UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Bottom-Up Approach for High Speed SRAM Word-line Buffer Insertion Optimization.

Permalink
https://escholarship.org/uc/item/04ij2019m|

ISBN
978-1-7281-3915-9

Authors
Wu, Bin
Guthaus, Matthew R

Publication Date
2019

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/04j2019m
https://escholarship.org
http://www.cdlib.org/

Bottom-Up Approach for High Speed SRAM
Word-line Buffer Insertion Optimization

Bin Wu and Matthew R. Guthaus
Computer Science and Engineering,
University of California Santa Cruz

Santa Cruz, CA 95064
{bwu8,mrg} @ucsc.edu

Abstract—The delay of a square SRAM array is dominated
by the bit line delay due to the high capacitance per unit length
attached to the bit line. Hence, SRAM arrays are usually longer
in the word line direction. However, the word line delay also
increases dramatically in a simple naive topology and can be a
dominating factor when the word line dimension is much longer
than that of the bit line. Therefore, word line optimization is an
important part of SRAM delay optimization. Buffer insertion,
which is commonly used for long interconnects, can also be used
to improve word line delay. This paper proposes an approach to
place and size the buffers to reduce word line and overall SRAM
delay. The proposed methodology improves the read critical path
delay by 15.7%, at the cost of only 5.26% extra area in a 128
Kbit SRAM.

I. INTRODUCTION

SRAM array delay increases at different rates when the
array size increases in different dimensions. The SRAM array
width is the word line direction while the SRAM array height
is the bit line direction. When the width is equal to the
height, the SRAM delay is dominated by the bit line delay
due to the high capacitance per unit length attached to the
bit line. Hence, making the SRAM array wider is preferred
because the array delay increases at a lower rate in the array
width direction than the array height direction. An optimized
width/height configuration exists for a given size SRAM and
this configuration depends on the SRAM circuit design.

The word line wire delay and the word line buffer delay
are critical components for the array delay optimization. The
change of array width affects four delay components: the
word line buffer, the word line wire, the bit cell, and the
column mux delays. However, the effect on the cell delay and
the column mux delay are relatively minor. The cell delay
increases slightly because longer wire increases the voltage
slew and slows down the access transistor switching speed in
6T cells. The column mux delay increases slightly due to the
increased ratio of array width and word size with the word size
fixed based on the system requirement. The word line buffer
delay increases almost linearly due to the increased load on
the output and the word line wire delay increases quadratically
due to increase in wire length. Hence, this paper will focus
on reducing the word line wire and buffer delay to reduce the
delay due to the array width.

978-1-7281-3915-9/19/$31.00 (©2019 IEEE

Buffer insertion [1], [2] is a widely used method for long
interconnect delay optimizations. However, it is mostly done
for global signals where the interconnect is very long. Due
to the high capacitance per unit length for word lines, such a
method also works for word lines. Applying buffer insertion
within an array allows utilization of wider sized arrays. For
example, it allows fewer banks and simplifies bank level
control signals.

Intra-array buffer insertion is compatible with the widely
used hierarchical divided word line (DWL) [3]-[8]. Figure 1
shows the schematic of a conventional word line buffer and
Figure 2 shows that of a DWL [3]. In a conventional topology,
the word line wire, which sequentially connects all cells, has
a high capacitance attached per unit length and causes a high
rate of delay increase as the word line size increases. A
DWL breaks a naive single word line into smaller, parallel
hierarchical word lines connected by local buffers to a global
word line.

Word Line Wire
for Global Routing

;
: '

H ]

H .

H

IN4>0— E ;
Nand Buffer  Inverter Buffer } oo E

H ]

H ]

Input Inverter A row of n cells

Row Select
EN— ] Wire

Fig. 1.  Conventional memories use a single word line topology which
increases the delay quickly as the word line size increases thus is an ideal
target for buffer insertion optimization.

Row Select Wire Selection k
(Global Wire) |

coo Local Buffer &
Sub-Row

! Divided Word Line Wire
(Local Wire)

Selection 1

Sub-Row

EN—~—"Global | .
IN Buffer
Local Buffer &

Input Inverter

Selection 1

Row Select Wire
(Global Wire)

A row of n cells is divided into k sub-rows.

Fig. 2. DWL is a high-speed variant word line topology and is compatible
with buffer insertion.

