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Abstract—The complexity and heterogeneity of digital devices
used in embedded systems is increasing everyday and deliver-
ing a bug-free design is still a very complex task. The interest
for open-source hardware in real products is demanding for
tools and advanced methodologies for verification to provide
high reliability to open and free IPs. In this work, an open-
source evolutionary optimizer has been used to create func-
tional test programs that improve the verification test set for
an open-source microprocessor, enhancing in this way, the veri-
fication level of the device. The verification programs are gener-
ated to optimize code coverage metrics and are tested against
a high-level model to find device incorrectnesses during the
generation time. A perturbation mechanism has been included
in the verification framework to cover parts of the device under
verification not reachable with only software stimuli such
as interrupts or memory stalls. The proposed methodology
uncovered 10 bugs still present in the RTL description of the
analyzed device and demonstrated the effectiveness of open-
source verification tools for the next generation of open-source
RISC-V microprocessors.

1. Introduction

The increasing interest for open-source hardware is
opening a new era in the silicon market. Among many, the
free and open-source RISC-V Instruction-Set Architecture
(ISA) [1] is becoming a viable option supported by industry
leaders, such as Google, Micron, NXP, Microsemi, Qual-
comm, Nvidia and Western Digital just to cite a fews [2].
A rich ecosystem of open-source software and hardware is
growing around the RISC-V ISA. The Rocket and BOOM
[3], [4] from UC Berkeley are two open-source RISC-V
microprocessors already in use in companies like SiFive and
Esperanto Technologies [5], [6]. The Riscy and Zero-riscy
[7], [8] from ETH Zurich and University of Bologna are two
more open-source RISC-V microprocessors for Internet-Of-
Things (IoT) platforms used, among others, by GreenWaves
Technology and Dolphin Integration. [9], [10].
Open-source cores come however with major verification
challenges. Verification is already a bottleneck for the de-
sign cycle. Some surveys state that validation, verification

and testing (VV&T) require about 60% [11] of the total
production costs. Companies approaching open-source IPs
usually verify their functionality internally and can provide
reports or fixes to the IP designers to improve the quality
of the free hardware. For instance, recently the Riscy core
has been compared and chosen to be a valid candidate in
an industry project by Google [12]. For that reason, it has
also been extensively verified using STING [13], a versatile
design verification platform. This helped in uncovering cru-
cial bugs in the Riscy multiplier and the forwarding and stall
logic related to the load-and-store unit. The bugs have been
reported and fixed, proving the usefulness of open-source
hardware in the industry context and the needs of advanced
verification strategies.
However, a complete open-source verification framework for
open-hardware would allow free access to verification efforts
and it would increase the reliability of free IPs. Clifford
Wolf from Symbiotic EDA developed an open-source end-
to-end formal verification framework for RISC-V processors
[14]. However, it requires changes in the DUV interfaces
to be integrated in such framework. Kami is another open-
source formal verification framework that has been used to
verify BlueSpec written RISC-V processors [15]. On the
other side, µGP (microGP) [16] is a flexible open-source
evolutionary-based tool that is able to automatically generate
syntactically correct assembly programs and it has been
already used to test and verify microprocessors [17]. In
short, the evolutionary engine receives the description of
the processor assembly syntax and the evolution parameters.
As a final result, the best suited test programs, or best
individuals, are included in the verification suite. In most
of the cases, such programs maximize the code coverage
metrics of the Device Under Verification (DUV) and can be
used to find inconsistencies between the HDL of the DUV
and the trusted golden model.
In this paper, a simulation-based verification framework
based on µGP is developed to increase the verification level
of the Riscy core with automatic test program generation.
Such framework relies on an evolutionary test program gen-
erator, the DUV, a golden model to evaluate the correctness
of the DUV, and an independent evaluator that promotes
programs that cover most of the DUV HDL description.
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The evolutionary engine drives the test program generation
targeting to maximize the high-level code coverage metrics.
The verification setup takes as input an instruction library
that has been split and used in several evolutionary phases
to optimize the final verification test set. In addition, a
perturbation module has been described to produce a noisy
behavior in the processor interaction with the external world
(memories and interrupts). Furthermore, the generation of
the programs is combined with the verification phase to
leverage all the individuals created during the evolution to
increase the change to uncover bugs in the HDL description.
If a bug is found during the evolution, the individual can
be added to the final verification suite. The proposed ver-
ification framework is composed by free and open-source
program generator and DUV1 2 and can be adapted for
others RISC-V HDL descriptions, bringing state-of-the-art
verification methods to the open-hardware ecosystem. The
elements used in the proposed methodology can be easily
integrated in a formal verification plan as the one defined
by [18].
The main contribution of the proposed methodology and
case study consists on creating stimuli for the Riscy core
that optimize a set of code coverage metrics to thoroughly
explore the verification research space. In fact, the proposed
setup was able to discover bugs on arithmetic functions of
the core when special operands were used. For example,
infinite numbers in the core Floating-Point Unit (FPU)
or operands that cause intermediate overflows during the
computation of special function in the Arithmetic Logic Unit
(ALU).
At the end of the proposed verification process, we obtained
an automatically generated verification test-set reaching on
average about 90% on a set of high-level code coverage
metrics, while unveiling 10 different bugs still present in
the processor description.
The rest of the paper is organized as follows: Section 2
recalls some important concepts that support the paper,
and summarizes some of the most important aspect about
function verification for microprocessors and introduces the
proposed approach, describing the main novelties of the
presented strategy. Sections 3 introduces the case study
and outlines the results gathered on Riscy. Finally, the last
sections conclude the paper and draft the future works.

