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Abstract—Switching lattices are two-dimensional arrays of
four-terminal switches proposed in a seminal paper by Akers in
1972 to implement Boolean functions. Recently, with the advent
of a variety of emerging nanoscale technologies based on regular
arrays of switches, synthesis methods targeting lattices of multi-
terminal switches have found a renewed interest. In this paper, the
testability under the stuck-at-fault model (SAFM) of switching
lattices is analyzed, and properties of fully testable lattices
are identified and discussed. Experimental results are given
to analyze the testability of lattices synthesized with different
methods.

Index Terms—Switching lattices; testability; logic synthesis.

I. INTRODUCTION

A switching lattice is a two-dimensional lattice of four-
terminal switches linked to the four neighbors of a lattice
cell, so that these are either all connected, or disconnected. A
Boolean function can be implemented by a lattice associating
each four-terminal switch to a Boolean literal, so that if the
literal takes the value 1 the corresponding switch is ON and
connected to its four neighbors, otherwise it is not connected.
The function evaluates to 1 if and only if there exists a
connected path between two opposing edges of the lattice, e.g.,
the top and the bottom edges (see Figure 1 for an example).
The synthesis problem on a lattice consists in finding an
assignment of literals to switches in order to implement a given
target function with a lattice of minimal size.

The idea of using regular two-dimensional arrays of
switches to implement Boolean functions dates back to a
seminal paper by Akers in 1972 [2], but has found a renewed
interest recently, thanks to the development of a variety of
nanoscale technologies. Synthesis algorithms targeting lattices
of multi-terminal switches have been designed [3], [5], [13],
[14], and methods based on function decomposition techniques
have been exploited to mitigate the cost of implementing
switching lattices [8], [9], [10]. Moreover, several studies on
fault tolerance for nano-crossbar arrays have been published
recently [4], [15], [16], [17].

Besides synthesis and fault tolerance, testability is a ma-
jor aspect of the design process. While detailed studies on
testability have been performed for standard two-level and
three-level networks (see for instance [1], [6], [7], [11], [12],

[18]), to the best of our knowledge, the testability of switching
lattices has not been considered so far. Therefore, in this paper,
we study redundancies of lattices under a static fault model:
the stuck-at-fault model (SAFM). In particular, we prove that
under the SAFM, switching lattices minimized with respect
to the number of literals controlling the switches are free of
redundancies by construction. Whereas, it can be shown by
counter examples that lattices minimized with respect to the
number of switches, i.e. minimized with respect to the size,
are not in general fully testable. We also identify the properties
that make a switching lattice fully testable in the SAFM,
and show how these properties resemble the properties that
guarantee the full testability of the SOP forms in the SAFM,
i.e., the primality of the products and the irredundancy of the
cover. Finally, we propose a method for identifying redundant
cells in a lattice. We conclude the paper reporting experimental
results regarding the testability of lattices synthesized with two
different methods [5], [13].

II. PRELIMINARIES

A. Fault Models (FMs)
The standard stuck-at faults model (shortly, SAFM) is well-

known and used throughout the industry for many years [1],
[11]. In SAFM it is assumed that a defect causes a basic cell
input or output to be fixed to either 0 or 1, i.e., signal lines
can assume constant values independent of the inputs.

Definition 1: A stuck-at fault with fault location v is a tuple
(v[i], ε) or ([i]v, ε). v[i] ([i]v) denotes the i-th input (output)
pin of v, ε ∈ {0, 1} is the fixed constant value.
In the following we simply speak of stuck-at-0 (SA0) and
stuck-at-1 (SA1) faults. Now, let C be any combinational logic
circuit over a fixed library.

Definition 2: An input t to C is a test for a fault f , iff the
primary output values of C on applying t in presence of f are
different from the output values of C in the fault free case.