The DWL with buffer insertion is a hard problem and
applying buffer insertion to a naive single word line topology
is an important subproblem of it. For a given row size, the best



topology of a DWL is not trivial as the segments are not the
same size to achieve the smallest delay [9]. Hence, different
topologies must be iterated over for a DWL buffer insertion
optimization while a standard buffer insertion requires a fixed
topology. However, applying buffer insertion to a single word
line topology is easier as the topology is fixed and is similar
to a subproblem of a DWL buffer insertion optimization.

Hence, this paper focuses on buffer insertion of a single
word line topology as the first step. The novelty of this
paper is to apply the Van Ginneken algorithm [10] to buffer
insertion on array word lines. We have built SPICE models
for both gates and wires along with an implementation of
the Van Ginneken algorithm to size and place buffers in a
single word line topology. The delay data is verified with
SPICE simulations and the area cost is verified with an
open source memory compiler (OpenRAM) [11]. The rest of
this paper is organized as follows: Section II presents the
background, Section III presents the proposed methodology,
Section IV analyzes delay and area impacts, Section V shows
the simulation setup, and Section VI shows the simulation
results.

II. BACKGROUND

Figure 3 shows the schematic of an SRAM array. The array
is n cells wide and m cells high with a word size of w bits.
Synchronization signals are given for word line drivers and
sense amplifiers. The read operation is slower than the write
operation, thus it is more important and decides the main
timing restriction of the SRAM clock.

Array Width n Read Operation Path

Array Height m

Word Size w %) Write Operation Path

‘S £
g 5
3 a
o o -
|5 ¢
B 18l 5 LB
g 8] S . . L g
[a) Q i o
o £ s

2 1S - ° L] i
2 P -
L] L] =
RE S

m Synchronize Signals T
for Word Line Driver:

w Synchronize Signals
for Sense Amp

Column Mux Array

% w Cell Data

Sense Amp Array

Fig. 3. The width and height of an array only impact the timing restriction
of the read and write critical paths.

Table I summarizes the delay increase due to the array
width and array height and describes the array delay change
assuming only width or height changes while the other one
remains the same. For read operations, three important delay
components are not impacted by the array width: decoder
delay, sense amplifier delay and bit line delay. First, even
though the array width affects the row decoder delay, it does
not significantly impact the read path delay as row decoder

outputs need to be stable before the synchronization signals
arrive at word line drivers. Second, the sense amplifier delay
is also not impacted due to bit line isolation during read
operations. Sense amplifiers are enabled after the sense enable
signal arrives and after that they only depends on the sense
amplifier design rather than the array size. Third, the bit lines
are not dependent on the array width.

TABLE I
ARRAY WIDTH AND HEIGHT HAVE DIFFERENT EFFECTS ON THE SRAM
DELAY BREAK DOWN.

Delay | Decoder Word Line 6T Bit Column | Sense
Buffer | Wire | Cell | Line Mux Amp

Width n y y y n y n

Height y n n y y n n

The word line buffer delay and the word line wire delay
have significant impacts on the read operation. The delay over
the bit line wire is not significant as the signal does not change
fast enough. The cell delay is a significant component because
a 6T cell is a weak driver compared to the high capacitance
attached to the bit line per unit length. However, the delay
sum of the word line and the word buffer can be comparable
to the bit line delay, but this depends on the ratio of the word
line and the bit line.

The delay of the naive single buffer topology increases
quadratically as the word line size increases. The capacitance
attached to the word line per 6T cell consists of two parts: the
input capacitance of two access transistors and the capacitance
of a wire that is the width of the cell. The 6T cell input
gate capacitance is much higher than the wire capacitance in
this scenario. Hence, the word line capacitance per 6T cell is
much higher than that of a simple wire. Due to the adjacent
connection of the cells, the signal needs to go through this
slow word line wire, which is as wide as the array, to reach
the farthest bit cell.

Inserting buffers breaks the long wire into smaller segments
with less total delay. However, the placement and sizing of
the inserted buffers are complicated as both gate and wire
delays need to be considered for the buffer insertion problem.
The gate delays dominate for small size rows, but the wire
delay dominates for large size rows causing extremely long
row access times. The gate delay depends on three factors:
input slew, gate capacitance, and gate type. Wire delays use
simple Elmore delay models. The wire capacitance impact on
the driving gate is complicated and is a signal slew dependent.