2. Microprocessor Functional Verification

It is possible to define functional verification as the
demonstration that the intent of a design is preserved in its
implementation. Many methodologies have been proposed to
reach this goal targeting digital circuit verification, and can
be roughly classified as static or dynamic techniques. Static
methodologies (usually called formal) try to demonstrate
that the circuit implementation conforms the specifications.

1. µGP is open-source and freely downloadable at
http://ugp3.sourceforge.net/

2. Riscy is open-source and freely downloadable at
https://github.com/pulp-platform/riscv

Formal techniques can be classified as canonical graphical
expression models, including for example BDDs [19];
and algebraic expression models, that include for example
satisfiability (SAT) and integer linear programming (ILP)
[20] methodologies. The main disadvantages of formal or
static techniques are the huge computational resources re-
quired, even for circuits of medium complexity. Differently,
dynamic methodologies (called simulation-based) aim at
uncover design errors by exercising the actual implemen-
tation of the design. These methodologies do not suffer
from the above limitations, but only cover a limited range
of behaviors and will never achieve 100% confidence of
correctness [21]. Interestingly, in [18], the author states
that the actual success of a dynamic methodology is mainly
based on a well established verification route-map. This
route-map, called verification plan, should be composed of
three main elements:

• Coverage measurement: clearly defining a verification
problem, the different metrics to be used and the veri-
fication progress;

• Stimuli generation: providing the required stimulus to
thoroughly exercise the devise by following the plan
directives;

• Response checking: describing how to demonstrate the
behavior of the device conforms the specifications.

Due to the current complexity of processor cores, a
suitable solution to create a stimuli set for microprocessor
verification is to resort to test or verification programs. A
test program is a syntactically correct sequence of assembly
instructions that is provided to the processor using the
normal execution mechanisms. The test program goal is not
to execute a normal task, but to try to discover any possible
design or production flaw.
Since its introduction [22] in the 80’s, test programs have
targeted validation, verification and testing of microproces-
sors. One common practice for microprocessor functional
verification is to resort to hand written programs made by
skilled design engineers that for example exercise certain
corner cases. Unfortunately, these engineers are required to
have a deep knowledge of the device under verification,
meaning that a considerable amount of human effort is
required to create these verification programs.
A different possibility to generate functional test programs is
to resort to constrained-random test generation, as proposed
in [23], [24], [25]. Those techniques usually exploit pro-
gram templates where some of the used values or program
parameters are generated randomly, whereas others are pre-
viously defined. The main drawback of those techniques is
that they are difficult to implement when targeting complex
designs. A possible evolution of the previous techniques is
based on the exploitation of coverage metrics able to provide
feedbacks to better drive the generation process. These
techniques, as described for example in [17], [26], [27],
require the generation and simulation of a huge quantity of
test programs, but the generation process is usually more
efficient than in pure random-based approaches.



2.1. Proposed Approach

The framework developed in our case study is depicted
in Figure 1. The setup includes a generation step (stimuli
generation) combined with subsequent checking (response
checking).