A fault is testable, iff there exists a test for this fault. The
goal of any test pattern generation process is a complete test
set for the circuit under test, i.e., a test set that contains a
test for each testable fault. The construction of complete test
sets requires the determination of the faults which are not
testable (= redundant), even though it is easy to see that
in general the detection of redundancies is coNP-complete.
Redundancies have further unpleasant properties: they may978-1-5386-4756-1/18/$31.00 c©2018 IEEE
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Fig. 1. A four terminal switching network implementing the function
f = x1x2x3+x1x2+x2x3 (a); its corresponding lattice form (b); the
lattice evaluated on the assignments 1,1,0 (c) and 0, 0, 1 (d), with grey
and white squares representing ON and OFF switches, respectively.

invalidate the completeness of the test set and often correspond
to locations of the circuit where area is wasted [11]. For this,
synthesis procedures which result in non-redundant circuits are
desirable. A node v in C is called fully testable, if there does
not exist a redundant fault with fault location v. If all nodes
in C are fully testable, then C is called fully testable.

Finally, we recall that the investigations with respect to
the SAFM are usually based on the single fault assumption,
i.e., one assumes that there is at most one fault in the circuit.

B. Switching Lattices
A switching lattice is a two-dimensional array of four-

terminal switches linked to the four neightbours of a lattice
cell, so that these are either all connected (when the switch is
ON), or disconnected (when the switch is OFF). A Boolean
function can be implemented by a lattice in terms of connec-
tivity across it:
• each four-terminal switch is controlled by a literal;
• each switch may be also labelled with the constant 0, or

1;
• if the literal takes the value 1, the corresponding switch is

connected to its four neightbours, else it is not connected;
• the function evaluates to 1 if and only if there exists a

connected path between two opposing edges of the lattice,
e.g., the top and the bottom edges;

• input assignments that leave the edges unconnected cor-
respond to output 0.

For instance, the 3 × 3 network of switches in Figure 1
(a) corresponds to the lattice form depicted in Figure 1 (b),
which implements the function f = x1x2x3 + x1x2 + x2x3.
If we assign the values 1, 1, 0 to the variables x1, x2, x3,
respectively, we obtain paths of gray square connecting the
top and the bottom edges of the lattices (Figure 1 (c)), indeed
on this assignment f evaluates to 1. On the contrary, the
assignment x1 = 0, x2 = 0, x3 = 1, on which f evaluates
to 0, does not produce any path from the top to the bottom
edge (Figure 1 (d)).

The synthesis problem on a lattice consists in finding an
assignment of literals to switches in order to implement a
given target function with a lattice of minimal size. The size
is measured in terms of the number of switches in the lattice.

A switching lattice can similarly be equipped with left
edge to right edge connectivity, so that a single lattice can
implement two different functions. This fact is exploited in [5]
where the authors propose a synthesis method for switching
lattices simultaneously implementing a function f according
to the connectivity between the top and the bottom plates, and
its dual function1 fD according to the connectivity between
the left and the right plates. In [13], the authors have proposed
a different approach to the synthesis of minimal-sized lattices,
which is formulated as a satisfiability problem in quantified
Boolean logic and solved by quantified Boolean formula
solvers. This method uses the previous algorithm to find an
upper bound on the dimensions of the lattice. It then searches
for successively better implementations until either an optimal
solution is found, or a preset time limit has been exhausted.
Experimental results show how this alternative method can
decrease lattice sizes considerably. In this approach the use of
fixed inputs (i.e., constant values 0 and 1) is allowed.

III. LATTICES: DEFINITIONS AND PROPERTIES

In this section we introduce some definitions and present
some properties of switching lattices that will be exploited in
Section IV for the analysis of their testability.

Let the first row of a lattice be the top row, the last row
be the bottom row, and any other row be an internal row.
Two cells in a lattice are adjacent if they are in the same
column and in two adjacent rows or in the same row and in
two adjacent columns. Hereafter, in a lattice we denote path
any list l1, l2, . . . , lm−1, lm of literals such that li and li+1 (for
all 1 ≤ i < m) are contained in adjacent cells and: 1) l1 is
contained in a cell in the top row, 2) lm is contained in a cell in
the bottom row, and 3) all the other literals (i.e., l2, . . . , lm−1)
are contained in cells of the internal rows. Note that paths in
lattices may contain more occurrences of the same literal.

Definition 3: A path in a lattice is unsatisfiable (resp.,
satisfiable) if contains (resp., does not contain) both a variable
x and its complement x.

