
978-1-5386-4756-1/18/$31.00 ©2018 IEEE

An analysis of test solutions for COTS-based systems

in space applications

R. Cantoro, S. Carbonara, A. Floridia, E. Sanchez, M. Sonza Reorda

Politecnico di Torino, Torino, Italy

Jan-Gerd Mess

DLR, Bremen, Germany

Abstract—One of the current trends in space electronics is towards

considering the adoption of COTS components, mainly to widen the

spectrum of available products. When substituting space-qualified

components with COTS ones a major challenge lies in guaranteeing

the same level of reliability. To achieve this goal, a mix of different

solutions can be considered, including effective test techniques, able

to guarantee a high level of permanent fault coverage while

matching several constraints in terms of system accessibility and

hardware complexity. In this paper, we describe an approach based

on Software-based Self-test, which is currently being adopted within

the MaMMoTH-Up project, targeting the development of an

innovative COTS-based system to be used on the Ariane5 launcher.

The approach aims at testing the OR1200 processor adopted in the

system, combined with new and effective techniques for identifying

the safe faults. Results also include a comparison between functional

and structural test approaches.

I. INTRODUCTION

Space applications are known to be extremely challenging from a

reliability point of view, since they are supposed to work in a

harsh environment (not only in terms of radiation but also from

the point of view of stresses coming from extreme temperature,

pression, vibration, etc.) with strong requirements in terms of

reliability. In order to reduce cost and especially to increase

device availability, there is a trend towards the adoption of

Commercial Off-The-Shelf (COTS) components instead of the

space qualified ones. Obviously, this trend requires evaluating

the costs and efforts for guaranteeing that the resulting reliability

still reaches the target threshold [2]. A special niche within the

general domain of space applications relates to launchers. In this

case, the mission time is more reduced, while the radiation

environment corresponds to all the layers from ground up to the

geostationary orbit (GEO). The MaMMoTH-Up project [3],

funded by the European Commission within the frame of the

Horizon 2020 research and innovation programme, aims at

developing and evaluating a COTS-based system to be used in

the telemetry unit of the Ariane5 (A5) launcher. More in details,

the MaMMoTH-Up system is composed of several boards

targeting data acquisition and processing, power management,

and data transmission. All these boards use COTS components,

including a flash-based FPGA where several IPs are mapped,

including an OpenRISC1200 (OR1200) processor [4] whose

design has been properly modified to harden it with respect to

radiation effects. The adoption of such processor allows the

MaMMoTH-Up system to perform significantly more powerful

functions than the system it is going to substitute, e.g., in terms

of data analysis and compression. In order to match the strict

reliability targets of A5, the MaMMoTH-Up system must be

protected not only from the radiation effects, which are mainly

responsible for Latch-up and transient fault effects, but also from

possible permanent faults arising during both the manufacturing

process and the following system life. To target permanent faults

several test steps have been identified, which are performed

during and at the end of the manufacturing process, at the end of

the assembly step, and after the system is mounted in the final

position. Some test is also performed during the mission. The

fault coverage which can be achieved by these test steps is

important, since it directly impacts the achieved reliability level.

To estimate the Fault Rate of the different components, we

followed the FIDES guidelines [5], taking into account the stress

conditions which are applied to the system before and during the

mission. The Failure Rate is then derived by applying an

FMECA (Failure Mode, Effects, and Criticality Analysis)

procedure [11] which identifies the fault effects (and their

criticality) and takes into account the timing and effectiveness

(i.e., the fault coverage) of the different test steps. Remarkably,

some of them have to be performed while the system is already

mounted in its final position. Hence, they must basically

correspond to a self-test, during which some command is sent to

the system, the system performs a test of the hardware, and then

results are sent outside. In the previous versions of the target

system, which was based on much simpler space qualified

hardware, a functional test was used for this purpose, where the

system was asked to perform some basic operations, and a check

on the computed results was sufficient to identify possible faults.

Due to the much higher complexity of the MaMMoTH-Up

system this approach can hardly guarantee the achievement of

the required fault coverage, especially on the OR1200 core.

