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Abstract—One of the current trends in space electronics is towards 

considering the adoption of COTS components, mainly to widen the 

spectrum of available products. When substituting space-qualified 

components with COTS ones a major challenge lies in guaranteeing 

the same level of reliability. To achieve this goal, a mix of different 

solutions can be considered, including effective test techniques, able 

to guarantee a high level of permanent fault coverage while 

matching several constraints in terms of system accessibility and 

hardware complexity. In this paper, we describe an approach based 

on Software-based Self-test, which is currently being adopted within 

the MaMMoTH-Up project, targeting the development of an 

innovative COTS-based system to be used on the Ariane5 launcher. 

The approach aims at testing the OR1200 processor adopted in the 

system, combined with new and effective techniques for identifying 

the safe faults. Results also include a comparison between functional 

and structural test approaches. 

I. INTRODUCTION 

Space applications are known to be extremely challenging from a 

reliability point of view, since they are supposed to work in a 

harsh environment (not only in terms of radiation but also from 

the point of view of stresses coming from extreme temperature, 

pression, vibration, etc.) with strong requirements in terms of 

reliability. In order to reduce cost and especially to increase 

device availability, there is a trend towards the adoption of 

Commercial Off-The-Shelf (COTS) components instead of the 

space qualified ones. Obviously, this trend requires evaluating 

the costs and efforts for guaranteeing that the resulting reliability 

still reaches the target threshold [2]. A special niche within the 

general domain of space applications relates to launchers. In this 

case, the mission time is more reduced, while the radiation 

environment corresponds to all the layers from ground up to the 

geostationary orbit (GEO). The MaMMoTH-Up project [3], 

funded by the European Commission within the frame of the 

Horizon 2020 research and innovation programme, aims at 

developing and evaluating a COTS-based system to be used in 

the telemetry unit of the Ariane5 (A5) launcher. More in details, 

the MaMMoTH-Up system is composed of several boards 

targeting data acquisition and processing, power management, 

and data transmission. All these boards use COTS components, 

including a flash-based FPGA where several IPs are mapped, 

including an OpenRISC1200 (OR1200) processor [4] whose 

design has been properly modified to harden it with respect to 

radiation effects. The adoption of such processor allows the 

MaMMoTH-Up system to perform significantly more powerful 

functions than the system it is going to substitute, e.g., in terms 

of data analysis and compression. In order to match the strict 

reliability targets of A5, the MaMMoTH-Up system must be 

protected not only from the radiation effects, which are mainly 

responsible for Latch-up and transient fault effects, but also from 

possible permanent faults arising during both the manufacturing 

process and the following system life. To target permanent faults 

several test steps have been identified, which are performed 

during and at the end of the manufacturing process, at the end of 

the assembly step, and after the system is mounted in the final 

position. Some test is also performed during the mission. The 

fault coverage which can be achieved by these test steps is 

important, since it directly impacts the achieved reliability level. 

To estimate the Fault Rate of the different components, we 

followed the FIDES guidelines [5], taking into account the stress 

conditions which are applied to the system before and during the 

mission. The Failure Rate is then derived by applying an 

FMECA (Failure Mode, Effects, and Criticality Analysis) 

procedure [11] which identifies the fault effects (and their 

criticality) and takes into account the timing and effectiveness 

(i.e., the fault coverage) of the different test steps. Remarkably, 

some of them have to be performed while the system is already 

mounted in its final position. Hence, they must basically 

correspond to a self-test, during which some command is sent to 

the system, the system performs a test of the hardware, and then 

results are sent outside. In the previous versions of the target 

system, which was based on much simpler space qualified 

hardware, a functional test was used for this purpose, where the 

system was asked to perform some basic operations, and a check 

on the computed results was sufficient to identify possible faults. 

Due to the much higher complexity of the MaMMoTH-Up 

system this approach can hardly guarantee the achievement of 

the required fault coverage, especially on the OR1200 core. 

Hence, a structural approach has been devised, based on a set of 

self-test procedures in charge of checking the possible presence 

of permanent faults affecting the processor core. The key 

difference between the two approaches lies in the fact that the 

functional one checks whether the system is able to deliver the 

expected functions, while the structural one identifies first some 

fault model related to the implementation of the underlying 

circuit, and then tries to detect the resulting faults. A major 

advantage of the structural approach clearly lies in the fact that 

the adopted fault coverage metric can be more deterministically 

and quantitatively evaluated than for the functional approach. 

