goal is to provide a small, intelligent, low-power,
real-time, built-in controller for multirotor UAVs that will be
able to understand a dangerous scenario right before it happens,
start taking counter measures to keep the drone safe, and provide
the pilot with a bigger reaction-time window. We propose the
use of an artificial neural network, implemented in a lightweight
embedded processing board, that is able to recognize and react
in real-time to various turbulent situations. Experimental results
suggest that our controller is able to respond properly and timely
to wind changes (turbulence) allowing the drone to maintain its
expected state and path.

I. INTRODUCTION

The constant technological advancements in commercial
multi-rotor unmanned aerial vehicles (UAVs a.k.a drones) and
concurrently the reduced costs, have created a huge diverse
application domain and a greater impact in everyday life, not
only in entertainment but also regarding multiple commercial
applications in several fields, both in terms of criticality
(i.e. surveillance, monitoring, control, disaster management)
and in terms of overhaul business models in advertising,
land surveying, and many more. It is widely accepted that
multi-rotor UAVs can provide a fast and efficient solution.
However, in contrast to their powerful and diverse entrance
into the market, we believe that they do not provide sufficient
failsafe mechanisms to prevent accidents that may occur due
to technical problems or unforeseen real world situations such
as air turbulence, pilot inexperience, loss of line-of-sight,
and many more reasons. As such, they are still treated with
caution, as evident by national laws that limit their usage

978-1-5386-2880-5/17/$31.00 (© 2017 IEEE

and require extensive training, extremely high insurance costs,
and several other restrictions, so that they can fly legally.
Some countries treat them as manned aircraft, limiting their
application spectrum and taking away a potentially life-saving
tool especially when used in disaster management. [1][2][3][4]

In fact, their adoption and acceptability in more applications
lies within making them more reliable and trust-worthy, so that
these situations can be completely avoided if possible. A prime
example of such situation is the crash of a camera-equipped
drone during the 2nd slalom run of the Alpine Skiing World
Cup. A drone came down crashing to the ground right next to
the skier Marcel Hirscher at Madonna di Campiglio in 2015.
From the footage, it appears that the UAV was completely
out of control and the pilot was not able to redirect it to a
safer location before it crashed or get it to the ground while
minimizing or eliminating possible damage. [5][6]

This paper therefore, presents an initial approach towards
an intelligent lightweight, low power, built-in controller for
multirotor UAVs, based on artificial neural networks, which
will be able to monitor and possibly predict a dangerous
scenario as fast as possible, even at its early conception stages,
and(autonomously) initiate counter measures to keep the drone
as stable as possible, and providing the pilot with a larger
reaction-time window. Part of the scope of this work is to
utilize sensors that are already available on most commercial
UAVs and do not rely on external sensing such as GPS,
enabling the drone to be completely self-reliant. Furthermore,
while relatively accurate, a GPS-guided flight is not as accurate
as it should be for more applications, especially considering
that drones may fly indoors or in remote and potentially
dangerous terrains such as canyons, etc. Our implementation
should be suitable for new environments and different loca-
tions as it was never trained for specific conditions only.

Another contribution of this work is the holistic and ex-
perimentally verifiable approach that we took in designing
the intelligent controller, both during training and evaluation
of its performance. Data collection was done via a drone
with a flight controller’s sensors being logged. The drone
was exposed to several scenarios under different weather
conditions, using both remote control induced conditions and
an actual fishing line to upset the drone. At the same time the
UAV remote controller (RC) instructions were also monitored

to provide the system with knowledge of what the pilot was
initially intending to achieve. To record and analyse a greater
spectrum of tests, we used a fishing line to pull the drone
into different directions and rotate it to simulate scenarios
we did not meet during our flight time. The flight data was
used to develop and train an Artificial Neural Network (ANN)
which is used to identify an unwanted situation, and thus
intelligently provide the on-board motor controller with the
necessary signals (pitch, roll, yaw and throttle) to keep the
drone stable as fast as possible. The trained ANN was then
implemented on an embedded lightweight platform, with the
flight controller’s sensors, which was reattached on a drone for
real-time evaluation. Our initial results show that for induced
situations, as well as real-life situations (i.e. actual turbulent
air) the ANN can achieve accurate predictions in excess of
80% of either naturally or artificially induced incidents and
scenarios. However, there were scenarios, especially when
we had high winds, where the system was not able to cope
with the force of nature, highlighting that further work is
necessary, especially regarding the crucial stage of data col-
lection. However, to the best of our knowledge, this is the first
attempt at training and evaluating such a controller with real-
life scenarios and data. We therefore hope that our work will
stimulate further research in this field.