The Van Ginneken algorithm finds the location and size of
the inserted buffers. During the first stage, the Van Ginneken
algorithm builds solutions from the bottom-up in the routing
tree to find non-dominated candidate solutions. During the
second stage, the algorithm chooses the best solution at the
root and inserts the buffers based on the bottom-up candidate
solutions.

III. PROPOSED DESIGN

This paper proposes a buffered single word line topology
as shown in Figure 4. The SRAM row is n cells wide and



buffers are inserted on the word line wire to optimize speed.
Buffers can be inserted between any two 6T cells in the row
and the same insertion pattern is used for all rows in the array.

Row Select Potenial
Wire Inserted Buffer
EN

ooo0
Rows Rows
IN
Nand
Buffer

Root
Buffer

Input
Inverter

Buffered Word
Line Wire

-
ooo

Fig. 4. Inserting buffers in a single word line topology can improve word
line delay at the expense of some array area overhead.

A. Word Line Topology and Solution Space

The two access transistors of a 6T cell are represented as
a single node in the word line topology. Hence, a row is a
tree with n nodes and each node only has one child node.
The root node is defined as the closet cell access point to the
decode output. The wire between two nodes is represented as
a connection and there are n — 1 connections in the tree.

A solution describes the status of a node under one buffer
insertion scenario. A solution contains the input capacitance
at the current node, the timing information, buffer size (if
any), and the next downstream sub-solution used. The inserted
buffer size is the size of the buffer inserted before this node
if such a buffer exists and is zero if there is no buffer. The
number of available buffer library cells for insertion is k.

B. Inputs and Outputs of the Algorithm

The inputs to the algorithm include a graph representing
the interconnect topology with a node for each of the n cells
in the row. The nodes are in a vertex set and the connecting
wires are in an edge set. Each of the n nodes in the vertex set
V' is represented by a vertex v; with ¢ increasing away from
the word line NAND buffer. Each node v; has an internal
capacitance that is 2 x C,4, where C,4 is the gate input
capacitance of a minimized gate.

An edge, denoted as e;, connects vertex v; to the next
downstream vertex v;y; and is in the edge set E. The length
of each edge that connects two adjacent 6T cell is defined as a
unit wire and has a resistance of unit wire resistance R,,,, and
a capacitance of unit wire capacitance C',,,. Inserting a buffer
between two cells increases the distance of the connecting
edge, but the delay/capacitance impact of the wire length
increase is negligible compared to the word line and is thus
ignored. All e; are set to have the resistance of R,, and
capacitance of Cl,.

The inputs also include a set B of k possible buffer sizes.
The input capacitance of a minimized buffer is (14 Ry, ) X Cyq
where R, is the PMOS/NMOS ratio and the buffer input
capacitance is proportional to its size.

As in Figure 4, both the input inverter and NAND buffer
are gates before the root node. Their sizes are fixed for a given
row size.

The output of the algorithm is an optimal list of sub-
solutions s; at every node v;. The algorithm starts with each
s; is empty and builds candidate solutions as the algorithm
processes.

C. Algorithm Overview

Algorithm 1 shows the pseudocode of the algorithm. There
are two major stages: bottom-up (lines 1-17) and top-down
stage (lines 18-23). The first, bottom-up stage goes from the
leaf node s,,, which is the furthest cell in the row, and traverses
in the upstream direction until the root node sy to build
solution list s; for each node v;.n Once the root node is met,
the second, top-down stage builds the result by selecting the
optimal solution in solution list sy at the root node vy and
recursively selecting each sub-solution used to construct that
solution in downstream direction.

Algorithm 1 The Van Ginneken algorithm applied to a single
word line topology.

Input: Topology (V, E), Buffer library (B)

Output: Optimal delay buffer solution

1: Create leaf node solutions s,, with and without buffers.
/I Create unbuffered solutions in bottom-up manner
2: fori=n—1to0do

3:  for s € 5,41 do

4: Create new solution s’ in s;

5 Remember sub-solution s in s’

6 Set delay of s’ to delay of e; plus s

7 Set capacitance of s’ to cap of e; plus s

/I Create buffered solutions from unbuffered solutions
8: for s € s; do

9 Create an empty buffered solution list sbu f
10: for b € B do

11: Create new solution s’ in sbuf

12: Remember sub-solution s in s’

13: Set buffer size of s’ to b

14: Set delay of s’ to delay of b with capacitance load
of s

15: Set capacitance of s’ to input capacitance of b

16: Add buffered solution list sbu f to s;

// Remove inferior solutions

17:  Prune s;

// Find optimal solution with root word line driver

18: for s € sg do

19:  Calculate delay with root word line driver

20: Remember fastest solution, S,,in

/I Construct optimal buffer placement in top-down manner
21: while s is defined do

22:  Add buffer b if set in s

23:  Set s to its sub-solution

D. Bottom-Up Stage

There are three steps in the bottom-up stage: propagating,
buffer insertion, and pruning.