Moreover, while for simple systems the functional approach (if 

suitably implemented) can achieve a sufficient testing quality, 

for more complex modules (such as the OR1200 one) the same is 

not true, as we will experimentally show in the paper. When 

dealing with the OR1200 processor, the self-test procedures 

implementing the structural approach follow the Software-based 

Self-test (SBST) paradigm [6]. Their code is integrated in the 

application software and, when activated, forces the processor to 

execute a proper sequence of instructions. The produced results 

are compacted into a signature which is returned to the calling 
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program, which can thus check the possible presence of a fault 

by comparing it with the expected one.  

The contribution of this paper lies first in describing a case of 

study (corresponding to the OR1200 core) where the 

characteristics of a functional and structural approach can be 

compared (not only in terms of achieved fault coverage, but also 

of memory footprint and duration). Secondly, it describes a 

scenario, where SBST can be effectively adopted, matching the 

several requirements of the qualification, acceptance and in-fly 

test of a space application. Finally, since the target system is 

expected to perform a well-defined set of functions and in a very 

specific configuration (e.g., in terms of memory address space), 

the FMECA is in charge of identifying which faults within the 

OR1200 core can produce any failure, and which faults will 

never be able to do so, e.g., because they relate to some hardware 

part which is not used by the application. While several 

techniques are available to automatically identify some 

categories of untestable faults, we focus here on those faults 

called Safe faults. These faults cannot produce any failure due to 

the specific (hardware or software) constraints the system 

matches during its normal operation. The paper shows that the 

number of safe faults is far from being negligible and uses an 

improved version of the method proposed in [7] to partly 

automate their identification. Due to the impact of the considered 

scenario, the fault coverage results reported in this paper are not 

directly comparable with those in [8], which focus on end-of-

manufacturing test, although they refer to the same processor. 

The paper is organized as follows. Section II summarizes the 

main characteristics of the MaMMoTH-Up system, both in terms 

of underlying hardware and performed functions. Section III 

compares the functional and structural approaches, while Section 

IV focuses on the identification of safe faults. Section V finally 

draws some conclusions. 

II. THE MAMMOTH-UP SYSTEM 

A. General architecture and functions 

The MaMMoTH-Up system shall provide an experiment and 

data acquisition opportunity on board the Ariane5 upper stage 

[3]. It is designed to offer the following functionalities: 

1. Acquire measurement data 

2. Configure and control the experiment 

3. Provide a power supply 

4. Perform self-testing and fault management. 

To meet these functional requirements, a COTS-based system 

including one experiment controller (TCM-S), two computing 

nodes (OBC-S), two data acquisition boards (AQB) and a power 

supply unit (PSU) was developed. The system is housed in a 

foam-cushioned container to protect it from the harsh 

environment on board the launch vehicle. In order to collect 

sensor data and communicate with the Ariane5 upper stage, the 

system offers analogue acquisition channels for temperature, 

acceleration, vibration, shock and pressure sensors and a RS422 

interface for data downlink. Synchronization with the launcher 

timeline and direct status reporting is done using three closed-

current loops as inputs and eight discrete output pins. During the 

mission, the system steps through a number of different 

acquisition schemes according to the specific mission profile. An 

acquisition scheme determines which sensors are activated at 

which sampling rates up to 10 kHz. The data is collected and 

preprocessed by the computing nodes and then sent to the 

experiment controller using the internal SpaceWire bus. On the 

experiment controller, the data is analyzed, compressed and 

stored on a flash-based mass memory before it is sent to the 

Ariane5 and downlinked using the launcher’s telemetry chain. 

The complete data flow including its allocation to the different 

boards is depicted in Figure 1. 

 

Figure 1 Data Flow 

Each OBC-S board as well as the TCM-S board include a flash-

based IGLOO2 FPGA. Each of these is holding an OR1200 soft 

core as well as accompanying IP cores, i.e. for SpaceWire 

communication amongst the boards. The required software 

images are kept in a two gigabyte NAND-flash memory that is 

implemented on each board. For data storage, the TCM-S is 

equipped with an additional sixteen gigabyte NAND-flash. The 

data acquisition is performed by a custom IP core that samples 

ADC channels and returns a block of samples to the software. 