Consequently, this paper is organised as follows. Some
background on the operational parameters of multi-rotor UAVs
and their influence on our design approach is given in Section
II, along with some related work on intelligent drone con-
trollers. Section III presents the design and development of
the ANN based controller, which is experimentally verified
by the procedure and setup detailed in Section IV. The results
are presented in Section V nd the paper concludes giving some
future research directives in Section VI.

II. BACKGROUND AND RELATED WORK

Commercial multi-rotor UAVs rely on the use of at least 4
propellers, arranged either in a traditional cross or in an X-
cross, with the blades rotating opposite each other. The motors
that control the blades traditionally operate in pairs in a simple
linear mode (i.e. increasing or decreasing speed depending
on where the pilot wishes to steer the drone). The propellers
work in unison to steer the drone and provide the basic control
functions/flight states: pitch, roll, yaw and throttle. Figure 1
shows how the rotors rotate on quadcopters, where rotors 1 and
3 rotate clockwise and rotors 2 and 4 rotate counterclockwise.

o A quadcopter hovers by adjusting its altitude in a constant
level. The hover is done by applying equal thrust to
all rotors. This technique is used to downlift and uplift
a quadcopter by adjusting smaller and bigger thrusts
equally to all rotors.

o aw is the self-turn of the quadcopter either left or right,
by applying more thrust to the rotors rotating in one
direction. In the third configuration in Figure 1 you can
see how this adjustment is done on the rotors.

« Pitch and Roll is the movement of the quadcopter either
forward or backward, and either left or right respectively.

A Ya B
O
2
-9 9.9
b X
O
v

@Oﬁ ®. 9

Fig. 1: A. Motor rotation on quatrocopters.
B. Motor power for hover.

C. Motor power for yaw.

D. Motor power for pitch and roll.

e 0.0

Pitch and Roll are done by applying more thrust to one
rotor and less thrust to its diametrically opposite rotor.
In the last configuration of 1 you can see how this
adjustment is done on the rotors.

However, these UAV systems were dynamically unstable,
thus basic control algorithms were applied, reacting to specific
feedback and stabilising the drone. In fact, various control
methods were used to solve the stabilization issue on UAVs;
some use a PID control [7], others an H-infinity control [8],
and more recently predictive control [9]. The most common
solution for this problem is the use of PID control [10]
which can be combined with a PD controller [11], usually
preferred due to its simplicity and effectiveness. The PID
controllers operate on the flight states: roll, pitch, yaw, altitude
and position, to perform their corrections. The problem with
PID controllers is that they require tuning and setting of
Proportional, Integral and Derivative multipliers, which is a
time-consuming and laborious process. If the user does not
achieve a good tuning, this method provides limited stability.

In general, PID controllers have trouble operating under
conditions that are far from the optimal hover point, and thus
may not be suitable for lightweight commercial drones that
are typically used today; in fact, these popular micro aerial
vehicles (less than ten kilograms) can get heavily affected
by disturbances due to intense wind gusts, and many more
unpredicted reasons [12]. Some solutions with good results
[13][14][15] suggest the use of neural networks that create a
non-linear mapping from inputs to outputs and can capture
the UAV flight dynamics by creating a robust controller.
One such solution is an adaptive neural network controller
based on CMAC (Cerebellar Model Articulation Controller)
[14], which has good results even during considerable wind
disturbance, but this algorithm is considered as a memory
hog, thus unsuitable for a lightweight embedded system such

as our targeted drones. Some work has also been done on
self-tuning adaptive control using neural networks [15]. The
combination of genetic algorithms with neural networks is
another approach, creating neuro-evolutionary algorithms that
rank each controller based on a cost function [16]. Higher
performing cost functions are mutated, with some probability,
in order to search for optimal solution. However, such a
solution is even harder to be implemented on a lightweight
embedded processing platform, as it takes a very long time
for the generations to reach the optimal solution and thus will
not be able to operate in real-time.