On the left part of the figure, it is possible to see the evo-
lutionary optimizer called µGP [16], an evolutionary-based
tool inspired by the Darwinian principle of reproduction and
survival of the fittest. µGP receives the description of the
processor assembly syntax trough the so called Instruction
Library, in addition to configuration information that sets
the parameters used during the evolution, for example, the
number of test programs in the population, the number of
instructions included on every test program, the maximum
number of test programs to simulate, and so on. Then, the
evolutionary process starts by creating a set of random pro-
grams, so called individuals, that are evaluated externally by
a fitness function. At every evolutionary step or generation,
the best individuals are improved using genetic operators
such as crossover and mutation, while the worst ones are
discarded.
The Instruction Library is devised targeting the specific
DUV ISA. In this library, the different processor registers,
instructions, rules of use, and for example, the available
addressing modes are described to support the generations
of test programs. Moreover, not only mere instructions are
described, but more complex pieces of programs that define
finite loops, illegal instructions, and special environmental
parameters to throw exceptions. In addition, divisions by
zero, infinite and not-a-number operations are also described
to cover special cases in the microprocessor.

Figure 1. Verification framework

In our experiments, the verification programs are eval-
uated resorting to a checking scheme reported in the right
part of Figure 1. In particular, the framework setup followed
these steps:

1) The Instruction Library was created according to the
target ISA.

2) The main µGP settings were defined.
3) A script was produced to automate the flow. Its

purpose was to pick up the individuals produced by
µGP generation by generation and provide it to the
simulator and the ISS. Then, to create the fitness
function, the code coverage percentages were collected
and fed to the evolutionary algorithm again.

The fitness of every verification program is evaluated
by measuring its capacity to maximize the code coverage
metrics on the processor model [28] [29]. For any verifica-
tion program, a fitness value was computed by resorting to
an equation that includes together the different metrics; in
particular, the used metrics are: Statement Coverage, Branch
Coverage, Condition Coverage, Expression Coverage, FSM
State Coverage, and FSM Transition Coverage.
The fitness function is computed as following: for each
metric in use, the arithmetic average, the variance and the
sum is computed accounting for all the core modules single
metrics. As equation 1 highlights, this results in a vector of
18 elements which is used by µGP to drive the evolution.
In particular, µGP gives more relevance to the first element
of the vector fitness function and least priority to the last
one. The order of elements has been decided empirically,
with the first 6 elements being the average (a), the second
6 elements the variance (v) and last 6 elements the sum
(s) of the Statement Coverage (1), Branch Coverage (2),
Condition Coverage (3), Expression Coverage (4), FSM
State Coverage (5), and FSM Transition Coverage (6).

fitness = {a1, a2, a3, a4, a5, a6, v1, v2, v3, v4, v5, v6,
s1, s2, s3, s4, s5, s6}.

(1)

Where for instance:

a1 =
Sum of Statement Coverage of all units

Number of units

a2 =
Sum of Branch Coverage of all units

Number of units

(2)

In order to improve the coverage results, a perturbation mod-
ule has been embedded in our framework. The perturbation
module is a hardware component that generates random
interrupts and introduces random stalls on both data and
instruction memory interfaces. It contains memory-mapped
registers to configure a stall and interrupt mode (random
number of stalls/interrupts or fixed). The initialization of
the perturbation module is set random before executing the
generated individual. However, one can consider for future
works to program the perturbation registers as part of the
evolutionary process.
Together with the fitness value that is used to guide the
evolutionary process, any program is also used to compare
the current processor model outcome (Riscy+FPU in Figure
1) against a high-level and reliable model (an instruction
set simulator or ISS in Figure 1). The ISS functional model
is an accurate model of the Riscy ISA. For every instruc-
tion, the HDL simulator pushes the instruction word to the
ISS via a DPI-C wrapper. At the end of the execution, it
compares the result computed by the HDL description with
the one computed by the ISS. In this way, it is possible to
find differences in execution between the compared models
during the evolutionary generation phase rather than using
only the optimized final individuals. Once a difference is
found, a report is created allowing the verification engineer
to evaluate the bug of the DUV.