Hence, a structural approach has been devised, based on a set of

self-test procedures in charge of checking the possible presence

of permanent faults affecting the processor core. The key

difference between the two approaches lies in the fact that the

functional one checks whether the system is able to deliver the

expected functions, while the structural one identifies first some

fault model related to the implementation of the underlying

circuit, and then tries to detect the resulting faults. A major

advantage of the structural approach clearly lies in the fact that

the adopted fault coverage metric can be more deterministically

and quantitatively evaluated than for the functional approach.

Moreover, while for simple systems the functional approach (if

suitably implemented) can achieve a sufficient testing quality,

for more complex modules (such as the OR1200 one) the same is

not true, as we will experimentally show in the paper. When

dealing with the OR1200 processor, the self-test procedures

implementing the structural approach follow the Software-based

Self-test (SBST) paradigm [6]. Their code is integrated in the

application software and, when activated, forces the processor to

execute a proper sequence of instructions. The produced results

are compacted into a signature which is returned to the calling

59

program, which can thus check the possible presence of a fault

by comparing it with the expected one.

The contribution of this paper lies first in describing a case of

study (corresponding to the OR1200 core) where the

characteristics of a functional and structural approach can be

compared (not only in terms of achieved fault coverage, but also

of memory footprint and duration). Secondly, it describes a

scenario, where SBST can be effectively adopted, matching the

several requirements of the qualification, acceptance and in-fly

test of a space application. Finally, since the target system is

expected to perform a well-defined set of functions and in a very

specific configuration (e.g., in terms of memory address space),

the FMECA is in charge of identifying which faults within the

OR1200 core can produce any failure, and which faults will

never be able to do so, e.g., because they relate to some hardware

part which is not used by the application. While several

techniques are available to automatically identify some

categories of untestable faults, we focus here on those faults

called Safe faults. These faults cannot produce any failure due to

the specific (hardware or software) constraints the system

matches during its normal operation. The paper shows that the

number of safe faults is far from being negligible and uses an

improved version of the method proposed in [7] to partly

automate their identification. Due to the impact of the considered

scenario, the fault coverage results reported in this paper are not

directly comparable with those in [8], which focus on end-of-

manufacturing test, although they refer to the same processor.

The paper is organized as follows. Section II summarizes the

main characteristics of the MaMMoTH-Up system, both in terms

of underlying hardware and performed functions. Section III

compares the functional and structural approaches, while Section

IV focuses on the identification of safe faults. Section V finally

draws some conclusions.

II. THE MAMMOTH-UP SYSTEM

A. General architecture and functions

The MaMMoTH-Up system shall provide an experiment and

data acquisition opportunity on board the Ariane5 upper stage

[3]. It is designed to offer the following functionalities:

1. Acquire measurement data

2. Configure and control the experiment

3. Provide a power supply

4. Perform self-testing and fault management.

To meet these functional requirements, a COTS-based system

including one experiment controller (TCM-S), two computing

nodes (OBC-S), two data acquisition boards (AQB) and a power

supply unit (PSU) was developed. The system is housed in a

foam-cushioned container to protect it from the harsh

environment on board the launch vehicle. In order to collect

sensor data and communicate with the Ariane5 upper stage, the

system offers analogue acquisition channels for temperature,

acceleration, vibration, shock and pressure sensors and a RS422

interface for data downlink. Synchronization with the launcher

timeline and direct status reporting is done using three closed-

current loops as inputs and eight discrete output pins. During the

mission, the system steps through a number of different

acquisition schemes according to the specific mission profile. An

acquisition scheme determines which sensors are activated at

which sampling rates up to 10 kHz. The data is collected and

preprocessed by the computing nodes and then sent to the

experiment controller using the internal SpaceWire bus. On the

experiment controller, the data is analyzed, compressed and

stored on a flash-based mass memory before it is sent to the

Ariane5 and downlinked using the launcher’s telemetry chain.

The complete data flow including its allocation to the different

boards is depicted in Figure 1.

Figure 1 Data Flow

Each OBC-S board as well as the TCM-S board include a flash-

based IGLOO2 FPGA. Each of these is holding an OR1200 soft

core as well as accompanying IP cores, i.e. for SpaceWire

communication amongst the boards. The required software

images are kept in a two gigabyte NAND-flash memory that is

implemented on each board. For data storage, the TCM-S is

equipped with an additional sixteen gigabyte NAND-flash. The

data acquisition is performed by a custom IP core that samples

ADC channels and returns a block of samples to the software.

