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Abstract—We propose SANSCrypt, a novel sequential logic
encryption scheme to protect integrated circuits against reverse
engineering. Previous sequential encryption methods focus on
modifying the circuit state machine such that the correct func-
tionality can be accessed by applying the correct key sequence
only once. Considering the risk associated with one-time au-
thentication, SANSCrypt adopts a new temporal dimension to
logic encryption, by requiring the user to sporadically perform
multiple authentications according to a protocol based on pseudo-
random number generation. Analysis and validation results on
a set of benchmark circuits show that SANSCrypt offers a
substantial output corruptibility if the key sequences are applied
incorrectly. Moreover, it exhibits an exponential resilience to
existing attacks, including SAT-based attacks, while maintaining
a reasonably low overhead.

I. INTRODUCTION

The design process of modern VLSI systems often relies on
a supply chain where several services, such as verification, fab-
rication, and testing, are outsourced to third-party companies.
If these companies gain access to a sufficient amount of critical
design information, they can potentially reverse engineer the
design. One possible consequence of reverse engineering is
Hardware Trojan (HT) insertion, which can be destructive for
many applications. HTs can either disrupt the normal circuit
operation [1f] or provide the attacker with access to critical
data or software running on the chip [2].

Countermeasures such as logic encryption [3]-[6], inte-
grated circuit (IC) camouflaging [7|], watermarking [J8], and
split manufacturing [9] have been developed over the past
decades to prevent IC reverse engineering. Among these, logic
encryption has received significant attention as a promising,
low-overhead countermeasure. Logic encryption modifies the
circuit in a way such that a user can only access the correct
circuit functionality after providing a correct key sequence.
Otherwise, the circuit function remains hidden, and the output
different from the correct one.

Various logic encryption techniques [3]-[6] and potential
attacks [10]-[12] have appeared in the literature, as well as
methods to systematically evaluate them [13], [[14]. A category
of techniques [3]-[5] is designed to modify and protect the
combinational logic portions of the chip and can be extended
to sequential circuits by assuming that the scan chains are not
accessible by the attacker, e.g., due to scan chain encryption
and obfuscation [15]-[17]. Another category of techniques,
namely, sequential logic encryption [6], [18], [19], targets,
instead, the state transitions of the original finite state machine
(FSM). Sequential logic encryption introduces additional states
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and transitions in the original FSM, essentially partitioning the
state space into two sets. After being powered on or reset, the
FSM enters the encrypted mode, exhibiting an incorrect output
behavior. The FSM transitions, instead, to the functional mode,
providing the correct functionality, upon receiving a sequence
of key patterns.

A set of attacks have been reported against sequential en-
cryption schemes, aiming to retrieve the correct key sequence
or circuit function. Shamsi et al. [20] adapted the Boolean
satisfiability (SAT)-based attack [10], traditionally targeted
to combinational logic encryption, by leveraging methods
from bounded model checking to unroll the sequential circuit.
Recently, an attack based on automatic test pattern generation
(ATPG) [21]] uses concepts from excitation and propagation
of stuck-at faults to search the key sequence among the input
vectors generated by ATPG. When the attackers have some
knowledge of the topology of the encrypted FSM, then they
can extract and analyze the state transition graph and bypass
the encrypted mode [22]]. Overall, the continuous advances in
FSM extraction and analysis tools tend to challenge any of the
existing sequential encryption schemes and call for approaches
that can significantly increase their robustness.

This paper proposes SANSCrypt, a Sporadic-Authentication-
based Sequential Logic Encryption (SANSCrypt) scheme,
which raises the attack difficulty via a multiple-authentication
protocol, whose decryption relies on retrieving a set of key
sequences as well as the time at which the sequences should
be applied. Our contributions can be summarized as follows:

« A robust, multi-authentication based sequential logic en-
cryption method that for the first time, to the best of our
knowledge, systematically incorporates the robustness of
multi-factor authentication (MFA) [23] in the context of
hardware obfuscation.

o An architecture for sporadic re-authentication where key
sequences must be applied at multiple random times,
determined by a random number generator, to access the
correct circuit functionality.

o Security analysis and empirical validation of SANSCrypt
on a set of ISCAS’89 benchmark circuits [24]], showing
exponential resilience against existing attacks, including
sequential SAT-based attacks, and reasonably low over-
head.