3. Case study and experimental results

Figure 2. RI5CY Architecture

To experimentally demonstrate the effectiveness of the
proposed method, the RTL description of the Riscy micro-
processor is targeted [7]. Riscy is an open-source, 32bit, in-
order, 4 pipeline stages microprocessor based on the open-
source RV32IMFC extensions of the RISC-V ISA [1] and it
is described in SystemVerilog. It has been developed under
the Parallel Ultra-Low Power Platform (PULP) project [30]
and it has been extended with HW-Loop, fixed-point, bit-
manipulation and Single-Instruction Multiple-Data (pSIMD)
instructions for energy efficient computation on signal pro-
cessing algorithms [7]. It occupies only 40K nand2 gate-
equivalent in the umcL65 nm technology [8] plus 30K extra
gates for the FPU. The core’s 4 pipeline stages are the
Instruction Fetch (IF), Instruction Decode (ID), Execution
(EX) and Write Back (WB) and its architecture is shown in
Figure 2.

In the IF, the interaction between the core and the in-
struction memory bus takes place, the next program counter
is calculated and the compressed instructions are decoded.
The ID stage hosts the decoder, the register-file and the
pipeline controller, which is also in charge to perform data-
forwarding and stalling the pipeline. In the EX stage the
enhanced ALU, multiplier and FPU are accommodated as
well as the Control-Status (CS) register-file. The Load-Store
Unit (LSU) sends data-memory requests during in the EX
stage and receives answers in the WB stage. In addition, the
WB stage takes care of two-clock-cycles FPU instructions.
The instruction and data bus-interfaces implement a simple
protocol via request, grant and valid signals. The master
sends the request in the clock-cycle N and the arbiter can
answer with the grant signal at clock-cycle N or later.
The valid signal is provided by the bus-interfaces once the
data from the memory is ready and it can arrive at least
one clock-cycle later than the grant signal or later in case
of multi-cycle memory accesses. Riscy supports up to 32
interrupts and it includes a debug-unit.

In order to verify the functionality of the DUV, it is
also necessary to tests the core while handling interrupts,
instruction and data bus delays (e.g., due to contention in
multi-master bus or cache misses) along with the Software
(SW) exceptions and normal instructions. Such events can-
not be triggered using only instructions; therefore, external
devices are involved to stimulate those conditions [31]. For
this reason, a hardware implementation of the perturbation

Figure 3. Code Coverage Results

module has been designed to provide interrupt requests and
bus stalls during RTL simulations. The perturbation module
introduces delay-cycles both in the grant and valid signals
of the core-memory interface, as well as random interrupt
requests with random interrupt IDs. The memory-mapped
registers allow to select the operational mode (bypass, ran-
dom or not random), the number of stalls and maximum
random numbers. In addition, the perturbation module can
be configured to rise interrupt requests when the Riscy core
is decoding a given instruction identified by its program
counter. This mode is very useful to reproduce bugs that
depend on specific conditions. The perturbation module
registers are mapped in a subset of the core’s debug-space
so that it can be easily integrated in different platforms and
its registers can be accessed by different peripherals such as
JTAG or SPI or by means of load and store instructions.
The previously described framework was implemented and
at the end of the experiments, the verification test set obtains
a high code coverage results reported in Figure 3. It is
interesting to note that the obtained results are in line with
the ones obtained in [32] and described in [28]. Actually, in
most of the cases, for example, in the case of the statement
coverage, the metric saturates at the reported values. In
the performed experiments, the code coverage metrics have
been extracted resorting to Modelsim® HDL Simulation
and used as variables of the fitness function to evaluate the
program’s fitness. However, any free logic simulator tool
which supports code coverage estimation could be used as
well (e.g. Verilator).

The Instruction Library contains hundreds of rules to
describe the aforementioned ISA extensions and special
cases, and it is split in three sub-libraries in order to allow
a better exploration of the processor description and maxi-
mizing the final code coverage at the same time. The first
library generates test programs that only contain RV32IMC
instructions (no floats) and PULP extensions plus constraints
to generate special cases as illegal instructions and functions
to enter sleep mode.
To stress more complex units and corner cases, a second
library has been designed to focus on FPU instructions with-
out polluting the individuals with the generation of integer



TABLE 1. CODE COVERAGE RESULTS.

