
Hardware Trojans in Reconfigurable
Computing

DISSERTATION

A thesis submitted to the
FACULTY FOR COMPUTER SCIENCE, ELECTRICAL ENGINEERING AND

MATHEMATICS
of

in partial fulfillment of the requirements
for the degree of Dr. Ing

by

QAZI ARBAB AHMED

Paderborn, Germany
Date of submission: November 2021

SUPERVISOR:
Prof. Dr. Marco Platzner

REVIEWERS:
Prof. Dr. Marco Platzner
Prof. Dr. Sybille Hellebrand

ORAL EXAMINATION COMMITTEE:
Prof. Dr. Marco Platzner
Prof. Dr. Sybille Hellebrand
apl. Prof. Dr. Wolfgang Müller
Prof. Dr. Christian Plessel
Dr. Heinrich Riebler

DATE OF SUBMISSION:
November 2021

QAZI ARBAB AHMED: Hardware Trojans in Reconfigurable Computing,
Dr. Ing© November 2021

iii

To my Mother,

Father (Late),

Brothers,

Sisters,

Wife,

and
Son

v

Acknowledgements
Inestimable appreciation and earnest gratitude for the help and support
are extended to many remarkable people who have been around me
throughout this journey and without whom the accomplishment of this
thesis would not have been possible. I would like to meekly express my
thanks to all my colleagues, friends, family, and specifically to those men-
tioned in the following lines.
First and foremost, I would like to express my deepest thanks to my su-
pervisor, Prof. Dr. Marco Platzner, for his invaluable guidance, persistent
help, and immeasurable support throughout this research. He has always
been kind and his generosity, dynamism, sincerity, scholarly advice, and
professional attitude have deeply inspired, motivated and helped me to
a great extent to complete this thesis. It was a great privilege and honor
to work under his supervision where I have learnt a lot from his experi-
ence, skills, and leadership. Furthermore, I would like to thank him and
Prof. Dr. Sybille Hellebrand for devoting their time and effort to review
this thesis, together with all the committee members for evaluating my
research.
I am sincerely grateful to the people of the CEG for providing such a
pleasant and professional working environment during my stay. A spe-
cial thanks goes to my colleague cum mentor Tobias Wiersema who has
been there all the time for scientific discussions in a very professional way
and also his help regarding social matters in Germany is highly regarded.
Besides, many thanks also goes to Linus Witschen, Muhammad Awais,
Hassan Ghasemzadeh Mohammadi, Lennart Clausing, Tim Hansmeier,
Christian Lienen, Felix Jentzsch, Achim Lösch, Nam Ho, Tobias Kenter,
Michael Lass and Heinrich Riebler for useful discussions over the time. A
big thanks to Jennifer Lohse and Andre Diekwisch for their support in ad-
ministrative and technical issues. In addition, I would also like to thank
my friend Sajjad Hussain for his encouraging and motivational conver-
sations in hard times. I would also like to express thanks to the HEC
Pakistan and DAAD Germany for financing this work.
Last but not least, I am extremely grateful to all my family members for
their infinite support and prayers. Above ground, I am indebted to my
mother for her endless support and prayers throughout my life. A huge
thanks to my wife Shafaq and son Maalik for their patience in both my
physical and mental absence during my stressful days. Many thanks for
counterbalancing my restless working days with their generous love, joy,
and keeping peace and harmony at home. May God bless them!

vii

Abstract

The battle of developing hardware Trojans and corresponding counter-
measures has taken adversaries towards ingenious ways of compromis-
ing hardware designs by circumventing even advanced testing and verifi-
cation methods. Besides conventional methods of inserting Trojans into a
design by a malicious entity, the design flow for field-programmable gate
arrays (FPGAs) can also be surreptitiously compromised to assist the at-
tacker to perform a successful malfunctioning or information leakage at-
tack. The advanced stealthy “Malicious Look-up-table (LUT)”-hardware
attack activates a Trojan only when generating the FPGA bitstream and
can thus not be detected by register transfer and gate level testing and
verification.

This thesis mainly focuses on the two aspects of hardware Tro-
jans in reconfigurable systems, the defender’s perspective which cor-
responds to the bitstream-level Trojan detection technique, and the at-
tacker’s perspective which corresponds to a novel FPGA Trojan attack.
From the defender’s perspective, we introduce a first-ever successful pre-
configuration countermeasure against the “Malicious LUT”-hardware
Trojan, by employing bitstream-level Proof-carrying Hardware (PCH)
and present the complete design-and-verification flow for iCE40 FPGAs.
Likewise, from an attacker’s perspective, we present a novel attack that
leverages malicious routing of the inserted Trojan circuit to acquire a dor-
mant state even in the generated and transmitted bitstream. The Trojan’s
payload is connected to primary inputs/outputs of the FPGA via a pro-
grammable interconnect point (PIP). The Trojan is detached from input-
s/outputs during place-and-route and re-connected only when the FPGA
is being programmed, thus activating the Trojan circuit without any need
for a trigger logic. Since the Trojan is injected in a post-synthesis step and
remains unconnected in the bitstream, the presented attack can currently
neither be prevented by conventional testing and verification methods
nor by bitstream-level verification techniques.

ix

Zusammenfassung

Im Wettstreit zwischen der Entwicklung neuer Hardwaretrojaner und
entsprechender Gegenmaßnahmen beschreiten Widersacher immer raf-
finiertere Wege um Schaltungsentwürfe zu infizieren und dabei selbst
fortgeschrittene Test- und Verifikationsmethoden zu überlisten. Abgese-
hen von den konventionellen Methoden um einen Trojaner in eine Schal-
tung für ein Field-programmable Gate Array (FPGA) einzuschleusen,
können auch die Entwurfswerkzeuge heimlich kompromittiert wer-
den um einen Angreifer dabei zu unterstützen einen erfolgreichen
Angriff durchzuführen, der zum Beispiel Fehlfunktionen oder unge-
wollte Informationsabflüsse bewirken kann. Die hochentwickelte At-
tacke “Heimtückische Look-up-table (LUT)” aktiviert ihren Tarnkappen-
trojaner beispielsweise erst, wenn der FPGA Bitstrom geschrieben wird,
so dass sie weder von Tests noch Verifikationen auf der Register-Transfer-
Ebene oder der Gatterebene erkannt werden kann.

Diese Dissertation beschäftigt sich hauptsächlich mit den beiden
Blickwinkeln auf Hardwaretrojaner in rekonfigurierbaren Systemen, ein-
erseits der Perspektive des Verteidigers mit einer Methode zur Erken-
nung von Trojanern auf der Bitstromebene, und andererseits derjenigen
des Angreifers mit einer neuartigen Angriffsmethode für FPGA Trojaner.
Für die Verteidigung gegen den Trojaner “Heimtückische LUT” stellen
wir die allererste erfolgreiche Gegenmaßnahme vor, die durch Verifika-
tion mittels Proof-carrying Hardware (PCH) auf der Bitstromebene di-
rekt vor der Konfiguration der Hardware angewendet werden kann, und
präsentieren ein vollständiges Schema für den Entwurf und die Veri-
fikation von Schaltungen für iCE40 FPGAs. Für die Gegenseite führen
wir einen neuen Angriff ein, welcher bösartiges Routing im eingefügten
Trojaner ausnutzt um selbst im fertigen Bitstrom in einem inaktiven
Zustand zu verbleiben: Nachdem der Trojaner in der Place-and-route
Phase fertig mit der Schaltung und den Ein- und Ausgängen verbunden
wurde, kappen wir das Aktivierungssignal an einer der programmier-
baren Verbindungspunkte, so dass er nicht aktiviert werden kann. Erst
wenn wir mit diesem Bitstrom tatsächliche Hardware rekonfigurieren,
stellen wir die Verbindung wieder her, so dass der Trojaner auf dem Gerät

x

aktiviert werden kann. Hierdurch kann dieser neuartige Angriff zur Zeit
weder von herkömmlichen Test- und Verifikationsmethoden, noch von
unserer vorher vorgestellten Verifikation auf der Bitstromebene entdeckt
werden.

xi

Table of Contents

Acknowledgements v

Abstract vii

Zusammenfassung ix

Table of Contents xi

1 Introduction 1
1.1 Motivation . 1
1.2 Focus of this thesis . 7
1.3 Contributions . 7
1.4 Organization of the thesis 9

2 Background and Related Works 11
2.1 Field-Programmable Gate Array 11
2.2 Hardware Trojans . 21
2.3 Related Works . 34

3 Proof-Carrying Hardware Versus the Bitstream-level Hard-
ware Trojans in FPGAs 41
3.1 Malicious LUT Hardware Trojan 42
3.2 Proof-Carrying Hardware 44
3.3 Bitstream-level Proof-Carrying Hardware for ICE FPGAs . 46
3.4 Tool Flow for ICE FPGAs . 48
3.5 Attack Scenarios . 49
3.6 Experimental Validation . 56
3.7 Discussion . 61
3.8 Chapter Conclusion . 61

4 Post-Configuration Activation of Hardware Trojans in FPGAs 63
4.1 Overview and Threat Model 64
4.2 Methodology . 65
4.3 Experimental Validation . 71
4.4 Discussion . 80

xii

4.5 Chapter Conclusion . 81

5 Conclusion 83

6 Outlook 87

List of Tables 95

List of Listings 97

List of Algorithms 98

List of Figures 102

List of Abbreviations 103

Author’s Publications 107

Bibliography 108

1

Chapter 1

Introduction

This chapter motivates the readers by broadly depicting the significance
of hardware security challenges to the modern computing paradigm due
to the hardware Trojans threat and outlines the fundamental concepts
of reconfigurable computing, particularly about FPGAs in Section 1.1,
overviews the focus of this thesis in Section 1.2, briefly discusses our con-
tributions towards the FPGA security in Section 1.3, and then details the
organization of the rest of the thesis document in Section 1.4.

1.1 Motivation

The hardware of computing systems was thought to be a safe and trusted
entity because of its non-malleable nature, thus tampering with a manu-
factured device seemed impossible. On the contrary, software was con-
sidered more vulnerable to virus and malware attacks which usually re-
sulted in corrupt or damaged software/files. As a result, the antivirus
programs and the malware detection phenomena were introduced by
computer scientists and programmers to mitigate these attacks. How-
ever, during the last decade, some of the potential security attacks on the
hardware of a computing system have tremendously warned and alerted
the hardware design community to put the efforts for the development
of tamper-free designs, or anti-tamper mechanisms to nullify the effect of
any extraneous logic, for assuring the customers to trust the hardware.

The institute of electrical and electronics engineers (IEEE) spectrum
published a report in May 2008 about the Israeli attack on the nuclear
system of Syria in September 2007 which claims that the strike between
Israel and Syria was a failure of a radar system, that allowed Israeli jets
to bomb a nuclear system in the north-east of Syria. Conceivably, there
might be a hidden “backdoor” deliberately implanted into the commer-
cial off-the-shelf (COTS) microprocessors used in the Syrian radar, which
has helped the adversary to disrupt the functionality of the radar by send-
ing a piece of code (program) to these chips. Such an attack thwarting all

2 Chapter 1. Introduction

the testing/detection methodologies available at that time was extremely
surprising for the panel of defense advanced research projects agency
(DARPA), therefore to mitigate such attacks, they initiated the establish-
ment of the DARPA trust program for security and trust in the integrated
circuits (ICs). Furthermore, it is stated by the Dean Collins, who was a
deputy director of DARPA’s microsystems technology office and program
manager for the trust in IC initiative, that field-programmable gate array
(FPGA) are the main driving force in many defense companies, which are
generic and cheap as compared to application-specific integrated circuits
(ASICs), “If you make a mistake on an FPGA, hey, you just reprogram it,
that is the good news. The bad news is that if you put the FPGA in a mili-
tary system, someone else can reprogram it” [1]. And the story of hidden
backdoor/kill switch continued to rise over the last few years with the
battle between the attackers and defenders. It is also reported recently
that, at the DefCon cybersecurity conference 2019, a group of extremely
expert hackers succeeded when they attempted to damage an essential
flight system for a U.S. military fighter jet [2].

Hardware Trojans, i.e., malicious circuit inclusions, have grown into
a mature research field over the last two decades, which has raised many
questions regarding the integrity, security and trust in digital systems.
Attack vectors are plentiful, especially since nowadays most IC designers
rely on third-party IP cores and closed-source electronic design automa-
tion (EDA) tools, while the manufacturers outsource the actual fabrica-
tion step to third-party foundries that are often in different countries or
even continents, to lower the cost and to speedup the development. As
a consequence, attackers have the opportunity to manipulate a design at
almost any stage of the IC development life cycle [3]. In fact, an attacker
can insert malicious circuitry during each stage of system-on-chip (SoC)
design flow such as, by exploiting the synthesis stage to insert additional
malicious logic, modification of wires and transistors during the layout
stage, and even, the design can also be manipulated by the untrusted
foundry during fabrication process [4]. Such an undesired modification
of a circuit, also known as hardware Trojan [5], can alter its functionality,
provide a covert channel to leak sensitive information, or even open a
back door into the IC.

A hardware Trojan1 is usually defined to comprise a trigger and a pay-
load [6, 7]. Typically, a trigger mechanism is implemented in a way that
activates the payload mechanism either always, upon reception of some

1We will use the term hardware Trojan and Trojan interchangeably in this thesis.

1.1. Motivation 3

stimulus specified at design time, or at a some pre-determined time dur-
ing the operation. Triggers of Trojans play an important role to conceal
them throughout the development process of an IC. In order to hide the
malicious circuitry, an adversary would design the trigger in a way that
the Trojan does not affect the functionality of the original circuit under
normal conditions. In literature, various trigger implementations have
been published so far and most of them depend on rare events such as
counters or a specific unlikely signal pattern to evade detection at the
functional testing stage [7–11]. However, such Trojans can be caught by
extensive functional simulation and testing during design time, as state-
of-the-art detection techniques are exploiting the fact that malicious cir-
cuitry is more likely to reside in the rarely or unused portions of the cir-
cuit and thus investigate these areas with much more scrutiny [12–14].

Reconfigurable computing has become a more dominant paradigm
in modern semiconductor-based integrated circuits (ICs) since the devel-
opment of FPGAs, which possess the (re)configurable fabric for enhanced
computing efficiency while offering the software-like flexibility to update
the design at runtime. FPGAs have been a large driving force for recon-
figurable computing for many years. Reconfigurable computing gener-
ally refers to the methods that fully utilize the potential of underlying
reconfigurable hardware resources. Depending upon what the reconfig-
urable computing user might want, FPGA devices could be the reason-
able choice concerning cost and rapid time to market for reconfigurable
computing. Compared to application-specific integrated circuits (ASICs),
FPGAs benefit from a flexible and re-programmable computation fabric
and short time-to-market and have thus become a fundamental part of
the embedded systems space, including the internet-of-things (IoT) and
end-user electronics.