Hence, our aim is to create a light-weight predictive con-
troller based on artificial neural networks, which will be
capable of turning in real-time results, fit on a battery-
powered embedded processing platform, and run using on-
board sensing data. The challenge goes beyond the training
and evaluation stage though, given that the ANN has to be
optimized to fit within such an embedded platform.

III. ANN DESIGN AND DEVELOPMENT

Motivated from the promising results of ANN-based con-
trollers and constrained by the physical dimensions, power
consumption and real-time computation, we proposed the use
of an ANN-based intelligent motor controller. The ANN needs
to run on a low-power embedded processor that is capable of
being part of the drone payload. The proposed ANN receives
discretely sampled sensory data from on-board sensors in a
time-series format and performs pattern identification. The
objective of the ANN is to be trained to identify when any
detected drone motion is indeed what the pilot intends to
perform, or if it is part of an unwanted situation, such as
turbulence, pilot error etc. Thus, the training of the ANN is
crucial, and data collection is perhaps the greatest challenge
in this quest. Moreover, the ANN footprint must also be as
minimal as possible, both in terms of memory and program
code and in terms of resources (neurons, synapses, weights),
so that it can be implemented on lightweight hardware that can
be included on a drone’s standard equipment. The following
steps highlight the development of our proposed ANN.

A. Training

Perhaps the most important decision lies in determining the
data, in terms of its format, amount, and timing (availability,
etc.) required to train the targeted ANN. Part of this work
lies within the data collection process. Therefore, our first
step was to perform several measurements during real flights,
and collect real sensor data, to be able to train the ANN as
realistically as possible. Most commercial UAVs are equipped
with four basic intrinsic sensors: the barometer, the gyroscope,
the compass and the accelerometer. These sensors provide
readings relevant to motion, direction of motion, velocity
during motion, and of course altitude. In contrast to GPS
sensors that rely on readings from geopositioning satellites,
none of these sensors require external communication to work,
thus they are ideal for facilitating our targeted autonomy level.
When fused, these sensor data provide enough information for

the ANN to detect and recognize an incident compared to the
expected normal drone behaviour. When used in conjunction
with the input of the UAV RC, (i.e. to ensure that the ANN
receives the intentions of the pilot as part of the supervised
training process) it can then be trained to identify intended
vs. non-intended motion/trajectory, and respond to adjust the
control signals (pitch, roll, yaw and throttle). We briefly
describe the sensory data and their importance next:

o The barometer (or pressure altimeter) is used to measure
altitude through atmospheric pressure. This information
is useful to understand sudden wind gusts that might push
the drone high in the air or detect gradual inclination of
the drone’s altitude during its flight.

o The gyroscope (or gyro) allows us to measure rotational
motion. Using its 3-axis output we can automatically
perceive the full rotational movements of the drone and
handle titling caused by air. Tilting can cause the drone to
accelerate fast in a direction and get it out of control. It is
imperative to limit such behaviour as fast as possible to
avoid these situations. An uncontrollable yaw (the drone
spinning around itself) results in rapid loss of control and
usually violent fall.

o The solid state compass (or magnetometer) identifies
changes to the orientation of the drone and helps restore
the drone to its original intended direction. Monitoring
this device allows the ANN to understand minor changes
to the orientation of the drone that might not be easily
perceived by the pilot, but collectively with the other
motions it can completely change the drone’s trajectory
path.

o The accelerometer measures acceleration; an important
sensor that enables the ANN to know the rate of change
of the velocity of the drone in the 3 axes, thus allowing
the ANN to detect changes that otherwise may not be
detected by the compass or the gyroscope. This scenario
can happen when air pushes the drone in the same direc-
tion as its intended motion trajectory, thus the gyroscope
will not detect rotational movement and the compass will
not detect any orientation changes.