Preprocessing, analysis and compression are then performed by 

software run by the OR1200 processors. The data compression 

algorithm consists of two steps whose load is divided between 

the OBC-S and the TCM-S. The OBC-S boards will perform a 

wavelet transform. The transformed data is then sent to the 

TCM-S. From the received wavelet transform, certain 

characteristics of the underlying data (e.g., value range and 

maximum gradient) are deduced. The transformed coefficients 

are then encoded into an embedded bitstream. According to the 

deduced characteristics of a given block, a certain number of 

bytes in the downstream are allocated for this bitstream. All 

other bits are cut to save downlink budget. The complete 

compression scheme is described in [9]. From a reliability point 

of view, although the OR1200 processors on the FPGAs and 

especially their memories and registers are hardened by 

duplication or triplication of some of the underlying flip-flops, 

there is no redundancy at the unit or system level. If the failure is 

not permanent, the system is able to recover by performing a 

software reset or power-cycle on the affected board. Should this 

not be successful because the failure proves to be permanent, the 

board has to be deactivated, inevitably resulting in a loss of the 

connected sensor channels. In this case, the MaMMoTH-Up 

system follows the concept of graceful degradation: although 

parts of the sensors cannot be acquired anymore, the remaining 

transfer budget can be reallocated to use it as efficiently as 

possible. 

B. The OR1200 processor 

The OR1200 is the only major RTL implementation of the OR1K 
architecture spec. The OR1200 is a 32-bit scalar RISC with 
Harvard micro-architecture and 5 stage integer pipeline. The 
OR1200 core is mainly intended for embedded, portable and 
networking applications. Fig. 2 shows its architecture. 
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Figure 2. OR1200 CPU Architecture 

III. COMPARING THE FUNCTIONAL AND STRUCTURAL 

APPROACHES 

A. Background  

In the frame of the actions to evaluate the reliability of the 

MaMMoTH-Up system and to guarantee that the target figures 

are matched, a key role is played by the test solutions adopted to 

identify possible permanent faults. These solutions are activated 

in different phases of the product life time, since the qualification 

step until the operational phase (i.e., during the launch). We 

underline that these test solutions should be usable and effective 

when applied in a scenario, where the target modules (e.g., the 

FPGA implementing the processor) have been already mounted 

on their boards, and each board has been included in the final 

box corresponding to the telemetry unit, which has been installed 

in its final location within the launcher. Hence, the whole test 

should be performed with very limited support from the outside, 

and should be minimally invasive with respect to the target 

system. In order to evaluate the effectiveness of these test 

solutions and to use meaningful fault coverage figures during the 

reliability evaluation process, a metric must be first identified. 

Traditionally, a functional metric is adopted. Since the early 

specification phases, the list of functions that the system must 

support is defined. For each of them, a functional test is then 

developed, aimed at verifying that the target function is correctly 

performed by the system. In this scenario a qualitative metric is 

adopted, which guarantees that the system is not affected by any 

fault if all the functional tests for all the functions are successful. 

When moving to more complex systems including COTS 

components, a different metric can be considered, which first 

identifies a structural fault model which is supposed to represent 

the possible permanent faults in the target device, and then 

computes the percentage of structural faults which are detected 

by the considered test solution. One of the goals of the 

MaMMoTH-Up project is to define new procedures for 

reliability evaluation, able to match the characteristics of COTS-

based systems. Given their complexity, the project partners 

decided to assess the effectiveness of the functional approach 

when a structural fault model was adopted, at least for the most 

complex module, corresponding to the OR1200 CPU. Since the 

detailed information about the structure of the adopted FPGA 

were missed, we decided to perform such an assessment 

resorting to the popular stuck-at fault model, computing first the 

fault coverage achieved by the functional test when the CPU 

circuitry mapped on the FPGA was synthesized with a generic 

gate-level library. This approach is partly supported by the 

results of [20], showing that the stuck-at fault model, when 

applied to FPGAs, provides Fault Coverage results which are not 

far from those which can be obtained resorting to more accurate 

fault models, based on the knowledge of the internal 

implementation of the device (which is not available in our case). 

Moreover, we developed a set of SBST test procedures targeting 

the stuck-at faults inside the OR1200 core. These procedures 

(that we cumulatively call structural test in the following) are 

integrated within the application software of the system and can 

be easily launched from the outside or by the system itself when 

required. Each of them returns a signature compacting the results 

produced by the test code, which can be compared with the 

expected one. A mismatch means that a permanent fault exists in 

the CPU core. In the following, we first report some information 

and figures (Table I) about the functional test and the structural 

one (based on SBST procedures) we developed. We will then 

report the experimental results aimed at comparing the 

effectiveness of the two test approaches (Table II). 