The real-time processing efficiency and cost-effectiveness in reconfig-
urable modules and accelerators have rendered them incredibly promi-
nent and preferable in autonomous and performance-critical applications
such as aerospace, autonomous driving/advanced driver assisted sys-
tems (ADAS), and deep learning (DL) [15, 16] and also used in military
purposes. Some of the big partners in the software and information tech-
nology (IT) industries, i.e., Amazon, Alibaba, and Huawei [17–19], are
already using FPGAs to accelerate the computing power in their respec-
tive data centers/clouds.

Microsoft is primarily using FPGAs to boost the efficiency of artificial
intelligence (AI) algorithms in some applications, e.g., Bing search en-
gines [20]. Furthermore, the rise of the internet-of-things (IoT) in recent

4 Chapter 1. Introduction

FPGA

I/O BANK 0

I/
O

 B
A

N
K

 3

I/O
 B

A
N

K
 1

I/O BANK 2

Hardware Trojans

https://www.microcontrollertips.com

http://mil-embedded.com/ Xilinx

FPGAs in Aerospace

FPGAs in Military

FPGAs in Datacenters

FPGAs in Automotive

(a) (b)

Figure 1.1: (a) Hardware Trojan circuits types (b) Use of FPGAs in critical
applications.

years has shifted the view of the digital world towards smart and con-
nected devices which are being used in many critical applications such as
healthcare systems and wearables, smartphones, smart cities, and indus-
trial or home automation systems, just to mention a few.

Figure 1.1 exemplifies the adoption of FPGAs in data-sensitive ap-
plications by different companies, such as automotive and e-commerce
companies, however, these devices may also be vulnerable to hardware
security threats. Figure 1.1 (a) shows the types of hardware Trojan cir-
cuits based on different triggers and payload implementations, whereas
Figure 1.1 (b) shows the use of FPGAs in various critical applications.
Security of these critical applications is becoming a big challenge due to
the comprehensive software and hardware attacks on the devices them-
selves and the networks used. Similar to the virus attacks in the software
of computer systems, hardware Trojans attack has emerged as one of the
most serious attacks in integrated circuits that can not only damage the
integrity of an IC but can leak the secret key from a cryptographic device
too [21]. Their property of staying dormant during post-manufacturing
testing makes it challenging for a verification team to detect such Trojans
using test vectors and fault detection methods.

Most of the work on hardware Trojans has been focused on fixed-
function circuits, i.e., application-specific integrated circuits (ASICs),
while very little effort has been shown towards dynamically reconfig-
urable hardware such as FPGAs, where Trojans can affect not only the
fixed-function ASIC part, but also the dynamic configuration. In FPGAs,
the implemented design is loaded onto the manufactured and tested de-
vice in form of a configuration bitstream. This process resembles software
programs but differentiates FPGAs from ASICs, where the functional-
ity of the manufactured device cannot be changed once it is fabricated.
Hence, there is the flexibility to the customer to update erroneous designs
or configure new designs on-the-fly. While hardware tampering attacks

1.1. Motivation 5

by untrusted foundries, such as the insertion of hardware Trojans into
silicon, are possible, FPGAs can be considered more resistant to such at-
tacks compared to ASICs since at manufacturing-time an attacker would
have no knowledge about the design which would later be implemented
on the FPGA device. Nevertheless, a bitstream configuration file may be
susceptible to reverse engineering attacks, which would allow an attacker
to steal the implemented design or insert malicious circuitry and regen-
erating the bitstream [7, 22]. Thus to avoid any malfunctioning during
operation, it is of utmost importance to provide security guarantees for
these reconfigurable systems used by the customer.

FPGAs being flexible and reprogrammable, have been widely used as
a prototype to implement and verify application-specific integrated cir-
cuit (ASIC) designs. The reconfigurability and re-programmability prop-
erty of FPGAs provides the opportunity to the designers and developers
to implement their designs and to make quick changes, if needed, ac-
cording to the requirements. Reconfigurable hardware is made up of an
array of identical re-programmable cells connected via distributed pro-
grammable interconnect structure, thus more vulnerable to attacks, such
as counterfeiting and reverse-engineering, when compared to ASICs, be-
cause the majority of the chip’s region is covered by the uniform struc-
ture of logic blocks and interconnects. However, the post-manufacturing
programmability, which enables the user to upload the functional design
after the device fabrication and delivery, makes FPGA device more reluc-
tant to the hardware Trojan attacks and thus reliable than ASICs because
the malicious modification made in the FPGA device (the base array) will
almost not affect the design uploaded afterward.

The attacks on the FPGA device containing fixed function blocks are
different from its dynamically reconfigurable fabric counterpart, where
the latter is configured using a bitstream configuration file of an appli-
cation design. There could be several possibilities for an adversary to
attack the FPGA configuration, for instance, through physical access, di-
rectly modifying the bitstream, malicious third-party IP inclusion, or us-
ing subverted electronic design automation (EDA) tools. Thus, for the
successful adoption of FPGAs to be used as an acceleration platform in
future hardware technologies, a bitstream configuration file, besides the
attacks on the FPGA device itself, also needs to be thoroughly investi-
gated and verified against potential hardware Trojans threat.

The capability to compute functions in parallel have made FPGAs a

6 Chapter 1. Introduction

better choice for implementing cryptographic algorithms where exten-
sive bit and byte level computations are required, such as advanced en-
cryption standard (AES), that is used to allow for secure data transmis-
sion in many critical applications [23]. Subsequently, such devices are
responsible for the secret flow of information, which may be directly re-
lated to the user’s privacy. Consequently, there is a high risk of secret
information being stolen unnoticed through inserted hardware Trojans.
Using side channel analyses to leak secret information has been proven
to be a practical attack for FPGAs where the attacker can gain physical
access to the FPGA and use power side channels to retrieve, e.g., a se-
cret key [24, 25]. Sophisticated attackers might even attempt to insert
malicious circuitry that remains inactive until it is triggered by a spe-
cific condition or external input to circumvent all the design-time testing
and verification processes. Such an attacker could be a dishonest em-
ployee in the design house who inserts the Trojan in a design, or there
may be a Trojan in a third-party Intellectual Property core IP provided by
an untrusted vendor. Besides that, there is also a chance that both, the
design house and IP vendors, are trustworthy, but the EDA tools main-
tained by the vendors are undermined, resulting in an enhanced power
to the attack by infecting a bundle of designs in just one go. The authors
in [26] recently presented an attack by introducing a stealthy “malicious
lookup table (LUT)” hardware Trojan inserted during design flow that
employs a two-stage mechanism of insertion and activation. This Tro-
jan remains dormant throughout the design phase and is activated when
the bitstream is written, thus circumventing design-time verification tech-
niques such as [13, 14].

This thesis addresses the new bitstream-level countermeasures
against the malicious circuit inclusion, specifically hardware Trojans, in
an application design of a reconfigurable system during design time or
even during the FPGA design flow which activates only in a bitstream.
Further, it introduces a novel attack based on the malicious routing of a
Trojan circuit, in which the Trojan remains dormant even in a bitstream
and only activates when the device is configured, thus alerting the veri-
fication teams and end-users to explore new solutions/countermeasures
for security and trust in FPGAs. To the best of our knowledge, detec-
tion of hardware Trojans in the bitstream and the post-configuration ac-
tivation of a Trojan, i.e., malicious routing-based Trojan attack, in FPGAs
have not been investigated prior to this thesis.

1.2. Focus of this thesis 7

1.2 Focus of this thesis

The focus of this Ph.D. thesis is to present and discuss the new types of
security threats in FPGAs, in particular, hardware Trojan insertion dur-
ing the FPGA design flow by a malicious entity or a subverted design
tool, which adopts a silent state through the design flow and becomes ac-
tive only in the bitstream [26]. In this thesis, we experimentally analyze
and demonstrate a successful countermeasure against such bitstream-
level Trojans, which has not been explored prior to this thesis. Further,
we present a new Trojan attack where the Trojan could still maintain its
dormant state in the bitstream2 and only activates in the FPGA device.
This kind of attack resembles ASICs where some of the Trojans activate
only when the device is in use. However, in the case of FPGAs, it is the
bitstream configuration file that carries the Trojan all the way to the FPGA
device without being revealed during the testing and verification stages.
To the best of our knowledge, this kind of threat is also the first to show
that even a verified bitstream may cause a device malfunctioning or even,
leak sensitive information physically or through remote access.

1.3 Contributions

This Ph.D. thesis mainly contributes to show that bitstream-level Trojan
attacks in FPGAs are realistic, more sliest and might easily and automati-
cally be inserted by using a subverted FPGAs design flow. Towards this,
bitstream level-verification in FPGAs could be the possible solution to
detect and report such kind of stealthy Trojans.

During this thesis, we experimentally confirm that a bitstream-level
proof-carrying hardware (PCH) approach is able to detect the stealthy
malicious Trojan presented in [26]. We follow the attack presented in [26],
in fact using the reference implementation provided by the authors,
where compromised EDA tools add and activate a hardware Trojan into
a design in two stages, making sure that it is dormant, and thus virtu-
ally undetectable, in every step of the design flow except the final bit-
stream. We propose to use a bitstream-level proof-carrying hardware
(PCH) approach to detect the stealthy Trojan that is injected and activated
in the compromised design flow. Replacing the consumer’s need to trust
in other parties with hard evidence is the core benefit of our approach,
which places the computational burden of verification on the producer of
a hardware module.

2We will use the term bitstream and bitstream configuration file interchangeably in
this thesis.

8 Chapter 1. Introduction

However, irrespective of being a powerful verification tool, our pro-
posed PCH flow would only detect the Trojans which change the func-
tionality of the circuit upon activation, i.e., the Trojan in malicious LUT
attack. Skillfully designed non-functional Trojans, e.g., the Trojan that
provides a covert channel upon activation to leak secret information or
the Trojans that are externally triggered to change the behavior of de-
vice parameters, may even avoid our proposed bitstream-level verifica-
tion. To show the ineffectiveness of a bitstream-level verification for a
non-functional key leakage Trojan, we propose a novel malicious routing-
based Trojan that can intensify the stealthy nature of the inserted Tro-
jan, such that the Trojan remains dormant in the bitstream as well and is
only activated when actually configuring the device. The Trojan circuitry
is introduced after synthesis, i.e., when the netlist is being read by the
placement and routing tool, and maliciously routed so that it circumvents
even bitstream verification. As the presented novel Trojan is activated af-
ter the bitstream generation step, the certificates generated by the PCH
technique would lead to false-negatives. The contributions added by this
thesis towards manifesting the trust and verification of the reconfigurable
systems are as follows:

• We present a bitstream-level proof-carrying hardware (PCH)
method within the scenario defined in [26], which, to the best of
our knowledge, is the first that is able to detect a stealthy Tro-
jan before it runs on an FPGA. Using also tools from the IceStorm
project [27], we present a complete design-and-verification flow for
iCE40 FPGAs that is able to protect bitstreams for these targets with
the full power of PCH (Chapter 3).

• We introduce a novel FPGA Trojan that remains inert throughout
the design flow, even in the bitstream, which to the extent of our
knowledge is the first to circumvent even bitstream-level verifica-
tion techniques. Trojans inserted by EDA design tools so far are
inserted either at a design stage or into the bitstream. Our attack
is based on the malicious routing of a Trojan circuit that is uncon-
nected from the actual user design before configuring the target de-
vice, and that is reconnected by a malicious programming tool to
activate the Trojan (Chapter 4).

1.4. Organization of the thesis 9

1.4 Organization of the thesis

This thesis document is structured as follows:

Chapter 1, the current one, we introduce the research topic and the
motivation for this thesis, the focus and the contributions of this thesis
followed by the organization of the document.

Chapter 2 explains the background of and related work of the
research area in the following order: The field-programmable gate array
(FPGA) with respect to its technology, architecture and design flow tools,
hardware Trojans in general with respect to their structure and classifi-
cation, hardware Trojans in FPGAs and the related work on hardware
Trojan designs and state-of-the-art detection methods in FPGAs.

In Chapter 3 a bitstream-level proof-carrying hardware approach is
proposed to detect the Trojans that are activated in the post-synthesis step
or only in the bitstream, e.g., stealthy malicious LUT hardware Trojan
that is inserted by the compromised FPGA design flow. We discuss the
steps involved in our approach for the verification of a bitstream config-
uration file along with experimental setup and implementations. Finally,
we evaluate our methodology to detect stealthy Trojan detection based
on three different scenarios and compare our findings to state-of-the-art
techniques to substantiate the effectiveness of the approach.

In Chapter 4 we propose a novel post-configuration activation of an
inserted Trojan circuit that leverages the malicious routing during the
placement and routing step in the design flow. We give an overview of
the two-phased attack methodology, where the first phase of the attack
is responsible for the Trojan circuit insertion and disconnection from the
original circuit, therefore, remains inactive, whereas the second phase is
held responsible for the establishment of the connection to the original
circuit for activation of a payload during the configuration of the device.
Next, we evaluate the approach experimentally using examples and
discuss the results.

The last two chapters, Chapter 5 and Chapter 6 briefly summarize the
contributions to conclude the thesis and provide insights into the possible
future research directions in the domain of hardware Trojans in dynami-
cally reconfigurable computing and emerging technologies.

11

Chapter 2

Background and Related
Works

2.1 Field-Programmable Gate Array 11
2.1.1 Programming Technology 13
2.1.2 Architecture . 14
2.1.3 FPGA Design Flow and Tools 18

2.2 Hardware Trojans . 21
2.2.1 Hardware Trojan General Structure 22
2.2.2 Hardware Trojan Sources and Threat Model 22
2.2.3 Hardware Trojan Taxonomy 24
2.2.4 Hardware Trojans in FPGAs 28

2.3 Related Works . 34

This chapter throws light on the relevant background knowledge that
is necessary to understand the rest of the chapters of this thesis and pro-
vides a detailed classification of the existing works. First, it explains
different aspects of field-programmable gate arrays field-programmable
gate arrays (FPGAs) such as the technology, architecture, and design flow
tools in Section 2.1. Then, it studies a plethora of hardware Trojans threat
in modern digital circuits concerning their structure, sources, taxonomy,
and platform in Section 2.2, and finally, categorically explains the relevant
work in the context of this thesis in Section 2.3.