Definition 4: The product associated to a satisfiable path is
the conjunction of all literals of the path, without repetitions.
The product associated to an unsatisfiable path is 0.
For example, in the lattice in Figure 1 (b) the path x2, x1, x2
is satisfiable and the path x1, x2, x1, x2 is unsatisfiable. The
associated products are x1x2 and 0, respectively.

With a slight abuse of notation, we consider the products
associated to all paths in a lattice L as implicants of the
function fL implemented by L. Indeed, fL evaluates to 1
on the set of minterms covered by these products. In this
framework, the set of minterms covered by an implicant can
be empty: this happens whenever a path is unsatisfiable, as,
in this case, the associated product evaluates to 0.

Definition 5: An accepting path for a minterm v in a lattice
is a satisfiable path whose associated product covers v.

We now introduce the concept of primality of a path in
a lattice which is strictly related to the concept of prime
implicant in a SOP:

1The dual of a Boolean function f depending on n binary variables is the
function fD such that f(x1, x2, . . . , xn) = fD(x1, x2, . . . , xn).
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Definition 6: A path l1, . . . , li, . . . , lm in a lattice L is prime
w.r.t. a literal li (1 ≤ i ≤ m), if the product associated to the
sequence of literals obtained removing li from the path is not
an implicant of the function implemented by L.
The primality of a path with respect to a literal l implies that:

(1) the path cannot contain other occurrences of l, since the
corresponding product would not change if we remove
one occurrence of l from the path, leaving the others;

(2) the path cannot contain pairs x, x, with x 6= l, since
the removal of l would leave the associated product
unchanged, and equal to 0;

(3) the path might contain cells associated to l (in this case
the path is unsatisfiable, and becomes satisfiable after
the removal of l).

For instance, in the lattice in Figure 1 (b):
• the satisfiable path x2, x3, x2 is prime w.r.t. x3, as the

product x2 obtained removing x3 from the path is not an
implicant of f = x1x2x3 + x1x2 + x2x3;

• the satisfiable path x2, x3, x2 is not prime w.r.t. x2, as
the removal of one occurrence of x2 leaves the associated
product x2x3 unchanged;

• the unsatisfiable path x2, x1, x2, x3 is prime w.r.t. x2, as
the product x1x2x3 is not an implicant of f ;

• the unsatisfiable path x1, x2, x1, x2 is never prime, as the
removal of any of its literal leaves the associated product
unchanged, and equal to 0.

We finally focus on the single cells in a lattice, and we
introduce a property that can be associated to the irredundancy
of a SOP. Let c be a cell in a switching lattice L that
implements a function fL.

Definition 7: The cell c is essential in L if there exists at
least a minterm v in the on-set of fL whose accepting paths
always contain c.
For instance, in the lattice in Figure 1 (b) all cells on the
leftmost column are essential, as they form the only accepting
path for the on-set minterm 000; while the top-left cell c in
the lattice in Figure 2 (b) is not essential, since for any on-
set minterm of the function implemented by the lattice there
exists an accepting path that does not include c.

Observe that setting to the constant value 0 a literal in
a cell c is equivalent to removing all paths that include c
from the lattice L: indeed, the 0 in c disconnects, i.e., makes
unsatisfiable, all paths going through c. If, in addition, the cell
c is essential for a minterm v, then all accepting paths for v
are removed from L. Thus, the function implemented by the
lattice changes, at least on v. In this sense, we can associate
the notion of essential cell to that of irredundant product: if
we remove an irredundant product from a SOP, the function
represented by the expression changes, and if we remove from
the lattice L all paths that include an essential cell, the function
implemented by L changes. We conclude this section with the
following two propositions that characterize how the function
implemented by a lattice may change setting one cell to a
constant value, i.e., forcing a stuck-at-fault in the cell. Let L
be a switching lattice, and let fL be the function implemented
by L. Now, consider the lattice Lc←1 obtained replacing a
literal in a cell c of L with the constant 1.

Proposition 1: The on-set of the function fLc←1 imple-
mented by Lc←1 is a superset of the on-set of fL, i.e.,
fonL ⊆ fonLc←1 .
Proof. We show that any satisfiable path in L remains satis-
fiable in Lc←1. Let p = l1, l2, . . . , lm−1, lm be a satisfiable
path in L. If this path does not include the cell c, than the
corresponding path in Lc←1 is composed by exactly the same
literals of p, and it is satisfiable. If p includes the cell c, than
the corresponding path in Lc←1 is obtained replacing one of
the literals of p with the constant 1, and it is satisfiable.