Preprocessing, analysis and compression are then performed by

software run by the OR1200 processors. The data compression

algorithm consists of two steps whose load is divided between

the OBC-S and the TCM-S. The OBC-S boards will perform a

wavelet transform. The transformed data is then sent to the

TCM-S. From the received wavelet transform, certain

characteristics of the underlying data (e.g., value range and

maximum gradient) are deduced. The transformed coefficients

are then encoded into an embedded bitstream. According to the

deduced characteristics of a given block, a certain number of

bytes in the downstream are allocated for this bitstream. All

other bits are cut to save downlink budget. The complete

compression scheme is described in [9]. From a reliability point

of view, although the OR1200 processors on the FPGAs and

especially their memories and registers are hardened by

duplication or triplication of some of the underlying flip-flops,

there is no redundancy at the unit or system level. If the failure is

not permanent, the system is able to recover by performing a

software reset or power-cycle on the affected board. Should this

not be successful because the failure proves to be permanent, the

board has to be deactivated, inevitably resulting in a loss of the

connected sensor channels. In this case, the MaMMoTH-Up

system follows the concept of graceful degradation: although

parts of the sensors cannot be acquired anymore, the remaining

transfer budget can be reallocated to use it as efficiently as

possible.

B. The OR1200 processor

The OR1200 is the only major RTL implementation of the OR1K
architecture spec. The OR1200 is a 32-bit scalar RISC with
Harvard micro-architecture and 5 stage integer pipeline. The
OR1200 core is mainly intended for embedded, portable and
networking applications. Fig. 2 shows its architecture.

60

Figure 2. OR1200 CPU Architecture

III. COMPARING THE FUNCTIONAL AND STRUCTURAL

APPROACHES

A. Background

In the frame of the actions to evaluate the reliability of the

MaMMoTH-Up system and to guarantee that the target figures

are matched, a key role is played by the test solutions adopted to

identify possible permanent faults. These solutions are activated

in different phases of the product life time, since the qualification

step until the operational phase (i.e., during the launch). We

underline that these test solutions should be usable and effective

when applied in a scenario, where the target modules (e.g., the

FPGA implementing the processor) have been already mounted

on their boards, and each board has been included in the final

box corresponding to the telemetry unit, which has been installed

in its final location within the launcher. Hence, the whole test

should be performed with very limited support from the outside,

and should be minimally invasive with respect to the target

system. In order to evaluate the effectiveness of these test

solutions and to use meaningful fault coverage figures during the

reliability evaluation process, a metric must be first identified.

Traditionally, a functional metric is adopted. Since the early

specification phases, the list of functions that the system must

support is defined. For each of them, a functional test is then

developed, aimed at verifying that the target function is correctly

performed by the system. In this scenario a qualitative metric is

adopted, which guarantees that the system is not affected by any

fault if all the functional tests for all the functions are successful.

When moving to more complex systems including COTS

components, a different metric can be considered, which first

identifies a structural fault model which is supposed to represent

the possible permanent faults in the target device, and then

computes the percentage of structural faults which are detected

by the considered test solution. One of the goals of the

MaMMoTH-Up project is to define new procedures for

reliability evaluation, able to match the characteristics of COTS-

based systems. Given their complexity, the project partners

decided to assess the effectiveness of the functional approach

when a structural fault model was adopted, at least for the most

complex module, corresponding to the OR1200 CPU. Since the

detailed information about the structure of the adopted FPGA

were missed, we decided to perform such an assessment

resorting to the popular stuck-at fault model, computing first the

fault coverage achieved by the functional test when the CPU

circuitry mapped on the FPGA was synthesized with a generic

gate-level library. This approach is partly supported by the

results of [20], showing that the stuck-at fault model, when

applied to FPGAs, provides Fault Coverage results which are not

far from those which can be obtained resorting to more accurate

fault models, based on the knowledge of the internal

implementation of the device (which is not available in our case).