B. The functional test 

The functional test is composed of a compression algorithm that 

imposes a high workload on the arithmetic units of the 

processors. It is essential that the processor is fault-free, because 

even small changes in single bits of the output stream can result 

in a completely different set of data after decompression. Since it 

is impossible to predict the exact sensor readings, the processor 

cannot be checked using live data. Instead, precompiled blocks 

of sensor data together with expected values for the resulting 

transformation coefficients and bitstream are used. By comparing 

the output of the compression algorithm with the expected 

values, it is checked whether the calculations can be executed as 

planned. However, in case of an error, no diagnostic conclusions 

about the affected units within the processor can be drawn. The 

second line of Table I reports the size and duration of the 

functional test in terms of amount of memory to store the code 

and test time execution. 

C. The structural test 

The structural test is based on a suite of test procedures that 

target the different modules of the processor: program counter 

generator (genpc), instruction fetch (if), control unit (ctrl), 

register file (rf), operand muxes (opmux), arithmetic logic unit 

(alu), multiply and accumulate unit (multmac), load and store 

unit (lsu) and write back multiplexer (wbmux). Each test program 

executes a sequence of instructions aimed at stimulating as much 

as possible the target unit. At the end of the test, a signature is 

stored in memory: if the produced result is different than the 

expected one, it means that the CPU module is affected by a 

fault. All the test procedures have been written manually 

following the guidelines provided in [8]. In the following, we 

provide the most important characteristics of every one of the 

developed test programs.  

The genpc and if modules are tested together using a single 

program. Any type of instruction from the Instruction Set must 

be tested. The program is written in such a way, that each type of 

instruction is followed by an unconditional jump to a procedure 

to the bottom of the code that updates the value of the signature 

and then it jumps back again to the top. In this way, the program 

counter adder inside the genpc is well tested, since it 

continuously jumps backward and forward, so performing 

additions and subtractions. In order to test the ctrl module, it is 

necessary to give it as inputs all the possible instructions from 

the Instruction Set: arithmetic, logic, branch, jump, compare, 

multiply, load and store, immediate or register-to-register. Since 

the ctrl module also generates signals to freeze some selected 

stages of the pipeline or to activate the forwarding when data 

hazards occur, it is important to include some instruction 

sequences with suitable data dependency in order to stimulate 

those signals. The values of the operands are not so important in 
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this case, so random values are chosen for the operations. The rf 

module is tested using register to register operations. Basically, 

the test consists in writing a value into a register and then reading 

it. The test is divided into four parts. In the first part of the test, 

the stack pointer and the link registers are tested. In the second 

part, the first half of the registers (r2-r15) is tested, assuming the 

other part is not faulty and using one among these registers to 

hold the signature. In the third part of the test, the second half is 

considered in turn, assuming the first part is not faulty. The 

values written in the registers are 0x55555555 and 

0xAAAAAAAA. To protect the CPU core against temporary 

faults the register file has been duplicated and the first operand is 

read from one register, while the second operand is read from the 

second register; the write back operation updates both registers. 

Hence, it is necessary to perform each instruction twice, 

swapping the two operands, in order to read the values from both 

registers. The opmux module selects the operands for the 

execution units, choosing between values coming from the 

register file or from the various pipeline registers when 

forwarding is needed. The idea to test this module is to choose 

arithmetic, logic, load/store and multiply instructions in such a 

sequence that causes data dependencies in different stages of the 

pipeline. The alu module test addresses all the possible 

arithmetic/logic instructions of the instruction set. Some special 

values generated resorting to an Automatic Test Pattern 

Generation (ATPG) tool launched on the combinational part are 

chosen as operands to better test its functionalities and all the 

operations are performed choosing as operands all the possible 

combinations between the values above. The test of the 

mult_mac module depends significantly on the values chosen for 

the operands. Therefore, an ATPG tool has been used again to 

generate proper input values. The test program consists in a 

series of multiplications (also with immediate, signed and 

unsigned operands), multiply-accumulate and multiply-subtract 

instructions of the computed random operands. Division 

instructions also involve the mult_mac module to operate and it 

has also been tested. Since the mac instruction uses special 

purpose registers to accumulate, it is necessary to read the values 

written in these registers after each multiply-accumulate 

instruction. For testing the lsu module, all kinds of load and store 

instructions are considered: load/store byte or word, extended to 

zero or signed. The program is constituted of a sequence of 

instructions to write and read contiguous locations in memory; 