Consider now the lattice Lc←0 obtained replacing a literal
in a cell c of L with the constant 0. We have:

Proposition 2: The on-set of the function fLc←0 imple-
mented by Lc←0 is a subset of the on-set of fL, i.e.,
fonLc←0 ⊆ fonL .
Proof. We show that any satisfiable path in Lc←0 is satisfiable
in L. Let p = l1, l2, . . . , lm−1, lm be a satisfiable path in
Lc←0. The thesis immediately follows since the satisfiable
path p cannot include the cell c (that has value 0), thus the
corresponding path in L is composed by exactly the same
literals of p, and is satisfiable.

IV. TESTABILITY IN THE SAFM
In this section we analyze the properties that make a

switching lattice fully testable in the SAFM. As we will see,
these properties resemble the two properties that guarantee the
full testability of the SOP forms in the SAFM: the primality
of the products, that ensures the testability of AND gates, and
the irredundancy of the cover, that guarantees the testability of
the OR gate. In our analysis we will consider stuck-at-faults
at the literals that control the four-terminal switches in the
lattice. We first introduce the notion of irredundant literal in
a lattice.

Definition 8: A literal in a lattice’s switch is 0-irredundant
(resp., 1-irredundant) if it cannot be substituted by the constant
0 (resp., 1) without changing the function computed by the
lattice.
For instance, the literal x1 in the top-left cell of the lattice
in Figure 2 (b) is not 0-irredundant, while the literal x4 in
the center-right cell of the lattice in Figure 2 (a) is not 1-
irredundant. The notion of irredundancy can be extended to
the whole lattice as follows:

Definition 9: A lattice is 0-irredundant (resp., 1-
irredundant) if any literal contained in it is 0-irredundant
(resp., 1-irredundant).

Definition 10: A lattice is irredundant if it is 0-irredundant
and 1-irredundant.

Observe that 0-irredundant literals guarantee the testability
of SA0 faults in the corresponding cell of the lattice, while
1-irredundant literals guarantee the testability of SA1 faults.
Indeed, since the function implemented by the lattice changes
if we set a literal in a cell c to the constant 1 or to the constant
0, the fault in c can be tested on the minterm on which the
function changes. Thus, we have

Proposition 3: An irredundant lattice is fully testable with
respect to the SAFM.
The two lattices in Figure 2 (c) and (d) are irredundant, and
thus fully testable in the SAFM.
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Fig. 2. Four different mininum size switching lattices implementing
the function f = x1x2x3 + x1x4. (a) A 0-irredundant, but not 1-
irredundant, lattice; (a) a 1-irredundant, but not 0-irredundant, lattice;
(c) a fully testable lattice; (d) a fully testable lattice with a minimum
number of literals.

We now investigate the relations between minimality of
a switching lattice and full testability in the SAFM. We
first consider the minimality with respect to the number of
switches, i.e., the area of the lattice. Under the SAFM, it can be
shown by counter examples that a lattice of minimum size for a
given target function is not in general fully testable. Consider
for instance the lattice in Figure 2 (a) that implements the
function f = x1x2x3 + x1x4: this lattice is of minimum size,
but it is not fully testable, because it is not 1-irredundant. On
the contrary, lattices minimized with respect to the number of
literals in the switches are free of redundancies.

Theorem 1: A switching lattice L with a minimum number
of literals is fully testable in the SAFM.
Proof. Suppose that L is not fully testable. This means that
there exists at least one redundant cell in the lattice whose
literal can be replaced by a constant value, 0 or 1, without
changing the implemented function. If replace the literal in this
cell with a constant value, we get a new lattice for the same
function, with a smaller number of literals, in contradiction
with the minimality of the number of literals in L.

The lattice in Figure 2 (d) contains a minimum number
of literals (4) and is therefore fully testable. Note that the
minimality of the number of literals is not necessary for the
full testability. For example, the lattice in Figure 2 (c) is
fully testable, but not minimum with respect to the number
of literals, as it contains 5 literals instead of 4.