2.1 Field-Programmable Gate Array

As the name implies, field-programmable gate array (FPGA), is a pro-
grammable integrated circuit (IC), comprised of two dimensional arrays
of configurable logic blocks (CLBs) and programmed interconnects ar-
ranged in a matrix-like pattern that can be reconfigured recurrently in

12 Chapter 2. Background and Related Works

the field, i.e., after deployment of the device. The arrangement of the el-
ements in an FPGA is somewhat identical to the masked programmable
gate arrays (MPGAs), from where the name “gate arrays” is adapted for
FPGAs, which is a type of application-specific integrated circuit (ASIC),
comprising the logic gates structured as an array, connected through
mask programming, used to analyze numerous designs [28].

The concept of programmable logic was introduced in the early 1970s
as a programmable logic array (PLA), the first-ever programmable logic
device (PLD), which had two-level programmable logic structures. Con-
sidering the tradeoff between the programmability feature, poor speed,
and high cost, PLAs did not succeed much which resulted in the in-
novation of programmable array logic (PAL). The logic in PALs is im-
plemented using a configurable AND array, which produces the product
terms, along with a fixed OR gate which sums the product terms, thus
completing the functionality of the implemented logic. Any logic func-
tion could be implemented using PAL but not in a single stage which ulti-
mately causes delays. However, larger PAL designs could improve speed
but the subsequent increase in area, performance, and power consump-
tion is not feasible. To overcome the speed and cost issues in PALs and
still benefiting the programmability aspect, PLAs and PALs were com-
bined to form simple programmable logic devices (SPLDs). SPLDs, over
the years, continued to be developed as more prominent devices, such
as field-programmable devices (FPDs), which provide the user an ease to
configure by using the straightforward electrical apparatus, contrary to
the previous devices, which required a lot of work and special equipment
for configuration [29]. Later in the 1980s, SPLDs evolved as complex-
programmable logic devices (CPLDs) to implement larger and complex
designs. However, over time, as the user logic circuit size increased, the
logic capacity of CPLDs was not sufficient, thus MPGAs were used for
larger designs with the overhead of cost and manufacturing time and re-
duced flexibility. This limitation thus led the engineers to come up with a
more generic and efficient programmable architecture, in particular, low
cost and short time-to-market solution, which was fulfilled by Xilinx later
in 1985, by introducing the first-ever FPGA, the Xilinx XC2064, that had
the array of 64 logic blocks, containing 3-input lookup tables (LUTs) and
one register each [30]. FPGAs provide highly scalable architectures where
any combinational and sequential logic function could be implemented
without the trade-off of performance, capacity, and delay between the
growing array size (like AND array in PALs) and routing layout. As
stated by Jonathan Rose et al, “the major difference between FPGA’s and

2.1. Field-Programmable Gate Array 13

MPGA’s is that an MPGA is programmed using integrated circuit fabri-
cation to form metal interconnections, while an FPGA is programmed via
electrically programmable switches much the same as traditional PLDs”.
Thus a single FPGA can be repeatedly programmed by the user without
the burden of fabrication cost and time.

The early FPGA devices, categorized as the age of invention (1984-
1991) by Trimberger [31], included very few logic cells for the implemen-
tation of the user logic function, i.e., only 64 logic cells in XC2064, how-
ever, the size of the die was even greater than the today’s microprocessors
with a substantial cost factor. Increasing the logic on the die to implement
the larger design would potentially increase the die size, consequently in-
creasing the cost. To balance the cost per die, the designers enhanced the
efficiency and flexibility, which resulted in growing of FPGAs in the mar-
ket with success.

2.1.1 Programming Technology

FPGAs are generally configured by a bitstream configuration file, which
contains configuration bits to be stored at the programmable locations,
i.e., logic blocks and programmable switches. To this end, how a bit-
stream file can be stored, FPGAs have been classified into the three main
categories based on the programming technology used, which are briefly
discussed as follows:

1. SRAM based FGPAs: The fabric in SRAM-based FPGAs is composed
of the volatile static random access memory (SRAM) cells, where the con-
figuration data bits are stored and held as long as the voltage is applied.
Therefore such an FPGA would need to be reconfigured at each power
cycle. However, the major advantage is that SRAM technology-based
FPGAs can be rapidly reprogrammed an unbounded number of times,
with the support of external nonvolatile memory for storing and load-
ing the data on a power reset, thus signifying the dynamic reconfigu-
ration behavior [25, 32, 33]. Since SRAM-based FPGAs, such as Virtex,
Artix, and Kintex by Xilinx, and Stratix, Cyclone by Intel/Altera, are
most widely used as reconfigurable computing hardware, the experimen-
tal evaluation in this thesis will be done on the same technology device.

2. Flash memory-based FPGAs: Flash memory-based FPGAs are orig-
inated from flash technology, for instance, floating gate transistors, that
are non-volatile cells characteristically, hence, do not need the power to

14 Chapter 2. Background and Related Works

hold the configurations bits [25, 32, 33]. The key benefit is thus non-
volatile nature yet reconfigurable numerous times by setting the recon-
figuration mode using, for example, erasable programmable read-only
memory (EPROM), however, due to the larger structures of flash cells,
they lack in performance. Examples of flashed-based FPGAs include
Igloo and ProAsic from Microsemi semiconductor corporation.

3. Antifuse FPGAs: Antifuse FPGAs are one-time programmable de-
vices, made up of antifuse technology in which an antifuse element con-
trols the configuration of the device. Antifuse technology works oppo-
site to fuse technology where the fuse blows up when the high current
is applied to the circuit, however, an improperly blown fuse can grow
back and reconnect over time. Whereas an antifuse element starts with
the high resistance and creates a permanent conductive path when the
current/voltage exceeds a certain value in a circuit. Although not recon-
figurable, antifuse FPGAs are the most reliable option for integrated cir-
cuits where the disconnection of the circuit network is not desirable, for
instance in the military and aerospace missions. Antfiuse switch technol-
ogy offers lower delays in the routing and wires because of their smaller
sizes and programming is normally faster as compared to other technolo-
gies. Some of the recent commercially offered anitfuse FPGAs offered by
Microsemi semiconductor corporation are Axcelerator®, SX-A, MX, and
eX. [25, 34].

2.1.2 Architecture

The core components of FPGA architecture include configurable logic
blocks (CLBs), programmable interconnects (PIs) with switch box and
routing channels, and configurable input/output (I/O) blocks, while
some of the modern FPGAs also consist of block RAM (BRAM) to im-
plement larger memories and to store several kilo-bits of data, and some
special blocks, e.g., digital signal processing (DSP). The most common
structure of an FPGA with some basic components is shown in Figure 2.1.
The connection between these components is made possible by a config-
urable interconnect to implement any arbitrary application/user design.
Some of the core components are briefly described to understand the ar-
chitecture of the FPGA in the following sections.

Configurable Logic Blocks

Fundamentally, a configurable logic block in FPGAs architecture consists
of several basic logic elements (BLEs) that are grouped using intra-CLB

2.1. Field-Programmable Gate Array 15

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB CLB

CLB

CLB

CLB CLB

CLB

I/O block

Routing
channels

Configurable
logic block

Programmable
interconnect

Switch box

Figure 2.1: A typical FPGA 4× 4 array structure with island style rout-
ing layout comprising of CLBs, programmable interconnects with three

wiring channels vertically and horizontally, and I/O blocks.

interconnects to form a larger block to implement the application design.
A simple basic logic element BLE comprises of one or more K-LUTs that
are used to implement any combinational logic function: where K is the
number of inputs to the LUT, which for modern FPGAs varies from 4:1 to
6:1, flip-flop (FF) (typically D-FF) to implement the sequential logic and
a MUX to switch between the outputs of the combinational and the se-
quential circuit [33]. Figure 2.2 illustrates the internal view of a simple
CLB. In some devices, a BLE also consists of a carry-logic chain to effi-
ciently execute the arithmetic functions along with LUT, FF, and a MUX.
In the modern-day devices by Xilinx however, each CLB contains two
slices, where a slice is an additional intermediate level to their devices hav-
ing four BLEs, MUXes, and carry-logic [35]. Note that the different ven-
dors may use distinct names for the components in FPGA architecture,
for instance, the term used for a logic block by Xilinx is CLB, whereas
Intel/Altera calls this a logic array block (LAB). Similarly, Xilinx refers to
the basic building blocks as logic cells, while Intel/Altera names them as
BLEs [36].

Programmable Interconnects

In addition to the number of reconfigurable resources available in FPGA
architecture, the overall performance and efficiency also depend on the
style of how these resources are connected and the flexibility with respect

16 Chapter 2. Background and Related Works

K

-
-

-
-

-

K-LUT
D-FF

D Q

1

0

CLK

BLE

BLE

SLICE

BLE

BLE

SLICE

CLB

Figure 2.2: The inside view of a simple CLB containing two slices and
each slice containing two BLEs, along with a BLE comprising of LUT, FF,
MUX, and a clock (The number of BLEs in a slice and the number of slices

in a CLB depends on the FPGA family).

to the routability, which is measured as the ratio of the overall number of
successfully routed connections [37]. The flexibility, amount, connectiv-
ity, and arrangement of FPGA components, listed above, are referred to as
routing architecture [29]. The most essential aspect in FPGA architecture
is the routing and interconnect network of a design, that should success-
fully route the application design to the correct paths with the minimum
delay and no congestion on the FPGA. The area covered by routing is
mostly larger than the logic area and can take up to 70− 90% of the total
FPGA’s area [28, 38].

For the application designs, where more than one CLB is required
to implement the logic functions, programmable interconnects serve the
purpose to connect several CLBs to perform the required computation
and to route the signals coming from the I/O block or going to the I/O
block, which in turn could provide connectivity to the off-chip resources,
if required, or any other external peripherals [39]. Before we go more
into the details of routing, some terminologies need to be understood
beforehand. For example, a wire segment is a wire that can be connected
to one or more switches from both ends to carry the signal within the
components. A track, that is formed when there appears an order of one
or additional wire segments. Further, the group of these parallel tracks
makes a routing channel [28, 38], as highlighted in Figure 2.1.

The basic routing block in almost all FPGA architectures are connec-
tion block and switch block. Depending on the speed and area parame-
ters, the wire segments, tracks, routing channels, connection blocks, and
switch block/box, also called collectively, segmented interconnect, the
routing architectures can be categorized as island-style routing and hier-
archical routing. The island-style architecture is depicted in Figure 2.3,

2.1. Field-Programmable Gate Array 17

Programmable

routing switch

Programmable

connection switch

X X

Connection

Block

Figure 2.3: Island-style routing architecture for FPGAs. Taken from [40].

which is the most popular layout style in modern FPGAs. The arrange-
ment is a reflection of an island of logic blocks floating in the sea of inter-
connects. In this layout, the vertical and the horizontal routing channels
are uniformly distributed along with the connection blocks, which pro-
vides the connectivity of the logic1 blocks to the routing network. To
maintain a balance between the area and delays of the routing network,
in particular, the logic block’s inputs and outputs are connected through
various switches boxes by using long wires, and the short wires are used
to connect the I/Os of a logic block to the neighboring switch box.

The connection block may consist of one or more programmable con-
nection switches, as shown in Figure 2.3, which offers the connectivity
of a CLB from its inputs and outputs to the wire segments in a routing
channel, i.e., horizontal and vertical tracks thus advancing the routing
flexibility. Similarly, the switch block consists of programmable routing
switches in Figure 2.3, which is responsible for offering the connectivity
between the wire segments or tracks to all its four sides. The connec-
tivity of these tracks highly depends on the design of the switch block,
which determines whether to route the signal straight or turn it in ei-
ther direction. Hierarchical routing is another area-efficient approach of
FPGA routing that is used to minimize the signal delay caused in the long
wires when it travels from far away. To do so, more local connections are

1The term logic block will be used interchangeably with CLB throughout this chapter.

18 Chapter 2. Background and Related Works

made possible by making small clusters of logic blocks, e.g, a 2× 2 clus-
ter could have 16 logic blocks in a hierarchy, thus providing intra-cluster
routing using only short wires, eluding the congestion on the lines con-
necting various clusters, while one a few long wires are preserved for
larger distances [39]. In the context of this thesis, we will use the FPGAs
with island-based routing layout architecture for experimental validation
where we will introduce an FPGA routing-based hardware Trojan attack
that uses one of the programmable interconnect points (PIPs), as a Trojan
PIP (TPIP), which plays the role of the Trojan trigger and helps the Trojan
circuit to remain undetectable even in the bitstream. More details will
follow in Chapter 4.

I/O Blocks

FPGAs normally consist of the special purpose logic blocks at the bound-
ary of the device for peripheral connections, referred to as I/O blocks
(IOBs), which in many architectures are grouped to form a bank that pro-
vides supply voltage from a single source to all its I/O blocks. In the
FPGA model shown in Figure 2.1, the I/O blocks are placed to all four
sides for a better understanding, however, in real chips, they are typically
arranged at the bottom. Depending on the device size and architecture,
the number of I/O blocks in a bank and the number of banks in the FPGA
may vary [41]. The purpose of the I/O blocks is to connect the FPGA to
the external world, by providing the input/output functionally through
its elements, i.e., bidirectional buffers, MUXes, and registers. Each of the
I/O blocks is connected to the programmable interconnects to carry the
data/information to be transmitted. For instance, an IOB is configured
to define the type/function of the pin used by the device, i.e., input or
output, and is usually connected to the physical device pin from one side
while from the other side, it is connected to the end of a particular wire
of the routing network. In Chapter 4, we will demonstrate that how an
unused I/O pin of a block can be exploited as a covert channel to leak
sensitive information from FPGAs.

2.1.3 FPGA Design Flow and Tools

FPGA design flow can be categorized into the base-array design flow,
i.e., the FPGA device design, or a user application design flow, the so-
called, bitstream life cycle. The design and manufacturing process of a
base-array or an FPGA device is somehow similar to the ASICs, where

2.1. Field-Programmable Gate Array 19

the standard IC development flow is followed. Using commercial elec-
tronic design automation (EDA) tools and libraries, the base-array design
is articulated, which is then manufactured and primarily tested at the
foundry, following the packaging and final test and eventually sent to
the FPGA vendor. The flow used for the base-array/FPGA device man-
ufacturing is out of the scope of this thesis, thus we will focus only on
the design flow used for the development of application design. The ap-
plication design in the form of a bitstream configuration file, as a final
result, makes use of the reconfigurable hardware when the device is pro-
grammed with these configuration bits. To create the bitstream configu-
ration file for an application design or intellectual property (IP), vendor-
specific EDA tools can be used.