Analysis and validation results show that SANSCrypt can sig-

nificantly enhance the resilience of sequential logic encryption
under different attack assumptions.



II. BACKGROUND AND RELATED WORK

Among the existing sequential logic encryption techniques,
HARPOON [6] defines two modes of operation. When pow-
ered on, the circuit is in the encrypted mode and exhibits
an incorrect functionality. The user must apply a sequence
of input patterns during the first few clock cycles to enter
the functional mode, in which the correct functionality is
recovered. However, the encrypted mode and functional mode
FSMs are connected by only one transition (edge), which can
be exploited by an attacker to perform FSM extraction and
analysis, and bypass the encrypted mode [22].

Interlocking [18]] sequential encryption modifies the circuit
FSM such that multiple paths are available between the states
of the encrypted and the ones of the functional FSMs, making
it harder for the attacker to detect the only correct transition
between the two modes. However, in both HARPOON and
Interlocking encryption, once the circuit enters the functional
mode, it remains there until reset.

Dynamic State-Deflection [25] requires, instead, an addi-
tional key input verification step while in the functional mode.
If the additional key input is incorrect, the FSM transitions
to a black-hole state cluster which can no longer be left.
However, because the additional key input is fixed over time,
the scheme becomes more vulnerable to sequential SAT-based
attacks [20].

Finally, instead of corrupting the circuit function immedi-
ately after reset, DESENC [19] counts the occurrence of a
specific but rare event in the circuit. Once the counter reaches a
threshold, the circuit enters the encryption mode. This scheme
is more resilient to sequential SAT-based attacks [26] because
it requires unrolling the circuit FSM a large number of times
to find the key. However, the initial transparency window may
still expose critical portions of the circuit functionality.

III. SANSCRYPT

We introduce design and implementation details for SAN-
SCrypt, starting with the underlying threat model.

A. Threat Model

SANSCrypt assumes a threat model that is consistent with
the previous literature on sequential logic encryption [6]], [20],
[22]. The goal of the attack is to access the correct circuit
functionality, by either reconstructing the deobfuscated circuit
or finding the correct key sequence. To achieve this goal, the
attacker can leverage one or more of the following resources:
(i) the encrypted netlist; (ii) a working circuit providing correct
input-output pairs; (iii) knowledge of the encryption technique.
In addition, we assume that the attacker has no access to the
scan chain and cannot directly observe or change the state of
the circuit.

B. Authentication Protocol

As shown in Fig. [Th, existing logic encryption techniques
are mostly based on a single-authentication protocol, requiring
users to be authenticated only once before using the correct
circuit function. After authentication, the circuit remains func-
tional unless it is powered off or reset. To attack the circuit,
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Fig. 1. Conventional (a) and proposed (b) authentication protocols for logic
encryption.
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it is then sufficient to discover the correct key sequence that
must be applied in the initial state.

We adopt, instead, the authentication protocol in Fig. E})
where the functional circuit can “jump” back to the encrypted
mode from the functional mode. Once the back-jumping
occurs, another round of authentication is required to resume
the normal operation. The back-jumping can be triggered
multiple times and involve a different key sequence for each
re-authentication step. The hardness of attacking this protocol
stems from both the increased number of the key sequences
to be produced and the uncertainty on the time at which each
sequence should be applied. A new temporal dimension adds
to the decryption procedure, which poses a significantly higher
threshold to the attackers.