The first step creates the unbuffered solution set by propa-
gating the downstream solution list s; 4 to the current solution
list s; (lines 3-7 in Algorithm 1). For a solution s in s;, the
corresponding propagated solution s’ is calculated based on s
and the connecting edge e; with a capacitance of C,,, and a
resistance of Ry,,. The delay of s’ is the sum of e; propagation
delay and s delay, and the capacitance of s’ is the downstream
capacitance. The size of s; for a node v; is the same as the size
of s;+1 for node v;+; when the propagating step is finished.

The second step inserts buffers for each previous unbuffered
solution (lines 8-16 in Algorithm 1). Because there are k
buffer sizes, each unbuffered solution will generate k buffered
solutions for a total of k x |s;_1| buffered solutions. There are
(k+1) x |s;_1] total buffered and unbuffered solutions before
pruning.

A large buffer library (big k) significantly increases the
runtime. On the other hand, the size of library should be
sufficient so that there are buffers small and large enough to
get an optimal solution. Hence, the provided buffer size range
is large enough so that the upper limit does not limit the speed.

The third step prunes the inferior solutions (line 17 in
Algorithm 1). An optimal solution, however, is not simply
the fastest solution, because the upstream solution is not
yet known. A seemingly fast sub-solution in s; may have a
big input capacitance that causes significant wire propagation
delay in the upstream solution yielding an overall slow solution
in s;_1. On the other hand, a seemingly slow sub-solution
in s; may have a small input capacitance yet not require
further buffering upstream and produce a fast solution in s;_1.
Therefore, a sub-solution is inferior to another solution only
if both its input capacitance and delay are bigger than another
sub-solution.

To implement pruning, a solution list is sorted by either
delay or capacitance and solutions are compared in order to
avoid O(|s;|?) comparisons. For example, if the list is sorted
by the delay from low to high, a solution in the s; is only
compared to slower solutions after it in sorted order. If one
of these compared solutions has bigger capacitance then it
is inferior. After pruning, the algorithm removes all inferior
solutions and in practice keeps roughly a linear number of
pruned solutions.

E. Top-Down Stage

Once all nodes have their pruned solution lists, the top-down
stage starts at the solution list sy of the root node vg. The root
node is driven by the output of the global NAND buffer with
a fixed size. Hence, each solution in sq is used to calculate a
total row delay and the fastest solution is used (lines 18-20 in
Algorithm 1).

Every solution during the bottom-up stage kept track of
the buffered sub-solution it used. The top-down algorithm
proceeds by adding each buffered sub-solution to the final
result. Once there is no next buffered sub-solution, the location
and size of all inserted buffers are in the result (lines 21-23
in Algorithm 1).

F. Delay Models and Accuracy

Signal slew causes two sources of mismatch. First, the
effective capacitance at the output of a driving buffer is hard to
calculate because it depends on the signal slew. This unknown
signal slew causes effective capacitance mismatch in line 6.
Second, the delay of buffers are pre-measured for fast run-
time. A look-up table takes input slew and load capacitance
as input keys and uses linear interpolation to find the delay
for given inputs. Hence, the unknown signal slew also causes
buffer delay mismatch in line 11.

IV. TIMING AND AREA

The proposed design reduces the read path delay at the cost
of extra array area. By inserting buffers in the word line, the
original long wire is broken into smaller wires with smaller
total delay. Even though there are more buffers compared to
the single buffer word line topology, the access speed is faster.

The extra area is from the inserted buffers and extra spacing
to adjacent bit cells. Having more, smaller buffers costs more
area than fewer, larger buffers due to the extra spacing. The
buffer and extra space does not significantly change the word
line interconnect delay because the buffer widths are relatively
narrow compared to the word line as a whole.

The auxiliary circuits of an SRAM are created to match the
size of the array including the buffers. The proposed method
increases the width of the array thus requires the sense amp
array and column mux array to have additional spacing. The
proposed work uses the same sense amp array and column
mux array as the regular array but with additional spacing.