each block is composed of instructions performing the following 

three steps: a) Storing a value in a memory location, b) Reading 

the value from the same location, c) Updating the signature. The 

values chosen to be written in memory are random and the offset 

to be added to the base address is a large value (from 16,380 to 

17,380). The wbmux module chooses the value to be written back 

into the register file, whether it comes from the memory system 

(for a load instruction) or from the execution units. Since this 

module basically corresponds to a mux, the program is very 

similar to that developed for the opmux module. Table I 

summarizes the characteristics of the Functional and Structural 

tests in terms of size and duration. For the Structural test, we 

detailed these figures for each test procedure. 

D. Results  

For the purpose of our experiments, we created a simulation 

setup where the OR1200 processor core lies in a system 

composed also of a 64 MB RAM, as in the MaMMoTH-Up 

OBC-S boards. The processor core has been synthesized 

targeting the NanGate 45nm Open Cell Library. The obtained 

netlist is used to perform the fault simulation experiments with a 

commercial tool. Using this setup we evaluated the stuck-at Fault 

Coverage obtained by both the functional and the structural test 

described above. Results are reported in Table II for the whole 

CPU and for each component module. As the reader can notice, 

the Fault Coverage achieved by the Functional test is far lower 

than the one of the Structural test. This supports the claim that 

Functional test cannot be effectively used when complex COTS-

based systems are used. It is also worth underlining that the 

comparison between the two tests provides very different results 

depending on the considered module. For some of them (e.g., 

genpc) the fault coverage achieved by the Functional test is 

slightly higher than by the Structural test. This is basically due to 

the fact that some modules can be tested in a good way by 

executing long programs, and the Functional test is much longer 

than the Structural one. However, for modules that include large 

combinational parts (e.g., alu and mult-mac) or require a specific 

sequence of operations to be tested (e.g., rf) the Structural 

approach is far more effective. 

Table I. Characteristics of the test programs 

 
Size  

[Byte] 
Duration  

[#clock cycles] 

Functional test 17,360 379,815 

Structural test 25,676 74,761 

genpc-if 2,896 41,635 

ctrl 980 980 

rf 10,076 7,281 

opmux 544 508 

alu 3,184 10,497 

multmac 2,996 9,962 

lsu 4,244 3,224 

wbmux 756 674 

IV. SAFE FAULTS 

A. Safe faults 

We denote as Safe Faults those faults that can never produce a 

failure in the considered system 1 . One of the goals of the 

FMECA is their identification, since they do not contribute to the 

Failure Rate, and should thus be removed from the Fault List to 

be considered when evaluating the Fault Coverage achieved by 

the test procedures. The ISO 26262 standard for automotive 

applications define them as “application dependent safe faults”. 

Clearly, Safe Faults include untestable faults. Hence, it can be 

useful to review the different categories included in the set of 

Safe Faults for a given system: 

• Structurally (or combinationally) untestable faults, i.e., faults 
for which a test does not exist even if the combinational block 
where the fault is located is fully controllable and observable 
(e.g., via scan). Examples of faults belonging to this category 
include faults that cannot be tested due to some redundancy in 
the combinational logic. If a gate-level description of the 
device is available, an ATPG tool can identify these faults. 

• Sequentially untestable faults, i.e., faults that do not belong to 
the previous group, but cannot be tested due to the sequential 
behavior of the circuit, for example, because the circuit cannot 

                                                           

1 When performing FMECA, it is common to also distinguish 

between failures depending on their criticality, i.e., on how 

serious the effects of these failures are. Reliability figures 

typically depend only on critical safe faults. For the purpose of 

this paper we ignore any distinction within the set of safe faults. 
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reach any of the states required for their test. Several works 
proposed techniques to automatically identify these faults, 
either in a generic circuit [12][13][14][17][18] or specifically 
in a CPU [15]. 

• On-line functionally untestable faults [10], i.e., faults that do 
not belong to the previous groups, but cannot be tested in a 
functional manner (i.e., without resorting to Design for 
Testability) in the operational conditions the target device 
works in. On-line functionally untestable faults can be related 
for example to the specific memory configuration adopted by 
the system [16]. Several bits in the processor Program Counter 
or in the registers storing the addresses in the Load-Store 
Units become untestable if the memory area storing the code 
and the data is less than the maximum one. 