C. Overview of the Encryption Scheme

SANSCrypt is a sequential logic encryption scheme which
supports random back-jumping, as represented in Fig.[2} When
the circuit is powered or reset, the circuit falls into the reset
state E0 of the encrypted mode. To transition to the initial (or
reset) state VO of the functional mode, the user must apply at
startup the correct key sequence to the primary input ports.

Once in the functional mode, the circuit can deliberately, but
randomly, jump back, as denoted by the blue edges in Fig.[2] to
a state sp; in the encrypted mode, called back-jumping state,
after a designated number of clock cycles 1;, called back-
Jjumping period. The user needs to apply another key sequence
to resume normal operations, as shown by the red arrows. Both
the back-jumping state sp; and the back-jumping period
are determined by a pseudo-random number generator (PRNG)
embedded in the circuit. Therefore, when and where the back-
jumping operation happens is unpredictable unless the attacker
is able to break the PRNG or find its seed. The schematic of
SANSCrypt is shown in Fig. [3] and consists of two additional
blocks, a back-jumping module and an encryption finite state
machine (ENC-FSM), besides the original circuit. We discuss
each of these blocks in the following subsections.
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D. Back-Jumping Module

The back-jumping module consists of an n-bit PRNG, an
n-bit Counter, and a Back-Jumping Finite State Machine (BJ-
FSM) which sends back-jumping commands to the rest of the
circuit. As summarized in the flowchart in Fig. 4 when the
circuit is in the encrypted mode, BJ-FSM checks whether the
authentication has occurred. If this is the case, BJ-FSM stores
the current PRNG output as the back-jumping period ¢;; and
initializes the counter.

The counter increments its output at each clock cycle until
it reaches ;. This event triggers BJ-FSM to sample again the
current PRNG output 7, which is generally different from ¢,
and use it to determine the back-jumping state sp; = f(r).
For example, if sp; is an [-bit binary number, BJ-FSM can
arbitrarily select / bits from r and assign the value to sp;. If
the first [ bits of r are selected, we have f(r) = r[0:1—1].
At the same time, BJ-FSM sends a back-jumping request to
the other blocks of the circuit and returns to its initial state,
where it keeps checking the authentication status of the circuit.
On receiving the back-jumping request, the circuit jumps back
to state sp; in the encrypted mode and will stay there unless
re-authentication is performed. Any PRNG architecture can
be selected in this scheme, based on the design budget and
the desired security level. For example, linear PRNGs, such
as Linear Feedback Shift Registers (LFSRs), provide higher
speed and lower area overhead but tend to be more vulnerable
than cipher algorithm-based PRNGs, such as AES, which are,
however, more expensive.
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Fig. 5. enc_out controls the original circuit via XOR gates.

TABLE I
TRUTH TABLE FOR A 3-BIT enc_out ARRAY
State EO | E1 | E2 | E3 | E4 | Auth
enc_out|0 0 1 1 1 1 0
enc_out|1 1 0 1 1 0 0
enc_out|2 1 1 1 0 0 0

E. Encryption Finite State Machine (ENC-FSM)

The Encryption Finite State Machine (ENC-FSM) deter-
mines whether the user’s key sequence is correct and, if it
is not correct, takes actions to hide the functionality of the
original circuit. The input of the ENC-FSM can be provided
via the primary input ports, without the need to create extra
input ports for authentication. The output enc_out of ENC-
FSM, which is n bit long, together with a set of nodes in
the original circuit netlist, can be provided as an input to
a set of XOR gates, to corrupt the circuit function as in
combinational logic encryption [3]. For example, in Fig. [3}
a 3-bit array enc_out is connected to six nodes in the original
circuit via XOR gates. In this paper, XOR gates are inserted at
randomly selected nodes. However, any other combinational
logic encryption technique is also applicable. As a design
parameter, we denote by node coverage the ratio between
the number of inserted XOR gates and the total number of
combinational logic gates in the circuit.