Moreover, we developed a set of SBST test procedures targeting

the stuck-at faults inside the OR1200 core. These procedures

(that we cumulatively call structural test in the following) are

integrated within the application software of the system and can

be easily launched from the outside or by the system itself when

required. Each of them returns a signature compacting the results

produced by the test code, which can be compared with the

expected one. A mismatch means that a permanent fault exists in

the CPU core. In the following, we first report some information

and figures (Table I) about the functional test and the structural

one (based on SBST procedures) we developed. We will then

report the experimental results aimed at comparing the

effectiveness of the two test approaches (Table II).

B. The functional test

The functional test is composed of a compression algorithm that

imposes a high workload on the arithmetic units of the

processors. It is essential that the processor is fault-free, because

even small changes in single bits of the output stream can result

in a completely different set of data after decompression. Since it

is impossible to predict the exact sensor readings, the processor

cannot be checked using live data. Instead, precompiled blocks

of sensor data together with expected values for the resulting

transformation coefficients and bitstream are used. By comparing

the output of the compression algorithm with the expected

values, it is checked whether the calculations can be executed as

planned. However, in case of an error, no diagnostic conclusions

about the affected units within the processor can be drawn. The

second line of Table I reports the size and duration of the

functional test in terms of amount of memory to store the code

and test time execution.

C. The structural test

The structural test is based on a suite of test procedures that

target the different modules of the processor: program counter

generator (genpc), instruction fetch (if), control unit (ctrl),

register file (rf), operand muxes (opmux), arithmetic logic unit

(alu), multiply and accumulate unit (multmac), load and store

unit (lsu) and write back multiplexer (wbmux). Each test program

executes a sequence of instructions aimed at stimulating as much

as possible the target unit. At the end of the test, a signature is

stored in memory: if the produced result is different than the

expected one, it means that the CPU module is affected by a

fault. All the test procedures have been written manually

following the guidelines provided in [8]. In the following, we

provide the most important characteristics of every one of the

developed test programs.

The genpc and if modules are tested together using a single

program. Any type of instruction from the Instruction Set must

be tested. The program is written in such a way, that each type of

instruction is followed by an unconditional jump to a procedure

to the bottom of the code that updates the value of the signature

and then it jumps back again to the top. In this way, the program

counter adder inside the genpc is well tested, since it

continuously jumps backward and forward, so performing

additions and subtractions. In order to test the ctrl module, it is

necessary to give it as inputs all the possible instructions from

the Instruction Set: arithmetic, logic, branch, jump, compare,

multiply, load and store, immediate or register-to-register. Since

the ctrl module also generates signals to freeze some selected

stages of the pipeline or to activate the forwarding when data

hazards occur, it is important to include some instruction

sequences with suitable data dependency in order to stimulate

those signals. The values of the operands are not so important in

61

this case, so random values are chosen for the operations. The rf

module is tested using register to register operations. Basically,

the test consists in writing a value into a register and then reading

it. The test is divided into four parts. In the first part of the test,

the stack pointer and the link registers are tested. In the second

part, the first half of the registers (r2-r15) is tested, assuming the

other part is not faulty and using one among these registers to

hold the signature. In the third part of the test, the second half is

considered in turn, assuming the first part is not faulty. The

values written in the registers are 0x55555555 and

0xAAAAAAAA. To protect the CPU core against temporary

faults the register file has been duplicated and the first operand is

read from one register, while the second operand is read from the

second register; the write back operation updates both registers.

Hence, it is necessary to perform each instruction twice,

swapping the two operands, in order to read the values from both

registers. The opmux module selects the operands for the

execution units, choosing between values coming from the

register file or from the various pipeline registers when

forwarding is needed. The idea to test this module is to choose

arithmetic, logic, load/store and multiply instructions in such a

sequence that causes data dependencies in different stages of the

pipeline. The alu module test addresses all the possible

arithmetic/logic instructions of the instruction set. Some special

values generated resorting to an Automatic Test Pattern

Generation (ATPG) tool launched on the combinational part are

chosen as operands to better test its functionalities and all the

operations are performed choosing as operands all the possible

combinations between the values above. The test of the

mult_mac module depends significantly on the values chosen for

the operands. Therefore, an ATPG tool has been used again to

generate proper input values. The test program consists in a

series of multiplications (also with immediate, signed and

unsigned operands), multiply-accumulate and multiply-subtract

instructions of the computed random operands. Division

instructions also involve the mult_mac module to operate and it

has also been tested. Since the mac instruction uses special

purpose registers to accumulate, it is necessary to read the values

written in these registers after each multiply-accumulate

instruction. For testing the lsu module, all kinds of load and store

instructions are considered: load/store byte or word, extended to

zero or signed. The program is constituted of a sequence of

instructions to write and read contiguous locations in memory;