Table II. Stuck-at (SA) fault coverage of functional and structural test 

on OR1200. 

Module 
Total SA 

faults 
Functional 

test 
Structural  

test 

CPU 124,612 32.09 % 81.89 % 

genpc 4,906 60.80 % 57.97 % 

if 2,268 50.57 % 71.12 % 

ctrl 4,320 71.53 % 80.25 % 

rf 39,056 33.97 % 90.93 % 

opmux 2,530 90.51 % 96.05 % 

alu 14,532 46.04 % 78.50 % 

mult_mac 39,398 13.91 % 95.77 % 

sprs 5,522 8.31 % 37.61 % 

lsu 2,708 67.61 % 65.99 % 

wbmux 2,286 69.29 % 78.83 % 

freeze 126 75.40 % 76.98 % 

except 6,716 15.86 % 18.92 % 

cfgr 232 0.00 % 0.00 % 

 

Safe faults include and extend the previous categories. In the 
following we report some examples of safe faults: 

• The debug circuitry possibly existing in a processor generates 
safe faults, since debug facilities are not used during the 
normal behavior, and several faults within it cannot impact the 
system behavior and produce any failure.  

• Several faults in the Design for Testability hardware (e.g., the 
scan chains) used for end-of-manufacturing test also 
correspond to safe faults: for example, faults on the scan-in 
input of the scan flip-flops are safe faults.  

In [7], we reported some results concerning the identification of 
safe faults in the openMSP430 processor. In that paper, we also 
considered those safe faults that cannot produce any failure, due 
to the specific application code executed by the CPU. As a simple 
example, if the system application only uses integer arithmetic, 
faults in the Floating Point Unit become untestable. 

B. Safe faults identification 

The typical approach for safe faults identification is based on 

manual analysis. In many project teams, the designers, test 

engineers, and reliability/functional safety experts systematically 

meet to categorize faults and (based on their effects) identify safe 

faults. Clearly, this process is extremely time consuming (and 

hence expensive), as well as prone to possible errors. For this 

reason, in [7] we recently proposed an approach, which aims at 

partly automating the safe faults identification process taking 

into account all the constraints coming from the application 

scenario, including the application software to be run by the 

CPU. Some preliminary results coming from the application of 

the same method to the OR1200 CPU have been reported in [19]. 

In this paper, we improve the procedure used in [7] and [19], 

which is now able to identify a larger number of safe faults, 

thanks to a mechanism allowing to exploit the power of a 

commercial ATPG tool. Our method for safe fault identification 

is based on the following steps: 

1. We identify the set of all inputs to the CPU module which 

will remain at a fixed value during the system operation 

(e.g., the Normal/Test signal). Let us call PIfixed this set. 

2. We perform several simulation experiments on the CPU 

module running the actual application and with different but 

realistic data input sequences and using toggle activity to 

identify the set FFpossibly-fixed of flip flops which never toggle. 

3. We focus on FFpossibly-fixed, and manually check whether any 

of the flip flops in this set may possibly toggle if a different 

sequence of input data and events is considered. The 

remaining set of flip flops, called FFfixed is composed of 

those flip flops that will never toggle in the operating 

conditions. 

4. We resort to an ATPG tool to identify the faults in the 

combinational logic of the processor that become untestable 

once the constraints coming from the fixed values of the 

PIfixed and FFfixed signals are applied. In other words, we 

specify the inputs of the combinational logic whose value 

always remains fixed during the operational phase, and ask 

the ATPG tool to identify untestable faults under these 

conditions. These faults correspond to safe faults for the 

system. 

The reader should note that in [7] and [19] the last step was 

performed resorting to a simple topological analysis of the 

effects of the fixed values in the combinational logic: the 

analysis identified for each gate the possible untestable faults 

caused by any fixed value on the inputs of the fault. Hence, the 

analysis was only able to identify redundant signals or gates in 

the circuit leading to untestable faults. To perform the same step, 

in this paper we resort to an ATPG tool, so that a larger number 

of safe faults can be identified, taking into account the 

constraints on the input signals of the combinational logic. This 

allowed us to increase by about 3% the number of safe faults 

identified by this step with respect to the results presented in 

[19]. The usage of a commercial tool also makes the applicability 

of the proposed method easier. It is important to underline that 

our method cannot identify all safe faults in the system. 