Only one state of ENC-FSM, termed auth, is used in the
functional mode. In state auth, all bits in enc_out are set to
zero and the original circuit functionality is activated. In the
other states, the value of enc_out changes based on the state,
but at least one of its bits is set to one to guarantee that the final
output is incorrect. A sample truth table for a 3-bit enc_out
array is shown in Table[l] Even if the circuit is in the encrypted
mode, enc_out changes its value based on the state of the
encryption FSM. Such an approach makes it difficult for signal
analysis attacks, aiming to locate signals with low switching
activity in the encrypted mode, to find enc_out and bypass
ENC-FSM. After a valid authentication, the circuit resumes its
normal operation. Additional registers are, therefore, required
in the ENC-FSM to store the circuit state before back-jumping
so that it can be resumed after authentication.

IV. PERFORMANCE ANALYSIS
We analyze SANSCrypt’s resilience against existing attacks
and estimate its overhead.
A. Brute-Force Attack

Let us suppose that the number of primary input bits used as
key inputs is ¢ and each re-authentication procedure requires
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Fig. 6. An unrolled encrypted circuit which requires n clock cycles to find
the key sequence.

c clock cycles to apply the key sequence. If the attacker has
no preference in selecting the key sequence, then she would
have, on average, (2 + 1)/2 ~ 2¥¢~! attempts for each re-
authentication procedure, which amounts to the same brute-
force attack complexity of HARPOON. However, because
the correct key sequence of each re-authentication procedure
depends on the PRNG output, the number Ny,.,, of possible
values of the PRNG output will also contribute to the attack
effort. If each PRNG output corresponds to a unique key
sequence which is independent from other key sequences,
the average attack effort will be N,y - 2°¢7 1. For a 10-bit
PRNG, ¢ = 32, and ¢ = 8§, the average attack effort will reach
5.93 x 107.

B. Sequential SAT-Based Attack

A SAT-based attack can be carried out on sequential encryp-
tion by unrolling the sequential portions of the circuit [20].
This attack can be remarkably successful especially when the
correct key is the same at each time (clock cycle) and the
key input ports are different from the primary input ports.
Similarly to HARPOON, SANSCrypt is resilient to this SAT-
based attack variant, since the correct keys are generally not
the same at different clock cycles.

We therefore analyze the resilience of SANSCrypt via a
modified version of the sequential SAT-based attack [22] that is
appropriate for schemes such as HARPOON and SANSCrypt,
as shown in Fig. [6] Let us first assume that the encryption
scheme requires n clock cycles after reset to enter the func-
tional mode. Then, the attacker can start the attack by unrolling
the circuit (n+1) times. The first n copies of the circuit receive
the keys at their primary input ports (K, and K3), while the
primary input and output ports of the (n + 1)*" circuit replica
can be used to read the circuit input and output signals after
n cycles. If the SAT-based attack fails to find the correct key
with (n + 1) circuit replicas, as in Fig. [6] the circuit will be
unrolled one more time (see, e.g., [20]).

The attack above would be still ineffective on SANSCrypt,
since it can retrieve the first key sequence but would fail to
discover when the next back-jumping occurs and what would
be the next key sequence. Even if the attacker knows when
the next back-jumping occurs, the above SAT-based attack will
fail due to the large number of circuit replicas needed to find
all the key sequences, as empirically observed in Section
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C. FSM Extraction and Structural Analysis

As discussed in Section[[I] a possible shortcoming of certain
sequential encryption schemes is the clear boundary between
the encrypted mode and the functional mode FSMs. As shown
in Fig. |3l SANSCrypt addresses this issue by designing more
than one transition between the two FSMs.

An attacker may also try to locate and isolate the output of
ENC-FSM by looking for low signal switching activities when
the circuit is in the encrypted mode. SANSCrypt addresses this
risk by expanding the output of ENC-FSM from one bit to an
array. The value of each bit changes frequently based on the
state of the encrypted mode FSM, which makes it difficult
for attackers to find the output of ENC-FSM based on signal
switching activities.