Finally, we prove in the following theorems that the struc-
tural properties of switching lattices that guarantee their full
testability in the SAFM are the primality of the paths (for
the stuck-at-1 faults) and the essentiality of the cells (for the
stuck-at-0 faults).

Theorem 2: A SA1 in a lattice cell c with literal l is testable
if and only if there exists a path p that contains the cell c and
is prime with respect to l.
Proof. Let L be a switching lattice, and let fL be the function
implemented by L.
(If part). Consider a path p in L that contains the cell c and
is prime w.r.t. l. Recall that the primality of p w.r.t. l implies
that p cannot contain other occurrences of l, p might contain
cells associated to l, and p cannot contain pairs x, x, with
x 6= l. We must show that the SA1 in c can be propagated to

the output of the lattice L in order to be tested, i.e., we must
prove that the function implemented by the faulty lattice differs
from the original function fL on at least one minterm. This
immediately follows from the primality of the path p. Indeed,
if we substitute with the constant 1 the unique occurrence of
l in p, the resulting product, which cannot be empty because
of the properties of prime paths (see Section III), is not an
implicant of fL. Therefore, there exists at least one minterm in
the off-set of fL covered by this new product. On this minterm
the faulty lattice computes 1, instead of 0, since the path p,
with l replaced by 1, becomes an accepting path.
(Only-if part). Now suppose that the SA1 in the cell c, with
literal l, is testable. As we are injecting a constant value 1 into
the lattice, we know, by Proposition 1, that the faulty lattice
is always correct on the on-set of fL. Thus, the testability
of the SA1 implies the existence of an off-set minterm v of
fL on which the faulty lattice computes 1, while the original
lattice computes 0. Since whenever the literal l gets the value
1, correct and faulty lattices are identical and have the same
behaviour, l must be 0 on v. Let us now denote with p an
accepting path for v in the faulty lattice. p is satisfiable and
contains the cell c with the constant 1, while it cannot contain
cells with literal l since l is 0 on v. Consider the corresponding
path q in the original lattice L. p and q are identical in all cells
but c, which is labelled by 1 in p and by l in q. The product
of all literals in q is an implicant of fL, possibly empty if
it contains l. If we remove l, the resulting product is not an
implicant since it covers the off-set minterm v. Therefore path
q is prime w.r.t. l.

Theorem 3: A SA0 in a lattice cell c is testable if and only
the cell c is essential.
Proof. Let L be a switching lattice, and let fL be the function
implemented by L.
(If part). We show that the function implemented by the lattice
with a SA0 in the essential cell c differs from fL on at least
one minterm. As we are injecting the value 0 into one cell of L,
Proposition 2 implies that the faulty lattice is always correct on
the off-set of fL. Thus, to prove the testability of the SA0, we
must show that there is an on-set minterm of fL on which the
faulty lattice computes 0, while the original lattice computes
1. Let l be the literal associated to cell c. Since c is essential,
there exists an on-set minterm v for which all accepting paths
include c. On all these paths, l must be 1. Now, if we substitute
with the constant 0 the literal l in c, we disconnect all paths
going through c, and in particular all accepting paths for v.
This the faulty lattice computes 0 instead of 1 on v, and the
fault can be tested.
(Only-if part). We prove by contraposition that if c is not
essential, then a SA0 in c cannot be tested. So, suppose that
cell c, with literal l is not essential. By Proposition 2, we know
that the faulty lattice, with a SA0 in c, is always correct on
the off-set of fL. Thus, it is enough to show that the faulty
lattice is correct also on the on-set of fL. Let v be a minterm
of fL. Since c is not essential, there exists an accepting path
p for v not including c. Thus, the SA0 in c has no effect on
p, and the faulty lattice correctly computes 1 on v.
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V. ALGORITHMS FOR IRREDUNDANCY TEST

In this section we describe a strategy for identifying the
redundant, i.e., non irredundant, cells in a lattice. Recall
that an irredundant lattice is fully testable under the SAFM.
Moreover, recall that in our analysis we only consider stuck-
at-faults in non-constant cells, i.e., only stuck-at-faults at the
literals that control the switches. We first describe a method-
ology to test whether a given cell in a lattice is 0-irredundant
(resp., 1 irredundant). Algorithm 1 shows the strategy based
on Theorem 3: a cell c, in the lattice L, is 0-irredundant if and
only if c is essential, i.e., there exists at least one miniterm v
in the on-set of fL whose accepting paths always contains c.