Library Code Coverage
RV32IMFC Random 52%

Single General-Purpose 64%
Proposed Optimized Splitted 85%

Proposed Optimized Splitted + Perturbation 90%
Code coverage results for different individuals.

instructions. This approach allows to further stress the FPU
with high density float instruction sequences. This library
also contains special cases as RV32F illegal instructions and
corner cases (NaN, infinite, division by zero). Finally, the
third library has been used to generate two different exper-
iments: one to optimize the coverage of the float multiply-
and-accumulate unit and the float division-and-square root
unit isolated from the rest of the DUV; and one still targeting
the FPU but with focus on its conditional part. This is
achieved by giving more relevance to the Condition Cov-
erage metrics in the aforementioned fitness function instead
of the Statement Coverage. The final test program generation
process is split in four different experiments. The union of
all the best individuals results in a final code coverage of
85%. Finally, by adding random stalls on both data and
instruction memory and random interrupt requests, the final
code coverage increased to more than 90%. The remaining
10% was related for example to FSM transitions which never
happened, special case of NaN, infinite numbers, and their
combinations. It is important to note that the main drawback
when dealing with evolutionary-based tools is the simulation
time. In fact, to generate one of the best individuals included
in the final test set, it takes about 8 hours of simulation.

Splitting the evolutionary phases is useful to specialize
the verification functions to face those parts of the DUV
code difficult to cover. Indeed, a single general purpose
library to generate test programs based on the RV32IMFC
plus extensions (but without special conditions like explicit
NaN operands or illegal instructions) was able to cover only
an average of 64% of the HDL code. One of the main
reasons was that the generated program did not contain
enough RV32F instructions keeping the FPU coverage low.
A pure random program generated by the first generation
of individuals from the same library had instead only 52%.
Table 1 summarizes the code coverage discussed above.

The fitness function has been designed trying to boost
all the coverages metrics to grow uniformly, and if two
individuals have the same coverage results, the smaller code
size program is preferred.

The final test set uncovered 10 design bugs during the
verification process. These errors belong to different types,
for example, the computation performed by the instruction
p.clip and p.extract were discovered to be incorrect in a
very specific case. For instance, due to an intermediated
overflow, the p.clip instruction failed to compute the correct
value with specific cases, whereas the logic shift instead of
the arithmetic one was mistakenly used for the p.extract
instruction. Another example involves bugs related to FPU
square root operations with rounding modes or with NaN

operations in the RISC-V fclass instruction.
The proposed method performs better than pure random
and manual approaches as well as than using a single test
program that covers the highest coverage as proposed in
[17]. In fact, having the generation and verification phases
split means using only the best individual to test the correct-
ness of the core, whereas combining the two phases means
testing all the programs generated during the evolutionary
steps. This allows to explore a wider space of programs and
increasing the probability of success. For example, the bug
related to p.clip instruction previously mentioned was not
part of the highest coverage program found by the optimizer,
still it has been generated among the individuals of a prior
generation to be then discarded during the evolutionary
process. By combining generation and verification, every
individual is not only used to calculate the code coverage,
but it has the possibility of being executed and compared
against the golden model (the ISS) to find design bugs. This
approach shows that it is not only important to maximize the
code coverage but also to leverage less important individuals
during the generation phase.

4. Future Work

The success of the experiment results in a more reliable
verification suite to evaluate the correctness of the RI5CY
core. A similar approach can be also used to verify other
microprocessors of the RISC-V open-source community but
it can also be adapted for other kind of HW blocks for
example Direct Memory Access (DMA), HW-Accelerator
(HWA) or any peripherals. Even if this methodology was
followed for a RISC-V, nothing prevents it from being
performed for other ISAs. Furthermore, the presented frame-
work did not consider the verification of the core debug unit,
which can be a future extension of this work. This can be
accomplished by building Instruction Libraries that contain
pseudo-random stimuli for the DUV and by adapting the
perturbation module to interact with the DUV interfaces.
The increasing complexity of free HW (full microcontrollers
with peripherals, DMA, cluster of multicores, event-units,
debug, etc) open the opportunity for verification and testing
research to spread their tools over different IPs connected
together.

5. Conclusion

Today’s crucial role of embedded systems requires to
decrease as much as possible the current time to market
times; however, it is difficult to speed up the production pro-
cess due to the high amount of time and resources required
during the verification step. In this paper, we proposed
an evolutionary-based methodology able to automatically
generate assembly programs and we applied it to enhance
the verification level of the RISC-V Riscy processor. The
proposed methodology combines the use of an evolutionary
optimizer, a hardware perturbation module and a checking
mechanism to rapidly create verification sets of assembly



programs. The evolutionary optimizer, the perturbation mod-
ule as well as the core are open-source and available for
usage and further development. The experimental results
demonstrated the effectiveness of the method by uncovering
10 bugs in the RTL description of the DUV.
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