D. Cycle Delay Analysis

Due to multiple back-jumping and authentication operations
in SANSCrypt, additional clock cycles will be required in
which no other operation can be executed. Suppose that
authentication requires ¢, clock cycles and the circuit stays in
the functional mode for ¢; clock cycles before the next back-
jumping occurs, as shown in Fig. [/| The cycle delay overhead
can be computed as the ratio O.q = t, /1.

Specifically, for an n-bit PRNG, the average t; is equal
to the average output value, i.e., 2"n=1 To illustrate how the
cycle delay overhead is influenced by this encryption, Fig.
shows the relation between average cycle delay overhead
and PRNG bit length. The clock cycles (t,) required for
(re-)authentication are set as 8, 16, 64, and 128. When the
PRNG bit length is small, the average cycle delay increases
significantly with the increase of ¢,. However, the cycle delay
can be reduced by increasing the PRNG bit length. For
example, the average cycle delay overhead becomes negligible
for all the four cases when the PRNG bit length is 11 or
larger. A key manager, available to the trusted user, will be
in charge of automatically applying the key sequences from a
tamper-proof memory at the right time, as computed from a
hard-coded replica of the PRNG.
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TABLE II
SYNTHESIS RESULT OF AREA, POWER, DELAY
Circuit s27 s298 51238 59234
Node Coverage 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%
Area [%] 1418.5 | 1418.5 | 1403.2 | 1403.2 | 413.0 | 427.3 | 4252 | 453.8 | 1448 | 165.7 | 176.0 | 189.2 | 114.6 | 131.7 | 1445 160.1
Power [%] 1627.7 | 1627.7 | 1627.5 | 1627.5 | 385.7 | 390.6 | 389.9 | 402.8 | 217.8 | 232.1 | 235.0 | 249.8 | 179.8 | 197.5 | 188.0 190.6
Delay [%] 0.0 0.0 14 14 0.0 0.0 0.0 0.5 0.0 0.0 0.0 5.8 0.0 0.0 0.9 3.6
Circuit s15850 $35932 $38584 Average (s27 and s298 excluded)
Node Coverage 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%
Area [%] 92.9 112.1 120.1 133.9 116.3 129.5 139.4 151.6 133.5 140.9 158.7 165.6 120.4 136.0 147.8 160.1
Power [%] 127.4 142.3 153.2 163.0 98.4 101.9 | 101.2 | 103.0 | 123.9 | 128.8 | 142.0 | 140.3 | 149.5 | 160.5 | 163.9 169.4
Delay [%] -0.3 0.0 0.1 0.6 -0.4 0.0 43 53 0.6 2.0 0.4 49 0.0 0.4 1.1 4.0
TABLE III TABLE IV
OVERVIEW OF THE SELECTED BENCHMARK CIRCUITS SAT-BASED ATTACK RUNTIME FOR FINDING THE FIRST 7 KEY SEQUENCES
[Key Seq. Index [ [(HARPOON) [ 2 [ 3 | 4 | 5 [ 6 [ 7
Circuit | s27 | s298 | s1238 | s9234 | s15850 | s35932 | s38584 | Runtime [s] | 4 | 123 ] 229 | 1941 | 1301 | 2202 | 25571 |
Input 4 3 14 36 77 35 38
Output 1 6 14 39 150 320 304
DFF 3 14 18 211 534 1728 1426
Gate 10 119 508 5597 9772 16065 19253

V. SIMULATION RESULTS

We first evaluate the effectiveness of SANSCrypt on seven
ISCAS’89 sequential benchmark circuits with different sizes,
as summarized in Table [ITl All the experiments are executed
on a Linux server with 48 2.1-GHz processor cores and 500-
GB memory. We implement our technique on the selected
circuits with different configurations and use a 45-nm Nan-
gateOpenCellLibrary [27] to synthesize the encrypted netlists
for area optimization under a critical-path delay constraint
that targets the same performance as in the non-encrypted
versions. For the purpose of illustration, we realize the PRNG
using Linear Feedback Shift Registers (LFSR) with different
sizes, ranging from 5 to 15 bits. An LFSR provides an area-
efficient implementation and has often been used in other logic
encryption schemes in the literature [9]], [28|]. We choose a
random 8-cycle-long key sequence as the correct key, and
select 5%, 10%, 15%, and 20% as node coverage levels.
Finally, we use the Hamming distance (HD) between the
correct and the corrupted output values as a metric for the
output corruptibility. If the HD is 0.5, the effort spent to
identify the incorrect bits is maximum.