Algorithm 1: Algorithm for the testing of the 0-irredundancy
of a cell c.
0-irredundant (cell c)
INPUT: A cell c (containing the literal l) in a lattice L
OUTPUT: true if c is 0-irredundant in L, false otherwise
forall sub-path pT from a top cell of L to c (c 6∈ pT )

if (pT contains l) discard pT ;
if (pT contains x and x) discard pT ;
else

forall sub-path pB from c to a bottom cell of L (c 6∈ pB)
if (pB contains l) discard pB ;
if (pT pB contains x and x) discard pB ;
else forall minterm m of the product associated to pT , l, pB

if m is not in the on-set of Lc←0 return true ;
return false;
The algorithm starts from the given cell c (containing the literal
l) and considers any sub-path pT in the lattice from one top
cell to c (where c is non included in pT ). If pT contains l
the path is discarded since the SA0 in c will not change the
output of any minterm computed by L through pT . Moreover,
if pT contains a variable x and its complement x any path
containing as a prefix pT outputs 0. Thus, the output is not
affected by the SA0 in c and pT can be discarded. Any other
sub-path pT is consider in combination with a sub-path pB
from c to a bottom cell of L. Again, we can discard some of
the sub-paths pB in a similar way. In order to check if c is
essential, we are left to consider any minterm m of the product
p associated to pT , l, pB and test if m is in the on-set of Lc←0.
We can omit to test the minterms in the product associated to
pT , l, pB since we have c = 0 in Lc←0. If we find a minterm
of p that outputs 0 in Lc←0, the fault is testable.

Algorithm 2 shows the strategy based on Theorem 2: a cell
c (containing the literal l), in the lattice L, is 1-irredundant if
and only if there exists a path p that contains the cell c and
is prime with respect to l, i.e., the product associated to the
sequence of literals obtained removing l from the path is not
an implicant of the function implemented by L.

Algorithm 2: Algorithm for the testing of the 1-irredundancy
of a cell c.
1-irredundant (cell c)
INPUT: A cell c (containing the literal l) in a lattice L
OUTPUT: true if c is 1-irredundant in L, false otherwise
forall sub-path pT from a top cell of L to c (c 6∈ pT )

if (pT contains l) discard pT ;
if (pT contains x and x) discard pT ;
else

forall sub-path pB from c to a bottom cell of L (c 6∈ pB)

if (pB contains l) discard pB ;
if (pT pB contains x and x) discard pB ;
else forall minterm m of the product associated to pT , l, pB

if m is not in the on-set of L return true ;
return false;
The first part of the algorithm is similar to Algorithm 1. In
order to check if there exists a path p that contains the cell
c and is prime with respect to l, we are left to consider any
minterm m of the product p associated to pT , l, pB and test
if m is in the on-set of L. It is easy to see that a lattice L
can be modeled with an undirected graph GL = (V,E) where
each vertex v in V corresponds to a cell c in L and it is
labeled with the literal in c. The edge (v, w) is in E iff the
vertices v and w correspond to adjacent cells in L. A vertex
corresponding to a cell in the top (resp., bottom) row is a top
(resp., bottom) vertex . Both the algorithms consider sub-paths
from top cells to c and from c to bottom cells. They can be
easily implemented by DFS visits in the graph GL from c to
top (resp., bottom) vertices. The final test in both algorithms
can be implemented by OBDD based methods, as classically
performed in SOP forms for primality and irredundacy test.
More precisely, we need to build the OBDD representing the
target function f computed by L, and the OBDD containing
all products associated to a satisfiable path through c. The
two algorithms have then time complexity polynomial in the
size of the OBDDs and the graph GL. An alternative strategy
is a simulation in the given lattice L and in the transformed
ones Lc←0 and Lc←1. The irredundacy of the overall lattice is
simply tested by applying the 0-irredundant and 1-irredundant
tests on all the non-constant cells of the lattice.