Since FPGAs provide the reusability of the design which has given
rise to the market of IP cores, as a result, a customer or a system-on-chip
(SoC) integrator is equipped with the desired design in a shorter amount
of time. Thus our experiments in this thesis will be based on the IP core
or IP module. Next, we will discuss some of the important steps in the
FPGA design flow that are performed for the conversion of IP design
specifications to the equivalent bitstream configuration file.

HDL Design

Design Synthesis

FPGA Placement

Bitstream

FPGA Routing

Vivado Design Flow

netlist(.net)

(*.v/vhd)

placelist(.p)

routelist(.r)

Figure 2.4: Vivado design suite: An FPGA design flow from Xilinx.

The design specifications are typically provided in the hardware de-
scription language (HDL) as a source file, which is suited for larger de-
signs, however, a design source could also be the representation of the
gates connected to each other, e.g., schematics, which could only be

20 Chapter 2. Background and Related Works

preferable for smaller designs. The source file is then given to the vendor-
specific computer-aided design (CAD) flow for further processing, for in-
stance, Xilinx has its own electronic design automation (EDA) tool flow,
e.g., Vivado design suite [42], which performs the following operations in
a stepwise manner: design synthesis, placement, routing, and bitstream
generation, as shown in Figure 2.4. Each of the steps provide the design
representation of different abstraction levels and the design after each ab-
straction can be optimized according to the area and timing constraints.

The source design is first converted in the synthesis step from the
behavioral level, i.e., the algorithmic description, to the register-transfer
level (RTL), which is the next level in the hierarchy and consists of data
and control paths. Next, the RTL synthesis converts the data and control
paths to the equivalent network of logic gates and registers, also referred
to as gate-level netlist to realize the Boolean functions. Further, in the
logic synthesis, the gate-level netlist is transformed to the circuit level by
technology mapping [43, 44], i.e., packing the set of the logic gates accord-
ing to their feasibility of being mapped on the lookup tables (LUTs), thus
a final network of logic blocks is created to implement the actual func-
tionality. In the placement step of a design flow, according to the physical
constraints available on the device, the logic blocks are packed and placed
on the specific location in the FPGA. In the following step, the router us-
ing an efficient routing algorithm first analyzes and reduces the span of
the critical routing path and the total wiring lengths, and the design is
then routed and fully connected to implement the circuit. The output of
this step is the placed and routed netlist, which eventually is converted
to the final design representation as a bitstream configuration file by the
bitstream generation tool. The bitstream, e.g., binary file, contains all the
necessary information about the configuration of LUTs, MUXes, switches,
and PIs of the implemented design. Note that the commercial EDA tools
are FPGA vendors’ proprietary, thus full manipulation of the design after
each step is not possible. Therefore, for our experiments in this thesis,
we will use the tools from the project IceStorm [27] that is an open-source
FPGA design flow, which is explained in detail in Chapter 3, Section 3.4.

Security in FPGAs, however, in both the design flows, discussed
above, should be taken into account. In the case of base-array design,
the security concerns are similar to ASIC or other semiconductor de-
vices [25], such as untrusted supply-chain control or foundry, tools-based
tampering, and reverse engineering, which are not the focus of this the-
sis. Rather, we will discuss the hardware security attacks and potential

2.2. Hardware Trojans 21

defense mechanisms on the IP core, especially regarding hardware Tro-
jans insertion and detection, which is the topic of the next section.

2.2 Hardware Trojans

With the modernization of technology, the size of semiconductor devices
has been decreased to nano-scale while the cost for design and fabrication
of ICs is increased. It is hard to afford the cost of entire manufacturing
processes of ICs for semiconductor companies. To lower the cost and to
speed up the development cycle an integrated circuit (IC), outsourcing is
being done by most of the companies, e.g., as IP cores, EDA tools, and
fabrication to a third-party foundry [45]. This outsourcing can result in
the alteration or insertion of a malicious circuit at any of the stages of the
ICs development, which in turn can act malevolently or may lead the sys-
tem towards failure during runtime. Exposures of ICs towards malicious
intrusions have adorned serious security threats to military and, finan-
cial systems, factories, and household appliances as well. Hardware Tro-
jans, so-called hardware Trojan horses, are malicious circuits purposely
inserted into the original design to distract the intended functionality or
disclose confidential information by untrusted designers, vendors, tools,
communication channels, or semiconductor fabrication companies [46].
The undesired modification of an original circuit can alter the function-
ality of the circuit, provide a covert channel, or a back door to leak sen-
sitive information from the IC. Modification is generally referred to as
tampering, e.g., add/delete certain components to or from the original
circuit which may cause reliability/security issues in the circuit [47]. Soft-
ware Trojan is a malware, resides in the operating system (OS), commonly
known as a virus, which could harm the data and may cause an informa-
tion leakage by getting control on the software of the certain electronic
device. Such kinds of Trojans are not permanent and can be mitigated by
changing the operating system or using software support. Unlike soft-
ware Trojans, hardware Trojans once inserted can not be removed from
a fabricated device. The infected device will operate properly until the
Trojan gets activated. After activation, depending upon the type and na-
ture, the inserted Trojan may harm the device. This intentional damage
may include, complete failure of the device, leakage of key information,
performance degradation, and denial-of-service (DoS) [47, 48].

22 Chapter 2. Background and Related Works

PO
PI

a

b

y
y`

Original Circuit

Trojan Payload

Trigger

Trojan Circuit

PO
PI

a

b

y
y`

Original Circuit

Trojan Payload

Trigger

Trojan Circuit

Figure 2.5: Circuit exemplifying Trojan circuit insertion into the original
circuit. The Trojan circuit consists of a trigger logic and a payload. Taken

from [49].

2.2.1 Hardware Trojan General Structure

The primary intention of the Trojan inserted by any of the malicious en-
tities is to modify the functionality of the original circuit. In the case
of functional Trojan, the trigger is usually connected to the inputs of an
original circuit which bypasses the original circuit upon activation, hence
sending the undesired/modified result generated by the Trojan payload
at the output of the circuit. Whereas in the case of non-functional Trojans,
the payload of the Trojan circuit might assist the attacker in leaking the
secret information from a crypto-circuit, e.g., providing a covert channel,
or a Trojan upon activation starts sending a stream of random messages
to cause a denial of service attack [5, 50]. The general structure of a Trojan
comprising of a trigger and a payload mechanism attached to the original
circuit is depicted in Figure 2.5.

2.2.2 Hardware Trojan Sources and Threat Model

A comprehensive list of hardware Trojan sources and related threat mod-
els is given in Table 2.1, which is categorized into seven different threat
models (A-G) based on the trusted and untrusted parties involved during
the IC design and manufacturing process [45].

In threat model A, the source of Trojan could be a third-party IP ven-
dor while SoC developer and foundry are trusted. For the SoC develop-
ers, it is nearly impractical to build all required IPs in-house in a short
amount of time, so they generally purchase them from third-party IP
vendors to integrate on the chip, which may contain hardware Trojan.
In threat model B, third-party IP and SoC developers in an IC design
flow are trusted while foundry is untrusted. Such IC design companies
outsource fabrication to advanced technology foundry which could have

2.2. Hardware Trojans 23

Table 2.1: Sources of hardware Trojans and related threat models (A-G)
based on trusted and untrusted parties. Taken from [45, 51].

Hardware Trojan Sources
Threat Model

IP Vendor SoC Developer Foundry

A Untrusted Trusted Trusted

B Trusted Trusted Untrusted

C Trusted Untrusted Trusted

D Untrusted Untrusted Untrusted

E Untrusted Untrusted Trusted

F Untrusted Trusted Untrusted

G Trusted Untrusted Untrusted

complete access to layout and thus manipulate design by adding or delet-
ing gates. Even the attacker could just modify the transistor parameters,
therefore causing potential reliability issues, or could insert Trojans that
can cause random failures instead of targeted changes. In threat model
C, the third-party IP vendor itself and the foundry are trusted but the
SoC developer source is untrusted which can insert Trojan during the de-
sign of an IC. These types of Trojans could be added by an insider in the
design house, i.e., rogue designer or the compromised third-party EDA
tools. The threat model D in Table 2.1 refers to the commercial off-the-
shelf (COTS) components used to develop an IC owing to their sufficient
production and low cost. All the stages of an IC development in this
model are untrusted, therefore, a Trojan can be inserted in any of the de-
velopment stages. In threat model E, only the foundry is trusted while
all other development cycles could be the source of Trojan insertion, e.g.,
a Trojan can be inserted by an adversary during the design phase, or the
third-party IP vendor may intrude IP design. The threat Model F might
be considered as a joint model of A and B, where untrusted third-party
IP is integrated into the design by a trusted (in-house) designer, and fab-
rication is done by the untrusted foundry. Some of the fabless IC design
companies such as Apple and Xilinx might be the observers of this model.
Finally, in the threat model G, the third-party IP vendor is considered as
a trusted source while SoC integration and fabrication sources might be
untrusted. However, in the perspective of FPGAs Trojans, we will adhere
to the threat model C for our contributions in this thesis, see Section 4.1,
Chapter 4.

24 Chapter 2. Background and Related Works

2.2.3 Hardware Trojan Taxonomy

In general, hardware Trojans are categorized into two main classifications
based on their components and characteristics [6, 52, 53]. Components-
based Trojan classification emphasis on the basic structure and the com-
ponents involved in the Trojan design while the characteristics-based Tro-
jan classification is about the behavior of Trojan at different levels and
conditions, which are explained in the following:

Components Based Trojan Classification

In this type of classification, it has been observed that a hardware Trojan,
in general, follows two mechanisms: activation, and actions performed
after activation. The activation mechanism of a Trojan is based on the
underlying logic implemented to one of its essential parts called Trojan
trigger while the action mechanism relies on the other part called Trojan
payload, which performs actions, e.g., malfunctioning, on receiving the
activation signal from the trigger circuit. On the basis of its attributes, a
trigger circuit can have two types: digital and analog. Digital type of trig-
gers consists of logic gates that can be combinational or sequential. Com-
binational triggers activate the payload of a Trojan circuit when a certain
condition is met, whereas a sequential trigger activates the payload when
a certain sequence of inputs occurs. In each type of triggers, the adver-
sary would like to develop a logic such as value/sequence that occurs
very rarely, so that the Trojan remains inactive during the conventional
post-manufacturing testing. A sequential trigger can be synchronous,
asynchronous, and hybrid in nature. On the other hand, an analog type of
triggers includes on-chip sensors and circuit activity which can activate
the Trojan when a specific condition is fulfilled. More detailed studies
about triggers can be accessed from [6].

A Trojan payload, is also classified into two main classes: digital and
analog. A digital Trojan payload may consist of one or more logic gates
that can modify the value of circuit nodes, alter the memory content, or
assist in disclosing confidential information. On the contrary, an analog
payload may affect the circuit parameters, like performance reduction,
power dissipation, and reliability. The components-based classification
of Trojans is shown in Figure 2.6.

2.2. Hardware Trojans 25

Hardware Trojan

Trigger Payload

Digital AnalogAnalogDigital

Sequential

Combinational

Rare Node Value

Asynchronous

Rare Sequence

Hybrid

Synchronous
Information

Leakage

Denial-of-

Service

Others

PowerMemory Content

Circiut Nodes DelayVoltage

On-chip Sensors

Figure 2.6: Hardware Trojan classification based on components. Taken
from [47].

Characteristics Based Trojan Classification

On the basis of characteristics, Trojans can be classified into three main
categories: physical, activation and action [52, 54]. The purpose of this clas-
sification in the state-of-the-art is to provide a clear concept of Trojans,
which could help in the design and development of the Trojan detec-
tion techniques in the future against various types of Trojans at different
phases of IC development, such as design, fabrication, test, and runtime.

Physical characteristics focus on distribution, size, structure, and the
type of inserted Trojan. The distribution of a Trojan could be tight or
loose depending upon the way they are located on the chip. The number
of gates or transistors, does a Trojan have, corresponds to its size, whereas
the structure of Trojan refers to its effect on the layout of the original cir-
cuit, i.e., whether it remains the same or gets changed. This can happen
when an adversary just has access to the layout, and he aims to insert
Trojan somewhere in the original layout. The type of the Trojan can be
functional or parametric. Functional Trojan means that the gates in the
circuit are added, deleted, or modified maliciously to change the func-
tionality of the original circuit while, in the parametric type attribute of a
Trojan, only existing wires or logic of the original circuit are modified.

Activation characteristics are dependent on the components of a Tro-
jan, explained in the previous section, which may cause the Trojan to trig-
ger externally or internally. Externally triggered Trojans make use of the
input provided by an external source, e.g., an antenna or a sensor that is
inserted maliciously during the design phases. Whereas internally trig-
gered Trojans depend on the logic employed in a trigger which could be

26 Chapter 2. Background and Related Works

Physical

Characteristics

Type

Size

Distribution

Structure
Layout Same

Layout Change

Functional

Parametric

Activation

Characteristics

Externally

Activated

Internally

Activated

Sensor

Antenna

Conditional

Always On

LogicSensor

Action

Characteristics

Transmit

Information

Modify

Function

Modify

Specification

Disable

Change

H
ar

dw
ar

e
T

ro
ja

n

Physical

Characteristics

Type

Size

Distribution

Structure
Layout Same

Layout Change

Functional

Parametric

Activation

Characteristics

Externally

Activated

Internally

Activated

Sensor

Antenna

Conditional

Always On

LogicSensor

Action

Characteristics

Transmit

Information

Modify

Function

Modify

Specification

Disable

Change

H
ar

dw
ar

e
T

ro
ja

n

Figure 2.7: Hardware Trojan classification based on characteristics. Taken
from [6, 47, 54].

always on or condition based. As the name implies, always-on Trojans con-
tinuously monitor the activity of the circuit and can disturb the function-
ality of the original circuit anytime due to its always active nature. These
types of Trojans are usually implemented by modifying the exiting wires
and transistor geometries etc. The conditions-based internally triggered
Trojans, however, depend on the logic-based condition, e.g., a certain se-
quence of inputs to the logic gates, or an analog-based, i.e., senor input.
The third main category is based on action performed after activation,
where Trojan can transmit information to an adversary, modify specifica-
tion, i.e., parameters like delay, and modify function which may disable
the device or change the desired output [52, 54]. The characteristics-based
Trojan classification is shown in Figure 2.7.