We run functional simulations on all the encrypted circuits
with the correct key sequences (case 1) and without the correct
sequences (case 2), by applying 1000 random input vectors.

We then compare the circuit output with the golden output
from the original netlist and calculate the HD between the
two. Moreover, we demonstrate the additional robustness of
SANSCrypt by simulating a scenario (case 3) in which the
attacker assumes that the encryption is based on a single-
authentication protocol and provides only the first correct key
sequence upon reset. Fig. [Dp-d show the average HD in these
three cases. For all the circuits, the average HD is zero only in
case 1, when all the correct key sequences are applied at the
right clock cycles. Otherwise, in case 2 (orange) and case 3
(green), we observe a significant increase in the average HD.
The average HD in case 3 is always smaller than that of case 2
because, in case 3, the correct functionality is recovered for a
short period of time, after which the circuit jumps back to the
encrypted mode. The longer the overall runtime, the smaller
will be the impact of the transparency window in which the
circuit exhibits the correct functionality.

We then apply the sequential SAT-based attack in Section
to circuit s1238 with 5-bit LFSR and 20% node coverage,
under a stronger attack model, in which the attacker knows
when to apply the correct key sequences. Table [IV] shows
the runtime to find the first set of 7 key sequences. The
runtime remains exponential in the number of key sequences,
which makes sequential SAT-based attacks impractical for
large designs.

Finally, Table [[I] reports the synthesized area, power, and
delay overhead due to the implementation of our technique.



TABLE V
ADP OVERHEAD RESULTS FOR PARTIAL ENCRYPTION

Encrypted registers/Total registers | 100% | 50% | 25% 10% 5% 2.5% 1%
Area [%] 1335 | 71.6 | 49.1 334 | 278 235 224
Power [%] 123.9 | 40.2 9.6 | -12.8 | -20.5 | -22.1 | -25.0
Delay [%] 0.6 1.8 2.1 42 5.4 3.9 4.6

In more than 70% of the circuits the delay overhead is less
than 1%, and exceeds the required clock cycle by at most
5.8%. Except for s27 and s298, characterized by a small
gate count, all the other circuits show average area and
power overhead of 141.1% and 160.8%, respectively, which is
expected due to the additional number of registers required in
ENC-FSM to guarantee that the correct state is entered upon
re-authentication. However, because critical modules in large
SoCs may only account for a small portion of the area, this
overhead becomes affordable under partial obfuscation. For
example, we encrypted a portion of state registers in s38584,
the largest ISCAS’89 benchmark, using SANSCrypt. We then
randomly inserted additional XOR gates to achieve the same
HD as in the case of full encryption. Table |V| reports the
overhead results after synthesis, when the ratio between the
encrypted state registers and the total number of state registers
decreases from 100% to 1%. Encrypting 10% of the registers
will only cost 33.4% of the area while incurring negative
power overhead and 4.2% delay overhead.

VI. CONCLUSION

We proposed SANSCrypt, a robust sequential logic encryp-
tion technique relying on a sporadic authentication protocol,
in which re-authentications are carried out at pseudo-randomly
selected time slots to significantly increase the attack effort.
Future work includes optimizing the implementation to further
reduce the overhead and hide any structural traces that may
expose the correct key sequence. Further, we plan to inves-
tigate key manager architectures to guarantee reliable timing
and operation in real-time applications.
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