However, we claim that it can identify a significant number of 

them and represents a first step towards the automation of the 

whole safe fault identification procedure, thus contributing to 

significantly reducing its cost.  

C. Results 

We implemented a tool based on a set of TCL scripts interacting 

with a logic simulator to implement the procedure described in 

the previous sub-section. The required time to run the simulation 

campaign to gather the data for the Toggle analysis and to 

process them to extract the list of Safe faults (including the 

ATPG step) is in the order of a few hours. By using the same 

commercial ATPG tool we also identified the number of 

structurally untestable faults in the OR1200, which amounts to 

80. Following the proposed procedure and referring to the 

environment and application code of the OBC-S board, we 

identified a set of safe faults in the OR1200 processor, as 

reported in the second column of Table III. We also computed 

the Safe Fault Coverage (SFC) for the Functional and Structural 

tests (columns 4 and 5), defined as: 
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𝑆𝐹𝐶 =
#𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑠

#𝑓𝑎𝑢𝑙𝑡𝑠 − #𝑠𝑎𝑓𝑒 𝑓𝑎𝑢𝑙𝑡𝑠
 

The reported results show that: 

• The number of safe faults is relevant, accounting for about 

13% of the whole stuck-at fault list. 

• The percentage of safe faults varies widely from one module 

to another. It is about 20% for modules such as mult_mac 

and sprs (dealing with special purpose registers, which are 

not significantly used by the application). It is also 

significant for modules such as if, genpc and rf, which are 

not fully used by the application code.  

• The SFC figure achieved by the structural test procedures is 

quite high (taking also into account the observability 

constraints of the test environment) and allows (combined 

with some further test techniques implemented at a higher 

level) to fully match the reliability requirements for the 

MaMMoTH-Up system. 

• We are still working to improve the achieved SFC by 

developing some test procedures targeting the few small 

modules which are not well covered by the current test 

procedures, resorting to more sophisticated solutions (e.g., 

triggering some exceptions or moving to supervisor mode to 

test the special-purpose registers) which can only be used 

before the launch. 

 

Table III. Safe stuck-at fault coverage (SFC) of functional and structural 

tests after untestable analysis on OR1200. 

Module 

Safe 
faults 

Safe Faults 
w.r.t. 

Total SA 

faults 

SFC 

Functional 
Test  

Structural 
Test  

CPU 16,183 12.98 % 36.88 % 84.41 % 

genpc 425 8.66 % 66.57 % 63.24 % 

if 204 9.00 % 55.57 % 76.74 % 

ctrl 13 0.30 % 71.74 % 80.42 % 

rf 5,550 14.21 % 39.60 % 92.89 % 

opmux 41 1.62 % 92.00 % 96.47 % 

alu 75 0.51 % 46.28 % 78.54 % 

mult_mac 7,861 19.95 % 17.38 % 97.04 % 

sprs 1,070 19.38 % 10.31 % 44.41 % 

lsu 7 0.26 % 67.79 % 66.16 % 

wbmux 0 0.00 % 69.29 % 78.83 % 

freeze 7 5.55 % 79.83 % 79.51 % 

except 912 13.58 % 18.35 % 21.85 % 

cfgr 18 7.76 % 0.00 % 0.00 % 

V. CONCLUSIONS 

This paper deals with the adoption of COTS components in the 

design and manufacturing of systems to be used on a launcher.  

We focused on the MaMMoTH-Up system to be used on board 

the Ariane5 launcher, which represents a testbench for 

developing a suitable design and manufacturing flow compatible 

with the adoption of COTS components. In particular, we 

focused on the test of the CPU core used within such a system, 

showing first that the functional test is not able to achieve a 

sufficient test quality, while structural SBST test procedures can 

be much more effective. We also focused on the identification of 

safe faults, i.e., those faults that cannot produce any failure due 

the hardware and software constraints provided by the 

application environment. We proposed a semi-automated method 

able to significantly reduce the cost and effort for safe faults 

identification, showing that the method can identify a significant 

number of safe faults. We reported experimental results on the 

OR1200 processor core used within the MaMMoTH-Up system. 

Although the proposed method has been experimentally 

evaluated referring to stuck-at faults, only, the same approach 

can be adopted to deal with other fault models (e.g., transition 

delay faults, or bridges), if required. We are currently working 

towards the development of further improved techniques for safe 

faults identification and towards a new and more effective 

release of our SBST procedures. 
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