Additionally, the advanced taxonomy of hardware Trojans based on
the distinct levels of abstraction has been explained in [51]. Figure 2.8
explains the threat of Trojan insertion during each of the design steps
by an adversary at different abstraction levels. To develop a Trojan or
the corresponding countermeasure, it is important to analyze the de-
sign at different abstraction levels, which defines the attacker’s control
and flexibility to implement a Trojan during the design flow. At the top
abstraction level, i.e., system level in Figure 2.8, a circuit is defined by
the number of modules and their interconnections to each other, thus

2.2. Hardware Trojans 27

restricting the adversaries to insert Trojans only to modules levels. In
the register-transfer level (RTL) abstraction, the design is represented in
terms of registers (i.e., flip-flops (FFs)) and set of transfer functions (i.e.,
combinational logic blocks) which describe the flow of data among regis-
ters, where the adversary might have more knowledge about the design
to be implemented. Further, at the gate-level abstraction, the design is
converted to a network of logic gates and registers with delay constraints
instantiated from a technology library to implement the functions. The
gate-level design/netlist is then converted to a physical layout of the cir-
cuit which describes all the components along with their dimensions and
location. At this level, an adversary having access to the layout of the de-
sign, can implement a smaller yet effective Trojan, such as an additional
wire connecting the original circuit to an I/O port that could be utilized
in later stages to leak the sensitive data/information.

Hardware Trojan

Insertion Phase

Design steps

Fabrication

Testing and
assembly

Transportation

Abstraction Level

System level

RTL/Behavioral

Netlist/Gate-
Level

Layout/Physical

Adversary Type

Design house

EDA tools

Foundry

Communication
channel

Figure 2.8: Hardware Trojan taxonomy. Taken from [51].

The difficulty level of Trojan insertion increases if we move down in
the abstraction levels, for instance, the Trojan insertion by an attacker in
the design house, or malevolent EDA tools is simpler than the Trojan in-
sertion in the foundry where an attacker may need to reverse the mask or
GDSII file of the design to insert Trojan. Thus the untrusted design house
or EDA tools could potentially have a large insertion space in terms of
control and access to each of the abstraction levels of the design, whereas,
other steps, such as transportation and communication might need a lot
of engineering work to insert and hide a Trojan into the target design.

28 Chapter 2. Background and Related Works

Similarly, the detection rate decreases if the Trojan is designed to be trig-
gered in the lower levels of abstraction, i.e., in the post-synthesis step.
The taxonomy shown in Figure 2.8 is quite generic and can be applied to
both ASIC and FPGA design flow except for Trojan insertion in the layout
when considering the IP-based FPGA design. In the course of this thesis,
we would explore the possible countermeasures against the Trojans that
are inserted/activated in the last abstraction level, i.e., bitstream level, in
Chapter 3. Furthermore, we would demonstrate the insertion of a Trojan
by EDA tools during the implementation of a design at lower levels of
abstraction such as during the placement and routing step in the FPGA
design flow in Chapter 4.

2.2.4 Hardware Trojans in FPGAs

Today, FPGAs are considered a substantial market element in microelec-
tronics, particularly in the embedded systems and smart devices. ASICs
are unique custom ICs designed for a specific purpose, i.e., the logic
funtion cannot be changed once manufactured, however, they are high-
performance devices. The advantages of FPGAs over ASICs are; their
flexibility in terms of re-programmability and reconfigurability, the re-
duced development costs, and the short time to market. Additionally,
developers have a limited implementation risk because:

• There is a possibility to revise an inaccurate design

• It is already known that the silicon devices are verified and the un-
derlying technology works properly under particular conditions.

• FPGAs have a simpler and faster design flow process compared to
the complicated and design-intensive process for ASICs.

Other advantages include dynamic partial reconfiguration, which gives
the flexibility to upload a new design on a portion of the device during
runtime.

Reconfigurable computing has a different structural design than
ASICs, so the hardware security threats concerning the reconfigurable
devices, such as FPGAs, may vary likewise. For instance, an FPGA de-
vice consists of a certain configurable logic block, embedded memory,
and LUTs to perform the functionality, the designers just need to upload
a design in the form of a bitstream for the intended design. In terms of
security, one should consider the security of the FPGA device as well as
the bitstream configuration file used for configuring the device, where the

2.2. Hardware Trojans 29

former is usually tested and verified by its vendor after manufacturing,
therefore it could be considered as tamper-free.

Akin to that, Trimberger in [55] confers the risks of untrusted
foundries fabricating FPGAs, where it is challenging to devise an
application-specific attack as the foundry would not know the distribu-
tion of the different devices to the customers. The FPGA architecture is
generic in nature, thus tampering with the base array would have an ef-
fect on all the FPGA devices, which can theoretically be exposed by any
of the thousands of users, so, letting the cost of testing be compensated
through the FPGA end-users. Furthermore, the actual design is unavail-
able while manufacturing, so there is no chance of manipulating or steal-
ing the design, as the reconfigurable hardware is programmed with the
actual design after fabrication. The better the coarseness of programma-
bility, the less an attacker at a foundry would know about a design. The
chances that an attacker in the foundry gets a hint about the design de-
pends on the programmability feature of FPGAs, i.e., better coarseness of
programmability means difficulties for the attacker to understand design.
For instance, in contrast to FPGAs, the attacker in the case of micropro-
cessors, can focus on certain components of the processor because of the
knowledge about the program execution and design structure [56]. This
is also demonstrated in [8], where King et al. have found that a micropro-
cessor can be hacked to gain high-level access with only a small hardware
circuit, which could contain thousand logic gates. Whereas an FPGA con-
sist of an array of configurable logic blocks to implement the application
design and the attacker in the foundry would not be able to guess which
configurable logic block is used by which part of the application, thus
hypothetically makes it challenging for her to attack the FPGA device
during fabrication. However, in contrast to this concept, Mal-Sarkar et
al. in [53], demonstrated that there is still a diversification of potential
attacks that could be achieved by the attacker in the foundry.

Although there are very few chances for the Trojan, inserted into the
FPGA device during the fabrication, to be triggered by the user design,
an adversary in a foundry could still insert an additional circuit (Trojan)
that may be dependent on the user design for activation or independent
of the design to induce reliability issues only. Furthermore, Mal-Sarkar et
al. have classified FPGA Trojans into two different categories, such as Tro-
jans in FPGA devices and Trojans in IP, also depicted in Figure 2.9, where
the former is further divided into two main subcategories: Trojans based
on varying triggers and Trojans based on varying payloads. As discussed

30 Chapter 2. Background and Related Works

Trojan in FPGA Devices

Leak IP

Hardware Trojan Attacks in FPGAs

Trojan in IP

Varying payloads Varying Triggers

Conditional Always-On

Logical State

Env. Parameter

(e.g., Temp)

Design

Dependent

Design

Independent

Leak Secret Info. Cause Malfunction

Logical

Parametric

(Reliability)

Leak Reg. Content

Run-Time

During Config.

Figure 2.9: FPGA’s hardware Trojan taxonomy. Taken from [53].

in Section 2.2.3, the trigger circuit could be fired by a condition or it re-
mains active all the time. The conditional triggers could be based on the
logical state or environmental parameters, such as temperature. Based on
the FPGA device and the IP used to configure it, the logic-based triggers
could further be categorized as IP-dependent and IP-independent classes
of Trojans. The difference between condition-based triggers in FPGAs to
the ASICs is that the former could contain a trigger that is IP dependent,
while the latter does not fall into this category.

IP-dependent Trojans are the subclass of the Trojans, inserted during
the manufacturing of an FPGA at the foundry, where the activation of
the trigger circuit to drive the Trojan payload depends on the design that
will be implemented in the device. Since, at the time of manufacturing,
the attacker would not have any knowledge about the design to be im-
plemented into the FPGA device, it is unlikely that she can implement
a Trojan based on the accurate trigger conditions. However, to increase
the chances of being activated, an attacker can scatter multiple Trojans
over the entire chip, which upon activation, could perform malfunction
in several different ways, i.e., the values stored in the LUTs could be
modified, the configuration cells can be manipulated to cause routing
problems and the embedded memory can be loaded by writing the addi-
tional random values. In contrast to IP-dependent Trojans, the objective
of IP-independent Trojans is to damage the critical modules of the FPGA
device, regardless the design to be implemented, such as the digital clock
manager (DCM) in Xilinx Spartan-3, Virtex-II, Virtex-II FPGAs, where the

2.2. Hardware Trojans 31

clock frequency can be increased by modifying the configuration param-
eters saved on its local SRAM, consequently causing the failure of the
critical path logic in sequential circuits. Besides altering the logic func-
tionality, a Trojan payload in FPGAs can cause certain reliability issues
such as increasing the chip temperatures, delay, and power consumption.
Furthermore, the payload could also be characterized to leak the register
contents of an IP or the complete IP could be leaked.

This bitstream file is encrypted in modern high-end FPGA families
where it is difficult to expose and exploit the design to cause malfunction-
ing using Trojans, e.g., Xilinx Virtex family. For decrypting the encrypted
bitstream, FPGA devices consist of a separate module, which is also re-
sponsible for preventing the data and decryption keys from being stolen
if a read or write attempt is made, along with limiting the post configu-
ration access to the decryptor. Nonetheless, a Trojan circuit inserted by
an adversary in the foundry could be tied to the wires connecting the de-
cryption module to the keys in non-volatile memory, consequently stor-
ing the decryption keys to be leaked through side-channels (e.g., [57]) or
a covert channel [53]. The scenario is illustrated in Figure 2.10. In addi-
tion to that, it has been shown that a Trojan can also be inserted into the
CLBs or the memory blocks of an FPGA.

Figure 2.10: Trojan circuit attached to decryption module in FPGA. Taken
from [53].

Even, if the encryption module of the FPGA device is not tainted dur-
ing its manufacturing, there is still a possibility to leak the confidential
information from the encrypted IP core2 implemented on the FPGA de-
vice. A practical illustration of this has been shown by Moradi et al.
in [58] which confirms that the bitstream encryption keys from an en-
cryption/decryption engine of a device can be extracted during crypto-
graphic operation by using side-channel analysis. In their work, they
have demonstrated a successful attack to extract the encryption key from

2The terms IP, IP core, and IP design will be used interchangeably in this thesis.

32 Chapter 2. Background and Related Works

a triple data encryption standard (DES) module implemented on a Xilinx
Virtex-II Pro FPGA by employing power analysis techniques, i.e., differ-
ential power analysis on the power traces measured during the encryp-
tion process. In [59], the attack is further enhanced by using the EM side
channel to extract the encryption key even from recent devices such as
Xilinx 7 series FPGAs. The FPGA devices from different vendors may
have different encryption engines, such as Xilinx, and Intel, however, it
has been shown that the devices from Intel are also vulnerable to this at-
tack. For instance, Swierczynski et al. in [60], showed that full encryption
keys from Altera Stratix II and Stratix III devices can be extracted by ap-
plying the side-channel analysis methods. The Trojan insertion into the
FPGA device, however, is out of the scope of this thesis. Therefore, our
focus will remain on the Trojan in IP core.

Hardware Trojans in IP Cores

Most of the modern FPGAs used nowadays are (re-)configured with
the IP design that is synthesized and converted to a bitstream using the
FPGA design flow tools. In general, the IP cores can be divided into three
types: Soft-IP cores, Firm-IP cores and Hard-IP cores [36] which are briefly
described as follows:

Soft-IP cores: In these types of IP cores, the design is available to be
implemented as an HDL representation to the designer, thus flexible to
be incorporated into a user design, optimized, and easily implemented
on any available FPGA device.

Firm-IP cores: These types of IP cores are also known as semi-hard
IPs which are available as a library of high-level functions with certain
placement constraints, i.e., the design is available in the form of placed
and routed netlist.

Hard-IP cores: Hard-IP cores are usually less flexible than soft and
firm IP cores, where the functionality is pre-implemented and is fixed
for a specific FPGA family, i.e., adders, media access controller (MAC)
functions, and the like. Due to the extensive reuse of circuit designs of
FPGAs, there is a possibility that untrusted third parties can inject mali-
cious code into soft IP cores. Additionally, hard IP cores are susceptible
to hardware Trojans introduced into FPGA circuitry during fabrication
by an untrusted foundry, [61], however, Trojan insertion in hard IP cores

2.2. Hardware Trojans 33

is beyond the scope of this thesis, thus we will evaluate our approaches
based on soft-IP cores.

Trojans in IP Core

Varying Payload Varying Trigger

Conditional Always-On

Not

Contributing

Contributing

Logical

State

Physical

Parameters

Leak Secret Info.

Cause Malfunction

Logical

Physical/

Parametric Connection

Functionally

Same

Functionally

Different

Connection

Contributing
Not

Contributing

Figure 2.11: Taxonomy of hardware Trojans in IP cores.

We propose a hardware Trojan taxonomy for soft IP cores used for
dynamic reconfiguration of the FPGAs based on the different implemen-
tations of trigger circuits. So far, the Trojan in IP cores, especially soft IPs,
has not been taxonomized. In our classification, the general structure of
the Trojan for the IP cores remains similar to the hardware Trojan taxon-
omy presented in Figure 2.9, however, the trigger implementation could
be further categorized that is shown in dark-gray boxes with dotted out-
lines in Figure 2.11. Following the general Trojan classification, a Trojan
circuit is usually implemented with the help of a varying trigger and pay-
load. The trigger circuit may consist of an always-on implementation or
it may get activated by a specific condition, i,e., conditional trigger. How-
ever, for IP cores, we further categorize the always-on triggers based on
their contribution to the output of the original circuit, i.e., whether or not
the triggers’ signals of always-on Trojans take part in the output of the
original circuit. For example, if the trigger signals change the behavior of
the output of the circuit, they are termed as contributing, otherwise, they
are referred to as not contributing.

A conditional trigger, on the other hand, like in general Trojan clas-
sification, may depend on the conditions such as physical parameters

34 Chapter 2. Background and Related Works

based-conditions and logical state-based conditions. A physical parame-
ter based-conditional trigger relies on the input from certain physical pa-
rameters, i.e., temperature, to get activated. The logical states, in general,
are the logic conditions that drive the payload upon activation. However,
they can be further divided into four new sub-classes based on their ef-
fect on the overall functionality and their contribution to the output of the
circuit. For instance, a trigger could be implemented in a way that, dur-
ing its inactive state, the functionality of the original circuit remains the
same or it gets changed due to the extra logic. Similarly, the additional
logic of a trigger could contribute to the output of the circuit to mimic
an authentic logic, or it can be a dummy logic that does not contribute
to the output. A connection-based conditional trigger, which is a new class
introduced in this thesis, determines if the trigger is actually connected
to the original circuit or disconnected temporarily to evade any testing
mechanisms and gets activated after re-connection. Both always-on and
conditional triggers can further depend on their connection to the origi-
nal circuit for activation. Such kinds of triggers can be inserted during
the routing stages and can be connected in the latter stages for activation
(cp. Section 4.2). We consider the general payload implementations in
IP cores, that are similar to the payload implementations in FPGA de-
vices/ASICs, where a payload on activation can cause malfunctioning or
assist the attacker to leak secret information. In literature, various trigger
and payload implementations along with their corresponding counter-
measures at different abstraction levels have been proposed for Trojans
in IP cores [62], which we will discuss in the following section.