VI. EXPERIMENTAL RESULTS

In this section we discuss the experiments aimed at eval-
uating the testability of switching lattices synthesized with
the recent methods presented in [5], [13]. These experiments
are based on the fault injection in lattices by substituting a
literal controlling a single cell with a SA1 or a SA0. The fault
injection procedure is repeated for each cell of the lattice.

The defect simulations have been run on a machine with two
AMD Opteron 4274HE for a total of 16 CPUs at 2.5 GHz
and 128 GByte of main memory, running Linux CentOS 7.
The benchmarks functions are expressed in PLA form and are
taken from a subset of LGSynth93 [19]. A total of about 580
functions were considered, and for each function each output
is implemented as a separate Boolean function. The software
used for simulations is written in C++. We used ESPRESSO
to implement the method described in [5], and a collection
of Python scripts for computing minimum-area lattices by
transformation to a series of SAT problems, to simulate the
results reported in [13].

Table I reports a sample of benchmark functions, referring
to lattices synthesized as described in [5] and [13]. The
benchmarks synthesized with [13] method were stopped after
ten minutes of each SAT execution. The first column in the
table reports the name and the number of the considered
output of each function. The following columns report, for
each synthesis method, the dimension (r× s, and area) of the
lattice, and the percentages of 0-redundant and 1-redundant
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TABLE I
A SAMPLE OF BENCHMARK FUNCTIONS SYNTHESIZED WITH [5] AND [13] APPROACHES AND THEIR PERCENTAGES OF 0-REDUNDANT AND

1-REDUNDANT CELLS

[5] [13]
name col × row area (R0 / area)% (R1 / area)% col × row area (R0 / area)% (R1 / area)%
addm4 (6) 10×11 110 49% 79% 6×4 24 0% 0%
b11 (3) 3×6 18 22% 56% 3×4 12 8% 8%
b7 (27) 2×5 10 0% 30% 3×3 9 22% 0%
bench (3) 4×6 24 8% 58% 4×3 12 8% 0%
dc2 (1) 7×12 84 40% 62% 6×4 24 4% 13%
ex5 (34) 10×4 40 8% 53% 6×4 24 0% 8%
exps (32) 2×7 14 43% 29% 2×5 10 10% 0%
m3 (3) 5×4 20 10% 55% 5×3 15 7% 7%
m3 (4) 8×6 48 27% 42% 7×3 21 0% 0%
max128 (23) 11×12 132 33% 82% – – – –
newtag (0) 8×4 32 13% 69% 6×3 18 0% 0%
newxcpla1 (18) 10×7 70 44% 71% 3×7 9 0% 0%
p3 (10) 6×10 60 10% 67% 4×5 20 0% 15%
p82 (13) 5×7 35 29% 34% 3×5 15 0% 0%
rd53 (1) 10×10 100 18% 80% – – – –
risc (21) 2×5 10 20% 20% 2×4 8 13% 0%
root (1) 8×8 64 36% 73% 6×4 24 8% 8%
sex (4) 3×5 15 40% 27% 3×4 12 17% 17%
tms (0) 4×11 44 32% 41% 3×6 18 0% 0%

TABLE II
OVERALL RESULTS OF THE SIMULATIONS

Synthesis
Method

Average
area (R0/area)% (R1/area)%

[5] 30 20% 29%
[13] 15 4.5% 4.5%

cells. Table II describes the overall results for the benchmarks
we considered, and it shows the average values for lattice area
and percentages of 0-redundant and 1-redundant cells.

We can note that the percentage of cells that are redundant
is higher in the [5] synthesis method. This is due to the
more constrained structure of the lattices. Indeed, the method
proposed in [5] computes a lattice that implements both the
target function and its dual, and is in general less compact
than the corresponding lattice given by [13].

VII. CONCLUSION

In this paper we have analyzed the testability of switching
lattices under the SAFM, and characterized the properties of
fully testable lattices. We have also proposed an algorithm
to detect redundancies. Future work includes the design of a
method to transform non testable lattices into testable ones, by
replacing some literals with a constant value, without changing
the implemented function.
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