each block is composed of instructions performing the following

three steps: a) Storing a value in a memory location, b) Reading

the value from the same location, c) Updating the signature. The

values chosen to be written in memory are random and the offset

to be added to the base address is a large value (from 16,380 to

17,380). The wbmux module chooses the value to be written back

into the register file, whether it comes from the memory system

(for a load instruction) or from the execution units. Since this

module basically corresponds to a mux, the program is very

similar to that developed for the opmux module. Table I

summarizes the characteristics of the Functional and Structural

tests in terms of size and duration. For the Structural test, we

detailed these figures for each test procedure.

D. Results

For the purpose of our experiments, we created a simulation

setup where the OR1200 processor core lies in a system

composed also of a 64 MB RAM, as in the MaMMoTH-Up

OBC-S boards. The processor core has been synthesized

targeting the NanGate 45nm Open Cell Library. The obtained

netlist is used to perform the fault simulation experiments with a

commercial tool. Using this setup we evaluated the stuck-at Fault

Coverage obtained by both the functional and the structural test

described above. Results are reported in Table II for the whole

CPU and for each component module. As the reader can notice,

the Fault Coverage achieved by the Functional test is far lower

than the one of the Structural test. This supports the claim that

Functional test cannot be effectively used when complex COTS-

based systems are used. It is also worth underlining that the

comparison between the two tests provides very different results

depending on the considered module. For some of them (e.g.,

genpc) the fault coverage achieved by the Functional test is

slightly higher than by the Structural test. This is basically due to

the fact that some modules can be tested in a good way by

executing long programs, and the Functional test is much longer

than the Structural one. However, for modules that include large

combinational parts (e.g., alu and mult-mac) or require a specific

sequence of operations to be tested (e.g., rf) the Structural

approach is far more effective.

Table I. Characteristics of the test programs

Size

[Byte]
Duration

[#clock cycles]

Functional test 17,360 379,815

Structural test 25,676 74,761

genpc-if 2,896 41,635

ctrl 980 980

rf 10,076 7,281

opmux 544 508

alu 3,184 10,497

multmac 2,996 9,962

lsu 4,244 3,224

wbmux 756 674

IV. SAFE FAULTS

A. Safe faults

We denote as Safe Faults those faults that can never produce a

failure in the considered system 1 . One of the goals of the

FMECA is their identification, since they do not contribute to the

Failure Rate, and should thus be removed from the Fault List to

be considered when evaluating the Fault Coverage achieved by

the test procedures. The ISO 26262 standard for automotive

applications define them as “application dependent safe faults”.

Clearly, Safe Faults include untestable faults. Hence, it can be

useful to review the different categories included in the set of

Safe Faults for a given system:

• Structurally (or combinationally) untestable faults, i.e., faults
for which a test does not exist even if the combinational block
where the fault is located is fully controllable and observable
(e.g., via scan). Examples of faults belonging to this category
include faults that cannot be tested due to some redundancy in
the combinational logic. If a gate-level description of the
device is available, an ATPG tool can identify these faults.

• Sequentially untestable faults, i.e., faults that do not belong to
the previous group, but cannot be tested due to the sequential
behavior of the circuit, for example, because the circuit cannot

1 When performing FMECA, it is common to also distinguish

between failures depending on their criticality, i.e., on how

serious the effects of these failures are. Reliability figures

typically depend only on critical safe faults. For the purpose of

this paper we ignore any distinction within the set of safe faults.

62

reach any of the states required for their test. Several works
proposed techniques to automatically identify these faults,
either in a generic circuit [12][13][14][17][18] or specifically
in a CPU [15].

• On-line functionally untestable faults [10], i.e., faults that do
not belong to the previous groups, but cannot be tested in a
functional manner (i.e., without resorting to Design for
Testability) in the operational conditions the target device
works in. On-line functionally untestable faults can be related
for example to the specific memory configuration adopted by
the system [16]. Several bits in the processor Program Counter
or in the registers storing the addresses in the Load-Store
Units become untestable if the memory area storing the code
and the data is less than the maximum one.