2.3 Related Works

In general, it is harder to attack a circuit on an FPGA in a foundry com-
pared to an ASIC, as the actual functionality of the FPGA is only deter-
mined at runtime, when the fixed-function part and the dynamic configu-
ration are combined to form the circuit. Attacks on the fixed-function part
of the FPGA are closely related to ASIC attacks and out of the scope of this
thesis. Thus, Trojan attacks and defenses on the dynamic configuration
aspect of the FPGAs will be explored in this thesis. There could be several
ways to insert and implement hardware Trojans in IPs, depending upon
their design, characteristics, activation, and actions. A variety of hard-
ware Trojans submitted in the CSAW Embedded Systems Challenge [63–
65] held in 2012, have been detected using functional testing, power anal-
ysis, and direct analysis of bit-file. A multi-faceted technique to detect

2.3. Related Works 35

Trojans in FPGAs has been demonstrated in [66], where the authors de-
velop a Trojan detection framework leveraging testing techniques to iden-
tify different Trojans introduced in CSAW Embedded Systems Challenge.

FPGA devices can be compromised by utilizing malicious hardware
blocks, like reconfigurable blocks, sometimes referred to as IP blocks.
Such malicious IP blocks can be employed to gain access to unauthorized
parts of memory and modify its contents. However, a security wrapper
for IP cores proposed as a countermeasure in [67], can be incorporated by
the FPGA system-on-chip (SoC) designers to secure the system against
these attacks. Also, counter-based ring oscillators have been widely used
in ICs to make the detection of Trojans easier due to their oscillation. A
ring oscillator (RO) follows the phenomena of oscillation mainly due to
its intuitive logic. The number of components and the size of the cir-
cuit derive the oscillation frequency which may vary with the addition
or deletion of the components in a circuit. This feature is used for non-
destructive testing to detect different modifications in a hardware design
by integrating ring oscillator(s) (of various lengths) [68]. The extension
of this RO has been made in [68] known as transient effect ring oscilla-
tor (TERO) digital sensor which is more sensitive to intrinsic noise, thus
providing better results in Trojan detection in FPGA implementation of
advanced encryption standard (AES) algorithms [69].

Design-time hardware Trojan detection in IPs may roughly fall into
two categories, such as dynamic and static detection. In the dynamic de-
tection methods, the design is usually simulated to check the behavior
of the logic circuit using different test patterns. However, the Trojan is
designed with the intention to evade the simulation testing, thus an ad-
versary could choose a trigger condition that is activated very seldom.
Also, the verification team would have no idea about the type and loca-
tion of the Trojan circuit, it would be hard to generate the patterns for
huge design space to trigger the rare states [62]. On the other hand, static
detection methods do not rely on circuit simulation but use the informa-
tion related to the Trojan, i.e., structural information. In literature, both
methods have been explored to detect the Trojans at register-transfer level
(RTL) or gate level. King et al. in [8] presented three powerful attacks, i.e.,
privilege escalation attack, shadow mode/backdoor attack, and service-
based attack, by implanting two malicious circuits in the Leon3 processor.
The malicious logic implemented in both the circuits had a low impact
on the size of the processor in terms of the logic gates and the number of
lines in a VHDL code. Since it is difficult to verify each gate and line of

36 Chapter 2. Background and Related Works

code for such a large design, so the malicious circuitry would likely by-
pass the traditional testing methods. However, Hicks et al. presented an
algorithm, so-called unused circuit identification (UCI) in [12], to detect
the malicious circuits in the design, i.e., in [8], which are then removed
by the BlueChip model. Primarily, the UCI is a design-time testing algo-
rithm that identifies the parts of the circuit that do not contribute to the
output during simulation-based testing and flag them as suspicious. The
general UCI algorithm’s steps are shown in Figure 2.12.

HDL Design

Data Flow

Graph List of Signals
Simulate

Design

Elements

Equal?

Yes

No

Genuine

Suspicious

Data-flow pairs

include nodes (n)

and edges(e).

data flows from

source to sink.

UCI Algorithm’s Steps

Figure 2.12: Steps of unused circuit identification (UCI) algorithm to de-
tect malicious hardware. Derived from [12].

The HDL design is first converted to the data-flow graph to generate
the list of signal pairs, i.e., data-flow pairs, where the nodes represent
wires (signals) and the edges refer to the data flow between signals, in
which the data flows from a source to a sink. Then, in the design verifica-
tion through simulation step, each of the signals that do not alter the data
values of the data-flow pairs during the flow from source to sink is ob-
tained by applying an inequality check on the delay values of the source
and sink. If the delay values of each of the elements in data-flow pairs are
not equal, the circuit is considered benign, however, if the delay values
are equal, the circuit between signal pairs is removed and placed into the
suspicious list and a wire is used as a replacement. Subsequently, to beat
the UCI approach, Sturton et al. [10] implemented a stealthy malicious
backdoor in a Leon3 processor, where no pair of the dependent signals
are equal at design time, under non-triggered circumstances, thus can
not be marked suspicious by UCI. The circuit performs malfunctioning
upon activation when a specific pattern, e.g., a trigger input is received,
which is concealed at the design time [10]. Even though these types of
Trojans may evade UCI, exhaustive simulation and formal verification
would have a tendency to find them, as the infected circuit would not
behave functionally and formally equivalent to the original design.

2.3. Related Works 37

Zhang et al. in [13] proposed a dynamic detection technique called
Veritrust which investigates the verification corners to automatically iden-
tify the trigger inputs of the Trojan circuit. Essentially, the inputs of
the circuit that are not triggered under normal conditions are marked
as redundant and thus suspicious. The technique is comprised of two
stages, the tracer, and the checker, which is also shown in Figure 2.13.
The tracer mechanism traces the redundant inputs of the circuit under
non-triggered conditions through verification tests, i.e., sum-of-products
(SOPs) or product-of-sums (POSs) of flips flops and primary outputs in
a design netlist. The checker then applies the functional simulation to un-
activated SOPs and POSs to realize the redundant inputs, which are then
flagged as potential Trojan trigger inputs. However, to minimize the area
overhead, the functional verification is not applied to the entire circuit,
therefore, it may result in a high false-positive rate, e.g., the benevolent
input is flagged incorrectly as a trigger input.

VeriTrust

Figure 2.13: Veritrust: Unused input identification framework for verifi-
cation. Taken from [13].

Furthermore, to detect the stealthy malicious circuits introduced
in [10], Waksman et at. presented a static method of detecting hardware
Trojan that leverages the Boolean functional analysis of a circuit to detect
Trojans instead of relying on a design-time validation test suite through
simulation [14]. In essence, the trigger inputs of a Trojan, in general, have
no or a weak effect on the output of the circuit to stay unnoticed during
verification. Exploiting this fact, the authors have anticipated the influ-
ence of an input signal on output by using a Control Value (CV).

The working flow of FANCI demonstrated in Figure 2.14 is described
as follows: Initially, the truth table for a fan-in tree is generated which
contains the information of each wire (w) in a gate of each module in a
design. Then, the control values are determined for each of the input
columns in a truth table (T) to get the Boolean difference of the two

38 Chapter 2. Background and Related Works

Design
For each wire (w):

Construct: Truth table

T for fan-in tree

Compute Control

Values CV

Calculate

Heuristics (h)
h<t

Yes

No

Suspicious

Genuine

Define

Threshold (t)

Boolean Functional Analysis

Figure 2.14: Boolean function analysis for nearly-unused circuit identifi-
cation. Derived from [13].

functions. Once the vector of values for each gate’s output is obtained,
the heuristic on this vector is applied to make sure whether the wire
could be marked as suspicious for further inspection. The heuristic
(e.g., median) is computed as a heuristic function (h) and the threshold
(t) is set between zero and one to realize the values of (h). If the value
of the heuristic function of a given wire is less than the threshold, the
wire is labeled as suspicious, otherwise, it is deemed genuine. Since the
hardware Trojan problem is the manifestation of the arms race between
the attacker and the defender, where each party tries to innovate the
corresponding methodologies. Hence, Zhang et al. in [70] presented yet
another hardware Trojan attack that evades the state-of-the-art dynamic
and static detection mechanisms [10, 13, 14]. To do so, the authors
proposed a methodology named as DeTrust [70], in which the Trojan
is implemented in a way such that, the trigger logic is carefully dis-
tributed between various combinational logic blocks to evade the FANCI
approach [14]. Whereas, to dodge Veritrust [13], the Trojan triggers are
concealed into various sequential levels which are also combined to the
original functional logic of the circuit.

However, the problem with the above-mentioned techniques for Tro-
jan detection in an IP core is that they are applied only at the RTL/gate
level, thus any malicious insertion by an adversary after this step in a
design flow will leave a question on their applicability. Furthermore,
none of the techniques will detect always-on Trojans which do not affect
functionality but intend to decrease the reliability of the circuit, i.e., RO-
based Trojan. Also, most of the techniques often require a golden model
to detect the Trojans which is the vendor-proprietary and might not be

2.3. Related Works 39

available for verification purposes, e.g., in the case of the firm and hard-
IPs. Nevertheless, Oya et al. in [71] presented a score-based classification
technique that does not require a golden circuit to detect the hardware
Trojans. In the proposed methodology, the Trojan nets are distinguished
from the original nets of the design based on an incremental metric ap-
plied to the Trojan features. The technique showed promising results for
the Trust-HUB Trojans [51, 72], however, a considerable amount of pro-
cessing time is required for larger designs. Also, the technique is valid
for only Trust-HUB Trojans, while the new unseen Trojans would likely
escape this approach.

Another golden-reference free Trojan detection method on a gate-level
netlist has been presented by Hassan Salmani [73] that is based on the
testability measure of the circuit where the testability is observed in terms
of controllability and observability analysis derived from numerical val-
ues. A K-means clustering algorithm [74] is applied to get the list of
Trojan signals and genuine signals to distinguish between the Trojan-
inserted and Trojan-free designs. The technique is capable of detecting
both always-on and condition-based Trojans, however, it does not apply
to the Trojans that are inserted or activated in the post-synthesis steps of
the design flow, e.g., bitstream-level Trojans [75].

An FPGA bitstream configuration file containing particular design in-
formation may also be susceptible to hardware Trojans. The three major
entities during the bitstream generation processes that may insert mali-
cious logic/functionality in the legitimate design are a) a design house or
a malicious designer in the design house, b) compromised electronic de-
sign automation (EDA) tools, and c) malicious communication channels,
i.e., via man-in-the-middle (MiM) attacks. Attacks on the FPGA configu-
ration during the design step, can, e.g., be performed by compromising
the EDA tools which are used to synthesize the design. This attack can
be carried out either by actually modifying or replacing the tools them-
selves, as is described for instance in [76], or as a post-processing step,
where the authors investigate the possibilities and limitations of direct
bitstream modification attacks. For an attacker, compromising EDA tools
can be very attractive, as potentially a higher number of designs can be
compromised in one attack.

Recently, Duncan et al. [77] classified the different threats to a bit-
stream at various stages during the FPGA design flow. In the first stage
of this taxonomy, the threat to a bitstream generation by the design house

40 Chapter 2. Background and Related Works

and third-party IPs are categorized into malicious and non-malicious in-
tent, where the latter refers to tools-induced vulnerabilities. The introduc-
tion of vulnerabilities or malicious circuitry through design tools could
be more interesting for the attacker due to the simplicity of the attack and
the implanted malicious circuitry can also be more devious. The activa-
tion of dormant logic inserted at any point could force the device during
operation to go to certain undesired states such as the denial of service,
change of functionality, and secret information leakage.

In 2013, Chakraborty et al. [75] presented a mechanism to taint the
FPGA bitstream that was first to insert a Trojan directly in the bitstream.
The Trojan is inserted in an unencrypted bitstream using an add-on pro-
gram that modifies the bitstream configuration file. Based on their con-
nectivity to the original circuit, two types of Trojans have been proposed
that can be inserted: A type-I Trojan has no connection to the original cir-
cuit (hence non-functional Trojans) and is inserted into the free resources
of FPGAs. A Trojan circuit consisting of ring oscillators has been imple-
mented to increase the temperature of the FPGA, which causes reliability
issues and early aging. Such kinds of attacks are denial-of-service (DoS)
attacks. The success of the attack relies on the availability of resources in
the proper locations of the FPGA. However, such a Trojan circuit may be
difficult to insert if a) the bitstream is encrypted or b) the unused FPGA
resources are filled up with dummy logic [78] in a bitstream. Trojans that
have a connection to the original circuit are considered type-II and re-
quire sufficient design knowledge to implement, hence not contemplated
by the authors.

Nonetheless, if we recall the threat model presented in Section 2.2.2,
where the design house and IP vendors, are considered trustworthy, but
the EDA tools maintained by the vendors are undermined, resulting in
an enhanced power to the attack by infecting a bundle of designs in just
one go. Undermining EDA software tools also resembles the compiler
attack introduced by the authors in [79], where the back-end tools acti-
vate the malicious activity. One such kind of attack for reconfigurable
hardware has been presented in [26] by introducing a stealthy “malicious
LUT” hardware Trojan inserted during design flow that employs a two-
stage mechanism of insertion and activation. The Trojan remains dor-
mant throughout the design phase and activates only when the bitstream
is written, thus circumventing design-time verification techniques, such
as [12–14]. The attack is explained in more detail in the next chapter,
Chapter 3, Section 3.1.