V. EXPERIMENTAL SETUP

We use FreePDK45 design rules [12] and local/intermediate
interconnect model parameters from the Predictive Technology
Model [13]. A wire that is the width of a 6T cell (0.7um)
has the following parameters: the unit wire resistance (R,.,)
is 1.026912 and the unit wire capacitance (C,,) is 0.0987fF,
assuming 0.075um wire width and 0.01um wire spacing. The
PMOS to NMOS ratio (R,,) is 2 and unit transistor gate
capacitance (Clgq) is 0.119fF.

A. Baseline and Proposed Design

As mentioned in Section III-B, the size of both the input
inverter and NAND buffer are fixed for both the baseline
and proposed method. The baseline has one buffer after the
NAND buffer and the size of this buffer is the fastest result
considering all possible library buffers. Our proposed method
inserts buffers based on the results of the Van Ginneken
algorithm.

B. Array Size Setup

The comparison considers different array width and height
combinations with a constant total size. The array width must
be a power-of-two multiple of the word size, which is 64 bits
in our simulation, and the maximum array width is 1024 bits
as the maximum column mux input is 16. The bit line size is
determined from the word line size and the fixed total memory



size. For a given memory size, each design uses its fastest
combination of array width and array height.

C. Buffer Setup

The buffer library uses two equal sized inverters for each
buffer and has sizes: 1, 2, 4, 8, 16, 32, 64, and 128 times a
minimum-sized inverter. The upper limited is set to be high
enough so that the upper limit is not used and therefore does
not restrict the potential solutions.

The candidate buffer placement locations are determined
by the intervals of the bit cells. Inserting a buffer in the array
increases the width by a buffer plus extra spacing which is a
technology dependent value (0.56um in our technology).

VI. SIMULATION RESULTS

Figure 5 shows the bank delay trend. The proposed method
starts to insert buffers and reduce the bank delay when the
word line size is bigger than 512 bits. However, for a small
bank, the optimized array setup is not wide enough for the
buffer insertion to be effective. The rest of the section reviews
the fastest dimensions for a given sized bank in detail.

* Proposed 128k x Baseline 128k Proposed 64k
Baseline 64k * Proposed 32k x Baseline 32k
* Proposed 16k x Baseline 16k

6000
4000

2000

1000

600
400

Delay (picoseconds)

200

400 600 800

Word Line Size (bits)

Fig. 5. Buffer insertion starts to reduce bank delay when the word line size
is around 512 bits.

Figure 6 shows the topology schematic of algorithm gener-
ated buffer placement for a given array width. Buffer insertion
is not used when the row size is smaller than 512 bits.
For a given array size, the best array width and height can
change when the word line topology changes. Table II shows
the buffer sizing and placement results of the fastest array
width and height for the baseline design and our proposed
solution. The proposed solution uses the same setup as the
baseline when the array size is smaller than 16 Kbit as the
interconnect delay and capacitance are not significant. The
proposed solution starts to use extra buffers from an array
size of 32 Kbit and inserts more, bigger buffers as the array
size increases.

Table IIT shows the read delay, which is the optimization
goal, for the baseline and the proposed solutions. The proposed
solution has more read delay improvement as the array size

' Total Row Size 1024 bits

EN ' Sub Sub Sub :
IN ED‘F>‘I> Rows >‘{>"_Rows >‘{> Rows|,
' 64X £ 64X £ 64X of |i

Input  Nand 0 0
ey Buffer | 322 319 383 :
Inverter : cells cells cells |,
oo TotalRow Size 512bits ;
: Sub Sub l
' Rows Rows '
EN | of !
% >{ > of ,
IN : 16X 127 64X 385 )
Input Nand, cells cells :

Total Row Size 256 bits

EN -
N w»ﬂ Rows of 256 cells

32X

Input
Inverter

Fig. 6. Optimal buffer insertion solutions show that buffers are needed when
the row size exceeds 512 bits.

TABLE I
OPTIMIZED ARRAY RESULTS.