Table II. Stuck-at (SA) fault coverage of functional and structural test

on OR1200.

Module
Total SA

faults
Functional

test
Structural

test

CPU 124,612 32.09 % 81.89 %

genpc 4,906 60.80 % 57.97 %

if 2,268 50.57 % 71.12 %

ctrl 4,320 71.53 % 80.25 %

rf 39,056 33.97 % 90.93 %

opmux 2,530 90.51 % 96.05 %

alu 14,532 46.04 % 78.50 %

mult_mac 39,398 13.91 % 95.77 %

sprs 5,522 8.31 % 37.61 %

lsu 2,708 67.61 % 65.99 %

wbmux 2,286 69.29 % 78.83 %

freeze 126 75.40 % 76.98 %

except 6,716 15.86 % 18.92 %

cfgr 232 0.00 % 0.00 %

Safe faults include and extend the previous categories. In the
following we report some examples of safe faults:

• The debug circuitry possibly existing in a processor generates
safe faults, since debug facilities are not used during the
normal behavior, and several faults within it cannot impact the
system behavior and produce any failure.

• Several faults in the Design for Testability hardware (e.g., the
scan chains) used for end-of-manufacturing test also
correspond to safe faults: for example, faults on the scan-in
input of the scan flip-flops are safe faults.

In [7], we reported some results concerning the identification of
safe faults in the openMSP430 processor. In that paper, we also
considered those safe faults that cannot produce any failure, due
to the specific application code executed by the CPU. As a simple
example, if the system application only uses integer arithmetic,
faults in the Floating Point Unit become untestable.

B. Safe faults identification

The typical approach for safe faults identification is based on

manual analysis. In many project teams, the designers, test

engineers, and reliability/functional safety experts systematically

meet to categorize faults and (based on their effects) identify safe

faults. Clearly, this process is extremely time consuming (and

hence expensive), as well as prone to possible errors. For this

reason, in [7] we recently proposed an approach, which aims at

partly automating the safe faults identification process taking

into account all the constraints coming from the application

scenario, including the application software to be run by the

CPU. Some preliminary results coming from the application of

the same method to the OR1200 CPU have been reported in [19].

In this paper, we improve the procedure used in [7] and [19],

which is now able to identify a larger number of safe faults,

thanks to a mechanism allowing to exploit the power of a

commercial ATPG tool. Our method for safe fault identification

is based on the following steps:

1. We identify the set of all inputs to the CPU module which

will remain at a fixed value during the system operation

(e.g., the Normal/Test signal). Let us call PIfixed this set.

2. We perform several simulation experiments on the CPU

module running the actual application and with different but

realistic data input sequences and using toggle activity to

identify the set FFpossibly-fixed of flip flops which never toggle.

3. We focus on FFpossibly-fixed, and manually check whether any

of the flip flops in this set may possibly toggle if a different

sequence of input data and events is considered. The

remaining set of flip flops, called FFfixed is composed of

those flip flops that will never toggle in the operating

conditions.

4. We resort to an ATPG tool to identify the faults in the

combinational logic of the processor that become untestable

once the constraints coming from the fixed values of the

PIfixed and FFfixed signals are applied. In other words, we

specify the inputs of the combinational logic whose value

always remains fixed during the operational phase, and ask

the ATPG tool to identify untestable faults under these

conditions. These faults correspond to safe faults for the

system.

The reader should note that in [7] and [19] the last step was

performed resorting to a simple topological analysis of the

effects of the fixed values in the combinational logic: the

analysis identified for each gate the possible untestable faults

caused by any fixed value on the inputs of the fault. Hence, the

analysis was only able to identify redundant signals or gates in

the circuit leading to untestable faults. To perform the same step,

in this paper we resort to an ATPG tool, so that a larger number

of safe faults can be identified, taking into account the

constraints on the input signals of the combinational logic. This

allowed us to increase by about 3% the number of safe faults

identified by this step with respect to the results presented in

[19]. The usage of a commercial tool also makes the applicability

of the proposed method easier. It is important to underline that

our method cannot identify all safe faults in the system.