The next step is determining the collection of this data.
As the objective is to maintain real-time response, it was
decided to collect the data via discrete sampling of the sensor
readings, which would then be fed to the on-board ANN in
time-series format. Thus, the ANN would constantly receive
data from the sensors during a sampling window with n
intervals with dr being the series interval, and would output
any adjustment decisions to the drone in terms of adjusting the
pitch, yaw, roll and throttle signals at the end of every sampling
window. The timing duration of the sampling window is
determined by the performance of the neural network, whereas
the sampling interval within the window is determined by the
ability of the host board to receive the sensory data. These two
parameters therefore are important in the context of deciding
any optimization requirements to speed up the ANN at the
cost of reduced accuracy, something we discuss later in the

Fig. 2: A graphic representation of our MLP ANN

trade-offs.

We used Theano [17] to process the data and we trained
the network using a back-propagation supervised training
algorithm. The data was classified as “intended trajectory”
vs. “not intended trajectory”, with the necessary correct ad-
justment outcome of the ANN as the acceptable output. The
collected flight data was therefore analysed along with the
drone trajectory and its flight data information, and was fused
together in tuples. In addition to the sensory data, for training
purposes, for every interval the readings of the barometer,
gyro, compass and accelerometer were fused into a tuple; each
tuple was then used to form a time-series data pattern, where
the expected motion trajectory was described with the received
tuples. In the event when the received tuples described an
unintended trajectory (as we used real-life data collection),
the correct trajectory types were fused with whatever number
of tuples within that interval corresponded to the intended
motion, and the unintended trajectory was labelled as such,
along with the “breaking” point. In this way, the training
data consisted of all types of information; n tuples which
described motion within each d¢t window, and the expected
(or unexpected) data that differentiated between what was
anticipated and what was caused unintentionally. Moreover,
this enabled us to identify the mistake in the drone’s trajectory
and exactly classify the suggested action that had to be taken
by the controller.

Each motion trajectory then was subsequently fed into the
ANN and was labelled as intended or not-intended (depending
on the monitored RC signal), and the ANN was also trained to
identify the tuple sequence that caused an unintended situation
as described above. Thus, the ANN was then configured to
output the expected corrective action in the form of roll, pitch,
yaw and throttle.

B. ANN Design Trade-offs

Our initial experimentations suggested that an appropriate
number of sampling (tuple) intervals would be set at n =
20. Based on our targeted embedded platform, the expected
ANN processing time per sampling window was set at 2
seconds, which would provide a sufficient reaction time to the

network prior to the pilot taking their own corrective actions,
yet it would not be prohibitive for implementation purposes
on an average embedded processor. We chose a multi-layer
perceptron as our ANN with 10*20 nodes (i.e. the number
of sensory data per tuple per n) on the input layer and 4
nodes on the output layer (pitch, roll, yaw and throttle). Our
training resulted to 102 hidden nodes, which was a trade-
off achieved when we varied the number of hidden layer
neurons and saw that the accuracy did not increase further.
Our goal was to achieve 95% accuracy during training while
minimizing the risks of over-fitting our network. Given our
targeted performance window and the fact that the ANN would
be deployed in a constrained embedded processor with limited
processing and memory capabilities powered by a battery, we
decided to keep the number of hidden layers and hidden nodes
as low as possible.

C. Optimizations

Embedded devices usually have limited resources, so in
order to achieve real-time performance, our objective was to
have both a fast and a power-efficient ANN. For this reason
we performed certain optimizations to reduce execution time
and lower the energy consumption, while also minimizing the
memory footprint of the ANN. Minimizing the memory foot-
print enabled us to increase the range of neuron instances that
could be created in parallel. We briefly list these optimizations
next:

o To boost performance, we loaded the weights directly
into code as an array to avoid linking memory-intensive
libraries that allow us to facilitate operations over the host
file system.

e We used a circular buffer to store the data used during
the processing to avoid the usage of dynamic memory
allocation which is very expensive (in terms of allocation
and release).