41

Chapter 3

Proof-Carrying Hardware
Versus the Bitstream-level
Hardware Trojans in FPGAs

3.1 Malicious LUT Hardware Trojan 42
3.2 Proof-Carrying Hardware 44
3.3 Bitstream-level Proof-Carrying Hardware for ICE FPGAs . 46
3.4 Tool Flow for ICE FPGAs . 48
3.5 Attack Scenarios . 49

3.5.1 Scenario: 1 . 49
3.5.2 Scenario: 2 . 51
3.5.3 Scenario: 3 . 52

3.6 Experimental Validation . 56
3.6.1 Experimental Setup 56
3.6.2 Results . 56

3.7 Discussion . 61
3.8 Chapter Conclusion . 61

Hardware Trojans detection in a bitstream, or the Trojans that only
activate in an FPGA bitstream, is quite challenging due to the unavail-
ability of the bitstream formats as most of them are vendors proprietary.
A malicious lookup table (LUT)-based Trojan attack that is injected and
triggered by the field-programmable gate array (FPGA) design flow is
an example of such an attack which we will explain in detail in Sec-
tion 3.1 of this chapter. Next, the overview and a short background
of proof-carrying hardware (PCH) concept is given in Section 3.2, fol-
lowed by the comprehensive discussion on the proposed bitstream-level
proof-carrying hardware (PCH) for Lattice iCE40 FPGAs that is capable
of effectively detecting the stealthy malicious LUT hardware Trojan in
Section 3.3, the description of the Lattice iCE40 FPGA, and associated

42
Chapter 3. Proof-Carrying Hardware Versus the Bitstream-level

Hardware Trojans in FPGAs

open source tools flow used to evaluate our approach against malicious
LUT attack under different attack scenarios, is described in Section 3.4
and 3.5, respectively, followed by the discussion about our approach in
Section 3.7, and in Section 3.8, we will conclude this chapter.

The work described in this chapter has been presented in International
Symposium on Applied Reconfigurable Computing (ARC) in 2019 and pub-
lished in [80].

3.1 Malicious LUT Hardware Trojan

In the recent past, Krieg et al. [26] presented an FPGA design flow at-
tack that has been carried out by subverting the vendor’s provided elec-
tronic design automation (EDA) tools. Their attack works in a two-stage
manner by using compromised design tools that basically adds a second
trigger to the Trojan design, which is tied to specific steps in the FPGA
design flow, as depicted in Figure 3.1 (a). Their stealthy Trojan relies on
compromised design tools: First, the front end synthesis tool injects the
Trojan into a user design (Figure 3.1 (b)), and then the back end synthe-
sis tool activates (triggers) it when writing the bitstream configuration
file, and only then (Figure 3.1 (c)). Essentially, the malicious circuitry, i.e.,
Trojan, is first inserted by the synthesis tool while reading the design by
employing the search and replace method to the hardware description
language (HDL) code of the design. For instance, a certain module or just
a few lines of the module can be replaced with a new module or code. Af-
ter that, the design along with the malicious added circuit/Trojan by the
front-end of the synthesis tool is synthesized and optimized by the syn-
thesis tool which results in a gate-level netlist of the design, that can be
simulated to verify the correctness of the design. At this stage, the Trojan
is inactive, so the compromised design turns functionally and formally
equivalent to the original circuit, thus the functional simulation verifies
it as a correct design. However, during the placement step, the malicious
back-end searches for the specific patterns based on some properties of
the Trojan trigger that were injected by the malicious front-end tool. If
the trigger cells match the properties, they are reconfigured to turn on
the malicious logic. Hence the Trojan is only activated by the back-end
tool when writing the configuration bitstream of the design to the file.

The authors, for illustrative purposes, have demonstrated a privilege
escalation attack on an instruction decoder of a CPU where for one partic-
ular instruction the privilege verification is influenced. As a result, the in-
struction decoder executes that privileged instruction with no superuser

3.1. Malicious LUT Hardware Trojan 43

rights when the Trojan signal is high, i.e., when the output of the mali-
cious lookup table (LUT) is high. The implementation of a smart trigger
using a malicious LUT, which remains dormant throughout the design
phase and activated when the final bitstream is written, helps the Trojan
to evade all the design-time verification techniques relying on functional
verification or rare events occurrence.

Synthesis

Tool

Map/Fit,

Place&Route

Tool

Encode
Static

Timing

Analysis

Malicious

Frontend

(insertion)

Functional

Simulation

Text search

found

Text
replace

HDL design,

Trojan inactive

yes

Malicious

HDL frontend

Property
check

satisfied

Trigger
Trojan

Bitstream file,

Trojan active

yes

Malicious

bitstream backend

Placelist, Trojan

inactive

HDL

Netlist

Placelist

Bitstream

Original

HDL Design

Malicious

Design Database
Activation

property database

P#1 R#1

P#2 R#2

.

.

.

.

.

.

P#n R#n

P#1 R#1

P#2 R#2

.

.

.

.

.

.

P#n R#n

Malicious

Backend

(activation)

 (a) (b) (c)

Figure 3.1: (a) depicts the function principle of the attack. In (b), a mali-
cious front end injects malicious HDL code into an original design based
on pattern matching. Whereas (c) shows a malicious back end which ac-
tivates the attack by looking for the previously inserted cells and altering

them. Taken from [26].

Also, the activation characteristics of the injected Trojan can still com-
prise a classical trigger-payload pair, which can then, e.g., be activated
at operation time. The novelty of the approach lies in the fact that the
infected circuit is functionally equivalent to the hardware specification
during post-implementation simulation and testing, as the Trojan is dor-
mant after insertion. This Trojan can thus circumvent all state-of-the-art
detection techniques that rely on identifying unused, nearly unused, or
redundant inputs or portions of the circuit, such as unused circuit identi-
fication (UCI), VeriTrust and functional analysis for nearly-unused circuit
identification (FANCI) [12–14].

It is believed by the authors in this work and the prior attack [75],
explained in Section 2.3 of Chapter 2, that due to the lack of a verifi-
cation mechanism for the bitstream configuration file it would be enor-
mously difficult to counter such attacks. The only possibility to detect
this stealthy Trojan pre-configuration, i.e., before the FPGA is configured
with the design, is to analyze the configuration bitstream itself, as also
the authors point out. However, we propose a bitstream-level verification
technique using proof-carrying hardware (PCH) which effectively detects

44
Chapter 3. Proof-Carrying Hardware Versus the Bitstream-level

Hardware Trojans in FPGAs

the stealthy two-stage malicious LUT hardware Trojan attack presented
in [26].

3.2 Proof-Carrying Hardware

Inspired by the proof-carrying code (PCC) technique [81] which was in-
tended to quickly verify the executable code of an application before run-
ning on to the system by the host, Drzevitzky et al. [82] proposed the
proof-carrying hardware concept for the verification of an intellectual
property (IP) module before a system integrator incorporates it to a recon-
figurable device. Their approach considers the end-user of the IP module
or the system integrator who integrates an IP into the SoC device, as the
consumer, who is interested in instantly verifying the desired functional-
ity of third-party IPs, and the one who produces an IP and ships to the
consumer is considered as the producer. Moreover, both sides come to
terms with certain formal properties that need to be met, i.e., the con-
sumer along with the design specifications, specifies the list of safety/se-
curity properties that should be satisfied by the IP module generated and
supplied by the producer, before using the IP for the required objective.
Fundamentally, the producer is obliged to construct the set of proof to-
gether with the creation of an IP module and send it to the consumer
who then could quickly validate the proof.

The general overview of a bilateral agreement between the producer
and the consumer within PCH is shown in Figure 3.2. First, the producer
receives the design from a consumer, specified mainly in hardware de-
scription language (HDL), synthesizes it for the given target FPGA de-
vice, and generates a bitstream configuration file. In the next step, the
miter is formed using the extracted logic functions from a reversed bit-
stream and the proof is generated which is then attached to the bitstream.
At this point, the producer does the main job of developing the IP module
and the proof of correctness and sending the resultant proof-carrying bit-
stream (PCB) to the consumer. The consumer, on the other hand, receives
the PCB and extracts the bitstream and proof, and using the original spec-
ifications and trusted tools also forms a miter function and proof, which
is then used to compare against the received miter and proof. So, the
consumer only checks the received proof against his/her in-house gen-
erated proof and decides whether to IP module is functionally correct or
not. If the module is functionally correct, i.e., passes the miter and unsat-
isfiability checks, the hardware is configured with the received bitstream,

3.2. Proof-Carrying Hardware 45

otherwise it is rejected. In this way, the consumer would be able to val-
idate the safety/security properties even from an untrusted producer of
the IP in a short time, thus having theoretical and formal reasons to accept
or reject the IP for reconfigurable hardware.

Producer

Bitstream

Synthesis

PCB

Proof

Design

Specification

Security

properties

IP Core / Hardware Module
(Proof-Carrying Bitstream)

Consumer

Design

Check

Proof

Design

Miter

Proof-Carrying Hardware Model

Trusted

Untrusted

Proof

Bitstream

Proof-Carrying Bitstream

(PCB)

Miter

PCB

Hardware

Reject

Figure 3.2: Overview of two-party agreement model of PCH between
consumer and producer. Derived from [82, 83].

PCH considers third-party IPs that are integrated into FPGAs in a
bitstream configuration format, as this is the lowest possible abstraction
in reconfigurable hardware, which explicitly excludes the closed-source
vendor EDA tools from the trusted base. To verify the third-party IPs,
PCH uses automatic formal verification techniques that are easy to re-
trace, so as to enable the recipient of module and proof to perform a
lightweight verification with the full power of the initial one. Princi-
pally, PCH has been evaluated using abstract and virtual FPGAs due to
the unavailability of bitstream documentation to be used as a prototype
for FPGA providing companies. Therefore, Wiersema et al. [83] evalu-
ated and implemented PCH on a fine-grained virtual fabric, where they
demonstrated and experimentally evaluated PCH at the bitstream level
of virtual bitstreams for an overlay placed on a real FPGA.

We apply the idea of [82] to the tool flow from [26] to use PCH to
detect the stealthy hardware Trojans for the lattice semiconductor iCE40
family of FPGA [84] using mainly tools from the open-source flow IceS-
torm [27]. Our approach differs from state-of-the-art Trojan detection
techniques where comparison or checking is done at the register-transfer
level (RTL) or netlist level to detect stealthy Trojans. While the attack we
counter will not be caught by such techniques, as the activation is done
at the last stage, i.e., while writing the bitstream, our bitstream-level PCH
scheme is able to detect Krieg et al.’s stealthy Trojans using an open-
source tool chain.

46
Chapter 3. Proof-Carrying Hardware Versus the Bitstream-level

Hardware Trojans in FPGAs

3.3 Bitstream-level Proof-Carrying Hardware for
ICE FPGAs

As discussed in the previous section (cp. Section 3.2), so far, the PCH
concept has made progress to be accessed on abstract and virtual FPGA or
a virtual bitstream, however, the recent hardware Trojan attack on a real
bitstream of a commercial FPGA [26] necessitates a powerful mechanism
to detect any manipulations made during production time. In this work,
we present a PCH prototype directly for the bitstream of a real FPGA by
leveraging reverse engineering-based open-source design tools from the
IceStorm project [27].

IP

Specification

IP

Specification

Compute

equivalence

miter

Miter

formula

match?

Proof trace

correct?

Accept IPRefuse IP

Bitstream-to-

Verilog

No

No

Yes

Compute

equivalence miter

Synthesize IP for

iCE40 FPGA

SAT solver

Bitstream-to-

VerilogYes

Verilog

Bitstream

Bitstream

unSAT

proof trace

CNF

formula

Verilog

CNF

formula

Verilog

Yosys

Synthesis

.blif Arachne-pnr

Place, route

and encode

.asc

Icepack

.bin

IceunpackIcebox_vlog

.asc

iCE40 tool flow for

PCH

.bin

Iceunpack

.asc

Icebox_vlog
.v.v

VerilogVerilog

.v.v

.v.v

Consumer Producer

IP

Specification

Compute

equivalence

miter

Miter

formula

match?

Proof trace

correct?

Accept IPRefuse IP

Bitstream-to-

Verilog

No

No

Yes

Compute

equivalence miter

Synthesize IP for

iCE40 FPGA

SAT solver

Bitstream-to-

VerilogYes

Verilog

Bitstream

Bitstream

unSAT

proof trace

CNF

formula

Verilog

CNF

formula

Verilog

Yosys

Synthesis

.blif Arachne-pnr

Place, route

and encode

.asc

Icepack

.bin

IceunpackIcebox_vlog

.asc

iCE40 tool flow for

PCH

.bin

Iceunpack

.asc

Icebox_vlog
.v

Verilog

.v

.v

Consumer Producer

Figure 3.3: PCH tool flow for bitstream-level verification in iCE40 FPGAs.

Figure 3.3 outlines the steps performed in our PCH scenario, derived
from the steps described in [83]. Each of the steps is briefly discussed
in the following: First, the consumer specifies the functionality of the
IP module as well as the safety/security specifications and sends it to
the producer. As a simplifying assumption for our prototype, the design

3.3. Bitstream-level Proof-Carrying Hardware for ICE FPGAs 47

specification is provided as Verilog source code and the security specifi-
cation is agreed upon in advance as demanding the full functional equiv-
alence between the (golden) Verilog source and the circuit represented in
the final bitstream, thereby detecting any Trojans that alter the function-
ality.

In the next step, the producer synthesizes the IP module for the
target platform, in our case the iCE40 FPGA which involves the design
synthesis, placement and routing, and then the generation of a bitstream
configuration file. Each of the steps performed at the producer side
along with the tool used is depicted in Figure 3.5. The employed PCH
property demands functional equivalence between specification and
implementation of the circuit to ascertain the correct behavior; which is
formally verified using that miter. So in the following step, the producer
re-extracts the Verilog from the bitstream to combine it with the original
specification into a miter function in conjunctive normal form (CNF)
form. The miter is a function, which for the same inputs of the circuit,
generates both specification and the implementation as the output and
then matches their result pairwise with XOR gates for equivalence. If we
consider S(x) as the specification function and I(x) as the implementa-
tion function of a circuit input x, respectively, then the miter function is
formed by adding (OR-ing) all the outputs of XOR gates together [82].
The equation (4.1) shows miter (M) function as :

M = ∑ (S(x)⊕ I(x)) (3.1)

Figure 3.4 shows the structure of the miter function for equivalence
checking of combinational and sequential circuits.

Implementation
n

Specification
=1

≥1

=1

mn

m

Figure 3.4: Miter function for functional equivalence checking. Taken
from [85].

48
Chapter 3. Proof-Carrying Hardware Versus the Bitstream-level

Hardware Trojans in FPGAs

The CNF formula is proven to be unsatisfiable by a boolean satisfi-
ability (SAT) solver, which proves functional equivalence between spec-
ification and implementation. This works for combinational and time-
bounded sequential circuits; for unbounded ones, or ones with no prac-
tical bounds like triggers using long-running counters, more advanced
proving techniques like induction-based proof-carrying hardware flow
are needed [85], in which the inductive invariants act as a testimony of the
formal verification. Thus for the counter-based Trojans, also known as a
time bomb [6], this provides an effective set of security guarantees, hence
detecting any malicious circuits that are based on sequentially triggered
Trojans. The resulting proof trace together with the bitstream is then sent
to the consumer, who first converts the received bitstream again to Ver-
ilog using the trusted tools (Figure 3.5) and then formulate the miter with
the reversed Verilog in order to compare this miter conjunctive normal
form (CNF) with the one that is the basis of the proof trace. The con-
sumer can only be sure that the provided proof trace is actually about the
specified IP module, if the miters match. In case of a match, the consumer
verifies the proof using the proof trace. If this step also is successful,
the consumer configures the FPGA with the bitstream. If any of the two
checks fail, the consumer indicates the failure through its user interface
on the PC, about the rejection of an IP module.