However, we claim that it can identify a significant number of

them and represents a first step towards the automation of the

whole safe fault identification procedure, thus contributing to

significantly reducing its cost.

C. Results

We implemented a tool based on a set of TCL scripts interacting

with a logic simulator to implement the procedure described in

the previous sub-section. The required time to run the simulation

campaign to gather the data for the Toggle analysis and to

process them to extract the list of Safe faults (including the

ATPG step) is in the order of a few hours. By using the same

commercial ATPG tool we also identified the number of

structurally untestable faults in the OR1200, which amounts to

80. Following the proposed procedure and referring to the

environment and application code of the OBC-S board, we

identified a set of safe faults in the OR1200 processor, as

reported in the second column of Table III. We also computed

the Safe Fault Coverage (SFC) for the Functional and Structural

tests (columns 4 and 5), defined as:

63

𝑆𝐹𝐶 =
#𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑠

#𝑓𝑎𝑢𝑙𝑡𝑠 − #𝑠𝑎𝑓𝑒 𝑓𝑎𝑢𝑙𝑡𝑠

The reported results show that:

• The number of safe faults is relevant, accounting for about

13% of the whole stuck-at fault list.

• The percentage of safe faults varies widely from one module

to another. It is about 20% for modules such as mult_mac

and sprs (dealing with special purpose registers, which are

not significantly used by the application). It is also

significant for modules such as if, genpc and rf, which are

not fully used by the application code.

• The SFC figure achieved by the structural test procedures is

quite high (taking also into account the observability

constraints of the test environment) and allows (combined

with some further test techniques implemented at a higher

level) to fully match the reliability requirements for the

MaMMoTH-Up system.

• We are still working to improve the achieved SFC by

developing some test procedures targeting the few small

modules which are not well covered by the current test

procedures, resorting to more sophisticated solutions (e.g.,

triggering some exceptions or moving to supervisor mode to

test the special-purpose registers) which can only be used

before the launch.

Table III. Safe stuck-at fault coverage (SFC) of functional and structural

tests after untestable analysis on OR1200.

Module

Safe
faults

Safe Faults
w.r.t.

Total SA

faults

SFC

Functional
Test

Structural
Test

CPU 16,183 12.98 % 36.88 % 84.41 %

genpc 425 8.66 % 66.57 % 63.24 %

if 204 9.00 % 55.57 % 76.74 %

ctrl 13 0.30 % 71.74 % 80.42 %

rf 5,550 14.21 % 39.60 % 92.89 %

opmux 41 1.62 % 92.00 % 96.47 %

alu 75 0.51 % 46.28 % 78.54 %

mult_mac 7,861 19.95 % 17.38 % 97.04 %

sprs 1,070 19.38 % 10.31 % 44.41 %

lsu 7 0.26 % 67.79 % 66.16 %

wbmux 0 0.00 % 69.29 % 78.83 %

freeze 7 5.55 % 79.83 % 79.51 %

except 912 13.58 % 18.35 % 21.85 %

cfgr 18 7.76 % 0.00 % 0.00 %

V. CONCLUSIONS

This paper deals with the adoption of COTS components in the

design and manufacturing of systems to be used on a launcher.

We focused on the MaMMoTH-Up system to be used on board

the Ariane5 launcher, which represents a testbench for

developing a suitable design and manufacturing flow compatible

with the adoption of COTS components. In particular, we

focused on the test of the CPU core used within such a system,

showing first that the functional test is not able to achieve a

sufficient test quality, while structural SBST test procedures can

be much more effective. We also focused on the identification of

safe faults, i.e., those faults that cannot produce any failure due

the hardware and software constraints provided by the

application environment. We proposed a semi-automated method

able to significantly reduce the cost and effort for safe faults

identification, showing that the method can identify a significant

number of safe faults. We reported experimental results on the

OR1200 processor core used within the MaMMoTH-Up system.

Although the proposed method has been experimentally

evaluated referring to stuck-at faults, only, the same approach

can be adopted to deal with other fault models (e.g., transition

delay faults, or bridges), if required. We are currently working

towards the development of further improved techniques for safe

faults identification and towards a new and more effective

release of our SBST procedures.