o The targeted compiler (GCC) was configured to per-
form several speed optimizations to increase performance
while risking an increase in the code footprint, making
the system more efficient and power friendly, as it would
produce the same results faster. This was performed over
several iterations to result in a pareto-optimal solution.

o Raw data was normalized and tupled only once every
timing window (i.e. every dr), and then data was stored
in its new form to be reused over its 20 cycle lifespan.

o We introduced an orientation filter which uses a quater-
nion representation, in order to fuse accelerometer, mag-
netometer and gyroscope data into a representation of the
drone in a three-dimensional space [18]. This important
step allowed us to reduce the input sensory data per
tuple from 10 down to 5. Although we understand that
this change may affect the accuracy of our ANN, the
benefits are extremely important, as the number of input
neurons was reduced from 200 down to 100, the number
of necessary hidden nodes to 52 and the number of total
weights to less than half of the original. The impact
is also reflected in the amount of several thousand less

Naze 32 Revé

Phantom Drone

Data C i Training ANN Deployment
Optimization Test
f f * f

Optimizations

Induced Scenarios ANN Develooment Evaluation

for Nucleo

Fig. 3: A graphic representation of the workflow we followed
to perform our experiment

multiplications and additions. Note worthily, this change
also positively affects the overall memory of the system
as we dropped the memory consumption as well, which is
another important advantage in our targeted application.

D. Performance Evaluation Strategy

Our aim was to evaluate the ANN using real-life data and
measure the ANN’s performance using four metrics; accuracy,
power consumption, code/memory footprint, and performance
(delay). Thus, we obtained evaluation data as described in
Section IV-B.

IV. EXPERIMENTAL SETUP AND APPROACH

As previously mentioned, our evaluation strategy involved
real-world testing. Therefore, we partitioned the experimental
setup in two phases. The first phase involved the data collec-
tion part and the training of the neural network, whereas the
second phase involved the deployment of the neural network
on a drone and the evaluation under real-life scenarios.

We used the following hardware for our experimentation
mounted on a UAV:

1) The Raspberry Pi 3 was used for data logging and for
controlling the whole system.

2) The STM32 Nucleo-144 electronic prototyping platform
by STMicroelectronics hosted the brains of our neural
network.

3) A USB power bank was used for power supply and for
various power consumption measurements.

4) The Naze 32 Rev6 Full flight controller unit was used
as we could not access the commercial FC on the drone.

5) The DIJI Phantom 2 is a ready to fly, multifunctional
quad-rotor system.

A. Phase 1 - Data Collection and Training

The setup for the collection of the training data included
the integration between a single board computer (SBC) and
the flight controller (FC), and the deployment of the two on
the drone to capture real flight data. During this stage, we used
a Raspberry Pi 3 to serve as the single board computer and
the Naze32 as the flight controller, onboard the DJI Phantom
2 quadcopter.

The integration of the SBC and the FC was done over a cus-
tom built interface implementing serial communication over

USB. The communication protocol used was MSP (Multiwii
Serial Protocol [19]), which is a plain text communication
method. The MSP protocol is used for exchanging data from
the flight controller to any other device that supports it. The
Pi was controlled over WiFi via SSH, giving us access to the
whole system while the drone was in the air and it facilitated
the filtering and sorting of flight data on the go. All flights
were recorded on video, allowing us to review them later on
and understand data that appeared to be strange while we
were trying to provide the ground truth information for the
test vectors.

The objective was to collect as many flight data under real
conditions. We also collected data while the drone was on the
ground with the rotors off and we kept changing its orientation
and its angle. This allowed us to read any sensory data
associated with jitter and noise and thus calibrate the NAZE32
sensors. We also performed part of these measurements while
the rotors were spinning at different speeds with no propellers
on, to identify additional noise caused by motors as well.
Besides that, we recorded some basic movements such as roll,
pitch and yaw along with hovering and vertical take offs and
landings in a closed space, again to help us better understand
what we see and how it translates to meaningful information.

Following the recording of the basic movements, we made
recordings outside to observe drifting and tilting caused by air.
Finally we collected the information that the flight controller
provided while the drone was being pulled and rotated by a
fishing line. The fishing line was attached to the drone and
was pulled by a person on the ground, to simulate as many
unwanted incidents as possible, and collect as many associated
data as possible. In order to eliminate noise, these experiments
were run multiple times in an identical fashion, and the
training dataset was constructed. The training procedure is
outlined in Section III-A.