Total | Array | Array | Buffer Location

Size | Width | Height | Num & Size
Proposed | 128k 1024 128 3 64x at 0,323,640
Baseline 128k 1024 128 1 64x at 0
Proposed 64k 512 128 3 16x at 0, 64x at 128
Baseline 64k 512 128 1 32x at 0
Proposed 32k 512 64 2 16x at 0, 64x at 128
Baseline 32k 512 64 1 32x at 0
Proposed 16k 256 64 1 32x at 0
Baseline 16k 256 64 1 32x at 0

increases. Such improvement is shown starting at the bank
size of 32 Kbit. For a 128 Kbit array, the speed improvement
is 15.7%. The intermediate 32 Kbit and 64 Kbit data points
show slight fluctuations in delay improvement as the algorithm
does not consider the effect of signal slew and the intercon-
nect shielding due to the nature of the bottom-up approach.
However, both data points still show slight delay improvement
in the final simulation which considers those effects ignored
by the algorithm model.

TABLE III
READ DELAY RESULTS.

Total Bank Improve

Size | Delay (ps) | Percent
Proposed | 128k 713 15.7%
Baseline 128k 846
Proposed | 64k 600 2.43%
Baseline 64k 615
Proposed | 32k 432 2.92%
Baseline 32k 445
Proposed 16k 347 0%
Baseline 16k 347

Table IV shows the area of both the baseline solutions and
the proposed solutions. The proposed solution area is slightly



larger than the baseline design. The fluctuation of the area
penalty is due to the same model inconsistencies as the delay

improvement.
TABLE IV
BANK AREA RESULTS.

Total Array Array Area

Size | Width (um) | Height (um) | Penalty
Proposed | 128k 784.18 194.88 5.26%
Baseline | 128k 744.96 194.88
Proposed | 64k 396.96 193.16 4.56%
Baseline 64k 379.63 193.16
Proposed 32k 395.30 107.08 5.23%
Baseline 32k 375.62 107.08
Proposed 16k 197.42 102.5525 0%
Baseline 16k 197.42 102.5525

VII. CONCLUSION

The proposed word line buffering methodology significantly
reduces word line delay and bank delay with only minor area
cost when the word line size is big enough. This method thus
expands the permissible bank size range given performance
requirements and can lead to increased flexibility of system-
level memory design.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
(10]
(11]

[12]
[13]

REFERENCES

S. Dhar and M. A. Franklin, “Optimum buffer circuits for driving long
uniform lines,” JSSC, pp. 32-40, 1991.

V. Adler and E. G. Friedman, “Repeater design to reduce delay and
power in resistive interconnect,” TCAS I1, vol. 45, no. 5, pp. 607-616,
May 1998.

M. Yoshimoto, K. Anami, H. Shinohara, T. Yoshihara, H. Takagi,
S. Nagao, S. Kayano, and T. Nakano, “A divided word-line structure
in the static RAM and its application to a 64K full CMOS RAM,”
JSSC, vol. SC-18, no. 5, pp. 479-485, 1983.

T. Hirose, “A 20 ns 4-Mb CMOS SRAM with hierarchical word
decoding architecture,” JSSC, vol. 25, no. 5, pp. 1068-1073, 1990.

T. Chen, D. Lauderback, and G. Sunada, “Optimization of the number
of levels of hierarchy in large scale hierarchy memory systems,” ISCAS,
vol. 5, pp. 2104-2107, 1992.

A. J. Bhavnagarwala, S. Kosonocky, and J. D. Meindlt, “Interconnect-
centric array architectures for minimum SRAM access time,” ICCD, pp.
400-405, 2001.

B. Rooseleer, S. Cosemans, and W. Dehaene, “A 65 nm, 850 MHz, 256
kbit, 4.3 pJ/access, ultra low leakage power memory using dynamic cell
stability and a dual swing data link,” JSSC, vol. 47, pp. 1784-1796,
2012.

B. Rooseleer and W. Dehaene, “A 40 nm, 454 MHz 114 fJ/bit area-
efficient SRAM memory with integrated charge pump,” ESSCIRC, pp.
201-204, 2013.

B. Wu, J. E. Stine, and M. R. Guthaus, “Fast and area-efficient SRAM
word-line optimization,” ISCAS, 2019.

L. P. P. P. van Ginneken, “Buffer placement in distributed rc-tree
networks for minimal elmore delay,” ISCAS, p. 865-868, 1990.

M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, and M. Sarwar,
“OpenRAM: An open-source memory compiler,” ICCAD, pp. 1-6, 2016.
“Freepdk45,” https://www.eda.ncsu.edu/wiki/FreePDK45:Contents.
“Predictive technology model,” http://ptm.asu.edu/.