ACKNOWLEDGEMENTS

This work has been supported by the European Commission
through the Horizon 2020 Project No. 637616 (MaMMoTH-Up).

REFERENCES

[1] S. Avramenko; M. Sonza Reorda; M. Violante; G. Fey; J. -G. Mess; R.
Schmidt, “On the robustness of DCT-based compression algorithms for
space applications”, 2016 IEEE 22nd International Symposium on On-Line
Testing and Robust System Design (IOLTS)

[2] Michel Pignol, “COTS-based applications in space avionics”, 2010 Design,
Automation & Test in Europe Conference & Exhibition (DATE 2010)

[3] http://www.mammoth-up.eu/

[4] https://openrisc.io/

[5] UTE FIDES guide 2009, Edition A, September 2010

[6] M. Psarakis et al., “Microprocessor Software-Based Self-Testing”, IEEE
Design & Test of Computers, vol. 27, no. 3. May-June 2010, pp. 4-19

[7] R. Cantoro, A. Firrincieli, D. Piumatti, E. Sanchez, M. Sonza Reorda, M.
Restifo, “About functionally untestable fault identification in
microprocessor cores for safety-critical applications”, IEEE Latin-American
Test Symposium (LATS), 2018

[8] N. Kranitis; A. Merentitis; G. Theodorou; A. Paschalis; D. Gizopoulos,
“Hybrid-SBST Methodology for Efficient Testing of Processor Cores”,
IEEE Design & Test of Computers, 2008, Volume: 25, Issue: 1, pp. 64 –
75

[9] J.-G. Mess, R. Schmidt, G. Fey, “Adaptive Compression Schemes for
Housekeeping Data“, 2017 IEEE Aerospace Conference

[10] P. Bernardi, M. Bonazza, E. Sanchez, M. Sonza Reorda, and O. Ballan,
“On-line functionally untestable fault identification in embedded processor
cores”, Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE), Mar. 2013,
pp. 1462–1467

[11] W. M. Globe, “Control Systems Safety Evaluation and Reliability”, third
edition, ISA, ISBN 978-1-934394-80-9

[12] J. Raik, H. Fujiwara, R. Ubar, A. Krivenko, “Untestable Fault
Identification in Sequential Circuits Using Model-Checking”, Proc.
IEEE Asian Test Symposium, 2008, pp. 21-26

[13] Syal, M.; Hsiao, M.S., “New techniques for untestable fault identification
in sequential circuits”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 5, no. 6, 2006, pp. 1117 – 1131

[14] H.-C. Liang; C. L. Lee; Chen, J.E., “Identifying Untestable Faults in
Sequential Circuits”, IEEE Design & Test of Computers, Vol. 12 , No. 3,
1995, pp. 14-23

[15] W.-C. Lai; Krstic, A.; Kwang-Ting Cheng, “Functionally testable path
delay faults on a microprocessor”, IEEE Design & Test of Computers, vol.
17, no. 4, 2000, pp. 6-14

[16] A. Riefert; R. Cantoro; M. Sauer; M. Sonza Reorda; B. Becker, “A Flexible
Framework for the Automatic Generation of SBST Programs”, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2016,
Volume: 24, Issue: 10, pp. 3055 – 3066

[17] David E. Long, Mahesh A. Iyer, Miron Abramovici, “FILL and FUNI:
algorithms to identify illegal states and sequentially untestable faults”,
ACM Transactions on Design Automation of Electronic Systems
(TODAES), v. 5, n. 3, pp. 631-657, July 2000

[18] Daniel Tille, Rolf Drechsler, “A fast untestability proof for SAT-based
ATPG”, 12th International Symposium on Design and Diagnostics of
Electronic Circuits&Systems, pp. 38-43, April 15-17, 2009

[19] S. Carbonara, A. Firrincieli, M. Sonza Reorda, J.-G. Mess, “On the test of a
COTS-based system for space applications”, 24th IEEE International
Symposium on On-Line Testing and Robust System Design, 2018, poster
session

[20] Jaroslav Borecky; Martin Kohlik; Pavel Kubalik; Hana Kubatova, “Fault
Models Usability Study for On-line Tested FPGA”, 14th Euromicro
Conference on Digital System Design, 2011, pp. 287-290

64