B. Phase 2 - Deployment and Real World Testing

The neural network was implemented on an STM32 Nucleo-
144 that met our criteria, as it was set for high speed, low
footprint, small size, and low power consumption. Thus, it was
attached to the drone, connected to the NAZE32 controller, and
used during the evaluation phase.

Under this configuration, we powered on the Raspberry Pi
through the USB power bank, the Nucleo through the Pi and
the Naze through the Nucleo board.

The Nucleo and subsequently our ANN was loaded using C
and the Eclipse IDE. The STM32CubeF7 API and framework
was used to access the Nucleo peripherals. We compiled
the code using the GDB ARM cross compiler and used the
OPENOCD framework for on-chip debugging.

Once the ANN was loaded, we started the evaluation. First,
we removed the propellers of the drone to prevent accidents.
Next, we hung the drone from the ceiling and by using fishing
line we were inducing movements while reading the outputs
of our neural network via the Raspberry Pi. Once the in-lab
testing was concluded, we then proceeded to evaluate the drone
in real-world scenarios, flying it outside.

V. EXPERIMENTAL RESULTS

We followed the experimental approach described in Sec-
tion IV to evaluate the performance of our ANN. First, we
compared the accuracy of the ANN when running induced
motion trajectories that were also part of the training set. This
gave us extremely good accuracy (well over 90%). The next
step was to evaluate the accuracy of the ANN in terms of
forecasting specific trajectories and taking corrective action
when receiving completely unknown data. This was achieved
by flying the drone freely, monitoring the flight controller and
the pilot’s remote controller data, and observing the drone’s
motion through video analysis at a later stage. Upon each flight
completion, we measured the correct and erroneous decisions
made by our ANN. Further on, we measured the percentage of
false positives (i.e. when the pilot was intending to perform
a specific action, and the ANN mistook it for an error and
produced the wrong motor controller output).

Additionally to our evaluation in terms of accuracy, we pro-
vide results corresponding to the performance of the ANN in
terms of sampling window (0.35 seconds), power consumption
(200 microwatts) per sampling window computation, and the
memory (23 KB) and code (1.7 MB) footprint.

While the accuracy remains relatively low (83%), the ma-
jority of the mispredictions were the result of high wind gusts
and flying over hills (which always causes turbulent air). These
incidents can be hardly emulated in a controlled environment,
thus further research is necessary to improve the training set.
As this is to the best of our knowledge a first attempt at
building such a prototype, we cannot compare it to existing
work. However, a lot remains to be done. The amount of
real-world scenarios remains infinite, thus it is imperative for
researchers to continue building upon this work to improve
the accuracy and the ANN itself. Nonetheless, we have shown
that a light-weight ANN, built on a low-power and portable
embedded processing platform such as the STM Nucleo board,
can be a promising initial step towards a trust-worthy drone
system, necessary for modern societal needs and the emerg-
ing vast application domain. Especially in comparison with
CMAC/PID, our implementation is lightweight and it could
be used on more powerful platforms like the Raspberry Pi
with no additional risks.

VI. CONCLUSION

There is great potential in using ANNs as intelligent flight
controllers. Their ability to take decisions even with noisy or
unknown data makes them a good candidate for the position.
Unlike any deterministic system based on a fixed algorithm,
they need a lot of training before they start being productive.
Their training needs to be consistent and it must be similar to
the real world scenarios the ANN is supposed to be part of.

REFERENCES
[11 J. S. Duncan, “Framing the future of aviation,” Euro-
pean Parliament - European Data Protection Supervisor,

http://ec.europa.eu/transport/sites/transport/files/modes/air/news/doc/2015-
03-06-drones/2015-03-06-riga-declaration-drones.pdf, Declaration,
March 2015, riga declaration on remotely piloted aircraft (drones).

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

J. Foster,
systems
vehicles

“Report on safe use of remotely piloted aircraft
(rpas), commonly known as unmanned aerial
(uavs), in the field of civil aviation (2014/2243
(ini)),” European Parliament - Committee on Transport and
Tourism, http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-
/[EP//NONSGML+REPORT+A8-2015-0261+0+DOC+PDF+V0//EN,
Report A8-0261/2015, September 2015, result of final vote (45+ vs 1-).
F. A. Administration, “Unmanned Aircraft Systems (UAS) Regulations
& Policies,” https://www.faa.gov/uas/resources/uas_regulations_policy/,
[Online; Last accessed 11-May-2017].

J. S. Duncan, “Small unmanned aircraft systems (suas),” U.S.
Department of Transportation Federal Aviation Administration,
https://www.faa.gov/uas/media/AC_107-2_AFS-1_Signed.pdf, Advisory
Circular 107-2, June 2016, initiated by: AFS-800.

1. S. Federation, “Drone incident in Madonna di
Campiglio,” http://www.fis-ski.com/alpine-skiing/news-
multimedia/news/article=drone-incident-madonna-campiglio.html,
December 2015, [Online; Last accessed 11-May-2017].

, “Drone incident in Madonna di Campiglio,” http://www.fis-
ski.com/alpine-skiing/news-multimedia/news/article=infront-sports-
media-follow-statement-drone-accident.html, December 2015, [Online;
Last accessed 11-May-2017].

S. Bouabdallah, A. Noth, and R. Siegwart, “Pid vs 1q control techniques
applied to an indoor micro quadrotor,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, Sept 2004, pp. 2451-2456 vol.3.

J. Gadewadikar, F. Lewis, K. Subbarao, and B. M. Chen, “Attitude
control system design for unmanned aerial vehicles using h-infinity
and loop-shaping methods,” in 2007 IEEE International Conference on
Control and Automation, May 2007, pp. 1174-1179.

Y. Kang and J. K. Hedrick, “Linear tracking for a fixed-wing uav
using nonlinear model predictive control,” IEEE Transactions on Control
Systems Technology, vol. 17, no. 5, pp. 1202-1210, Sept 2009.

I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke,
“A prototype of an autonomous controller for a quadrotor uav,” in 2007
European Control Conference (ECC), July 2007, pp. 4001-4008.

B. Erginer and E. Altug, “Modeling and pd control of a quadrotor vtol
vehicle,” in 2007 IEEE Intelligent Vehicles Symposium, June 2007, pp.
894-899.

J. F. Shepherd, III and K. Tumer, “Robust neuro-control for a
micro quadrotor,” in Proceedings of the 12th Annual Conference
on Genetic and Evolutionary Computation, ser. GECCO *10. New
York, NY, USA: ACM, 2010, pp. 1131-1138. [Online]. Available:
http://doi.acm.org/10.1145/1830483.1830693

T. Madani and A. Benallegue, “Adaptive control via backstepping tech-
nique and neural networks of a quadrotor helicopter,” IFAC Proceedings
Volumes, vol. 41, no. 2, pp. 6513 — 6518, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1474667016399906

C. Nicol, C. J. B. Macnab, and A. Ramirez-Serrano, “Robust neural
network control of a quadrotor helicopter,” in 2008 Canadian Confer-
ence on Electrical and Computer Engineering, May 2008, pp. 001 233—
001 238.

F. C. Chen, “Back-propagation neural networks for nonlinear self-tuning
adaptive control,” IEEE Control Systems Magazine, vol. 10, no. 3, pp.
44-48, April 1990.

K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99-127, 2002. [Online]. Available: http://nn.cs.utexas.edu/?stanley:ec02
http://deeplearning.net, “Theano,” https://github.com/Theano/, 2009,
[Online; Last accessed 11-May-2017].

S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estimation
of imu and marg orientation using a gradient descent algorithm,” in 2071
IEEE International Conference on Rehabilitation Robotics, June 2011,
pp. 1-7.

Multiwii, “Multiwii Serial Protocol,”
http://www.multiwii.com/wiki/index.php?title=Multiwii_Serial_Protocol,
2013, [Online; Last accessed 11-May-2017].