3.4 Tool Flow for ICE FPGAs

Project IceStorm is an open-source project by Wolf and Lasser that pro-
vides tools to create and manipulate or analyze bitstreams for Lattice
iCE40 FPGAs [27]. The project aims at reverse engineering and doc-
umenting the iCE40’s bitstream format, and together with other open-
source tools they have defined a completely open-source tool flow for the
iCE40 FPGAs. Lattice FPGAs, and especially the iCE family, can be used
for smaller circuits for the verification of the design. Figure 3.5 shows
the parts of the iCE40 tool flow that we used to implement the PCH ap-
proach. Here, Yosys is used to synthesize the hardware description lan-
guage (HDL) description of the design. The output of Yosys is a synthe-
sized (and optimized) netlist in Berkeley logic interchange format (BLIF),
that is then given to the place and route tool, Arachne-pnr [86], which after
placement and routing, encodes the placed and routed design/netlist into
a text file american standard code for information interchange (ASCII).
To generate the binary file, e.g., a bitstream configuration file, we use the
IcePack tool. To reverse convert the bitstream we use IceunPack which

3.5. Attack Scenarios 49

converts the binary file again to a text file (.asc). Furthermore, we use
the icebox_vlog tool within the IceBox tool to convert this text file again to
HDL, i.e., structural Verilog which we use to form the miter function.

In Figure 3.5, the iCE40 tool flow used by the producer site, shows
that the producer is responsible for the development of an IP using the
complete design flow, along with the proof, whereas, the consumer only
needs a tool or two from the complete design flow, e.g., IceunPack and
icebox_vlog, which convert the bitstream into the Verilog representation,
that is then used for checking the combinational equivalence checking
(CEC) to the original specifications, thus clearly indicating towards the
prompt verification of an IP module at the consumer site.

Yosys

Synthesis

.blif

Arachne-pnr

Place, route

and encode

.asc

Icepack
.bin

.v.v

Iceunpack

Icebox_vlog

.asc

.v

.v.v

Iceunpack

Icebox_vlog

.asc

.bin

VerilogVerilog iCE40 tool flow

for producer
iCE40 tool flow

for consumer

Yosys

Synthesis

.blif

Arachne-pnr

Place, route

and encode

.asc

Icepack
.bin

.v

Iceunpack

Icebox_vlog

.asc

.v

.v

Iceunpack

Icebox_vlog

.asc

.bin

Verilog iCE40 tool flow

for producer
iCE40 tool flow

for consumer

Figure 3.5: iCE40 tool flow used for PCH.

3.5 Attack Scenarios

As explained in Chapter 2, Section 2.2.4, IP modules obtained from third
parties can be maliciously infected. We explain our threat model by dis-
cussing three different possible scenarios and show that in all three sce-
narios of attack, our bitstream-level PCH approach identifies the mali-
cious intrusion and notifies that the implemented design is not function-
ally equivalent to the specified design. In the following subsections, we
highlight the resiliency of the verification technique against attacks from
various parties; Table 3.1 summarizes the details.

3.5.1 Scenario: 1

In this scenario, as illustrated in Figure 3.6, we assume that the adversary
is either the vendor of an underlying IP core used by the producer to
make their own core, design house or an employee of the producer in a

50
Chapter 3. Proof-Carrying Hardware Versus the Bitstream-level

Hardware Trojans in FPGAs

design house who deliberately inserts the stealthy Trojan into the original
design specification received from the consumer, while the EDA tools and
the transportation of IP modules in this case are not compromised. The
Trojan would then remain dormant through all internal validation steps
performed by the producer to be only activated upon writing the final
bitstream.

Producer

Design house

IP core vendor

EDA tools

Attack Scenario: 1

Design Specification

Bitstream + Proof

Untrustworthy Trustworthy Trustworthy Communication

Consumer

……

Figure 3.6: Attack scenario 1

Since this bitstream forms the basis for the remaining PCH verifica-
tion, the producer would subsequently compute the miter function using
the compromised implementation with the active Trojan, as discussed in
Section 3.4. There are two possibilities now:

1. The producer uses the consumer’s original specification. This
would lead to a satisfiable miter function, as the design extracted
from the bitstream has altered behavior, and hence the proof cre-
ation step would fail, meaning the producer would not be able to
send a proof-carrying bitstream (PCB) to the consumer. Remark:
Were the miter not satisfiable in this step, would the alteration of the
Trojan be deemed harmless, since that would essentially mean that
the inclusion of the Trojan does not violate the previously agreed
upon property (functional equivalence in this case).

2. The producer uses a compromised specification with activated Tro-
jan instance. With this specification, the producer would be able
to create a proof of conformity of their core with the specification.
The consumer, however, would compute the miter using their orig-
inal copy of the specification, which cannot be compromised, which

3.5. Attack Scenarios 51

would lead them to a different miter compared to the producer.
They would thus not accept the received proof, as the miter com-
parison step would fail.

Our proposed PCH approach would thus alert the consumer during the
verification of the bitstream against the Trojan’s presence in every possi-
ble case in this scenario, as long as the (activated) Trojan violates the prop-
erty. Whereas, for the same scenario, the Trojan remains undetectable
when applying unused circuit identification (UCI) approach [12] because
it identifies the parts of the circuit that do not contribute to the output,
based on functional simulation, and hence marks them as suspicious.
Conversely, the improved version of the trigger implemented in[26] is
masked in a way that the output is derived from almost every input, thus
the Trojan can dodge the UCI approach. Also, the Trojan in the scenario
is assumed to be implemented by an antagonist as a smart trigger cir-
cuit, like in [26], that uses all of its inputs as a trigger logic, thus none of
the inputs will be marked as redundant by the VeriTrust approach [13]
which targets the identification of unused, potentially redundant, inputs
by maintaining a record of their activity with the help of a tracer, besides
functional simulation. Similarly, unlike our approach, the FANCI tech-
nique [14] will fail to identify the trigger signal presented in [26], because
the control value of the output signal for its input signals remains above
the defined threshold value as the trigger signal will always be contribut-
ing to the Trojan payload.

3.5.2 Scenario: 2

In this threat scenario, we assume that the IP core vendor, design house,
and the communication channel can be trustworthy, but the EDA tools
used by the producer are compromised. Figure 3.7 demonstrates the
threat scenarios where the Trojan is inserted by the compromised EDA
tools within the producer site. In this case, there could be two prospects,
first, the producer or the design house has no knowledge about the sub-
version of the EDA tools thus malicious logic is inserted into the original
by the compromised EDA tools without being noticeable to the producer.
Second, the producer has access to executable binaries of compromised
tools and replaces the benign ones with the compromised versions in the
design house to launch the attack in an automated fashion targeting mul-
tiple designs, while the design house might not be aware of the tools used
being compromised. One reasonable instance of this scenario would be a
pre-compiled version of an open-source EDA tool that includes malicious
code. This basically matches the attack from [26] shown in Figure 3.1.

52
Chapter 3. Proof-Carrying Hardware Versus the Bitstream-level

Hardware Trojans in FPGAs

Producer

Design house

IP core vendor

EDA tools

Attack Scenario: 2

Design Specification

Bitstream + Proof

Untrustworthy Trustworthy Trustworthy Communication

Consumer

……

Figure 3.7: Attack scenario 2

Since in the first prospect, no collaborator within the producer would
replace the design received by the consumer, the verification miter would
always be formed using the original specification and the infected bit-
stream with activated Trojan, which would lead to again either a satis-
fiable miter, which would alert the producer to the fact that their tools
are compromised, or it would help to ensure that the Trojan is harmless,
if its activation does not violate the property. In any case, the producer
again cannot, even by accident, create a malicious bitstream and match-
ing proof that would fool the consumer into configuring an FPGA with it.
In the second prospect, however, the producer using compromised EDA
tools intentionally sends the infected bitstream and the proof to the con-
sumer. Nevertheless, any malicious logic that violates the property, i.e.,
changes the functionality of the circuit, will be detected at the consumer
site during verification. Whereas, the previous techniques [12–14] cannot
detect the Trojan inserted by the malicious tools, because the malicious
logic is added by the front-end synthesis tool which only stimulates the
Trojan payload just before the bitstream generation step, while maintain-
ing the infected circuit to behave functionally equivalent to the original
circuit in all the prior design flow stages.

3.5.3 Scenario: 3

In this scenario, we assume that the design house and the EDA tools
are trustworthy and the adversary has compromised the communication
channel between producer and consumer, e.g., by performing a man-in-
the-middle attack, which is also shown in Figure 3.8.

3.5. Attack Scenarios 53

Producer

Design house

IP core vendor

EDA tools

Attack Scenario: 3

Design Specification

Bitstream + Proof

Trustworthy Untrustworthy Communication

Consumer

……

Figure 3.8: Attack scenario 3

There are several attack vectors, which would be detected in different
steps of the flow:

1. The attacker replaces the design or security specification before it
reaches the producer, inserting the Trojan in the specification or re-
laxing the properties that need to be proven. The producer would
then go ahead and unknowingly a) produce a wrong design, or b)
create an erroneous proof for the property afterwards. Since the
consumer has an unmodified version of both specifications, how-
ever, and will use these to create their own version of the proof ba-
sis, both a) and b) would lead them to reject the module.

2. The attacker reverse engineers the proof-carrying bitstream and in-
jects the Trojan into it. Since in this case the proof would not match
the bitstream, the consumer would also be alerted when comparing
the miter functions that the module is not trustworthy.

3. The attacker injects the Trojan into the PCB and modifies the proof.
This leads to different outcomes, depending on the proof modifi-
cation. If the new proof uses the correct miter, but consequently
cannot actually prove its unsatisfiability, the consumer will reject
the module. If the new proof is a correct proof of unsatisfiability us-
ing an alternative miter, the miter mismatch will be detected again.
If the miter matches and the new proof indeed shows its unsatisfia-
bility, then the attacker effectively has proven that their addition is

54
Chapter 3. Proof-Carrying Hardware Versus the Bitstream-level

Hardware Trojans in FPGAs

not violating the property and is hence not considered to be mali-
cious by the consumer. The last case would hence not be detected,
but that would be considered a non-issue.

The consumer would thus be alerted of any malicious, i.e., property-
violating, alteration of the design in the PCB, no matter which commu-
nication direction the attacker compromises or what vector they choose,
allowing the consumer to reject the module as untrustworthy. From the
Table 3.1, we have shown that our method is able to detect the stealthy
Trojan during design-time verification 3.5.1 either at the producer or con-
sumer site which is indicated by ✓mark. Whereas, the previously pre-
sented approaches such as [12–14] are not able to detect the two-stage
stealthy malicious LUT hardware Trojan which is indicated by ✗. Like-
wise, in the scenarios 3.5.2 and 3.5.3, the stealthy Trojan is detected by
any of the party in our PCH flow, while, the state-of-the-art approaches
are either not applicable or fail to detect it. However, the Trojans that
do not violate the functional property, would not be detected but it may
be considered harmless, concerning the agreed security specification as
a full functional equivalence between the source design and the final de-
sign represented in a bitstream.

3.5. Attack Scenarios 55

Ta
bl

e
3.

1:
Th

re
at

sc
en

ar
io

s
an

d
po

ss
ib

le
de

te
ct

io
n

of
m

al
ic

io
us

LU
T

ha
rd

w
ar

e
Tr

oj
an

in
co

m
pa

ri
so

n
to

th
e

pr
ev

io
us

w
or

ks

Sc
en

ar
io

M
al

ic
io

us
pa

rt
y

A
tt

ac
k

ve
ct

or
D

et
ec

te
d

at
R

el
at

ed
W

or
ks

[O
ur

s]
[1

2–
14

]

1
D

es
ig

n
H

ou
se

D
es

ig
n

sp
ec

ifi
ca

ti
on

Pr
od

uc
er

✓
✗

Bo
th

sp
ec

ifi
ca

ti
on

s
C

on
su

m
er

✓
✗

IP
Ve

nd
or

U
nd

er
ly

in
g

IP
C

or
e

Pr
od

uc
er

✓
✗

2
ED

A
To

ol
s

Bi
ts

tr
ea

m
[2

6]
Pr

od
uc

er
✓

✗

C
on

su
m

er
✓

✗

3
C

om
m

un
ic

at
io

n
→

D
es

ig
n

sp
ec

ifi
ca

ti
on

Pr
od

uc
er

✓
✗

→
Bo

th
sp

ec
ifi

ca
ti

on
s

C
on

su
m

er
✓

✗

←
Bi

ts
tr

ea
m

C
on

su
m

er
✓

✗

←
Bi

ts
tr

ea
m

&
pr

oo
f

C
on

su
m

er
✓

✗

A
ny

A
ny

Tr
oj

an
in

fe
ct

io
n

w
it

h
va

lid
ne

w
pr

oo
f

U
nd

et
ec

te
d:

H
ar

m
le

ss
✗

✗

✓
=

ca
n

be
de

te
ct

ed
✗
=

ca
n

no
tb

e
de

te
ct

ed

56
Chapter 3. Proof-Carrying Hardware Versus the Bitstream-level

Hardware Trojans in FPGAs

3.6 Experimental Validation

3.6.1 Experimental Setup

We perform our experiments on a machine having an Intel Core i7-2600
CPU @ 3.40 GHz processor that includes eight cores with 8 GiB RAM
and running a 64-bit Ubuntu 18.4 operating system (OS) on it. We have
installed the original versions of the EDA tools and their dependencies
together with the source files from the Icestorm project [27] on our ma-
chine. The original EDA tools are used to verify the efficacy of the attack
performed by the infected tool flow. Moreover, for our PCH flow, we have
integrated the consumer and producer flow in accordance with the out-
puts generated by different tools within the EDA toolchain. We use the
following FPGA devices provided by Lattice semiconductor to evaluate
our approach: iCE40HX-1K, which has 1280 logic elements (LUTs and
FFs) with five user LEDs, and iCE40HX-8K having 7680 logic elements
with eight user accessible LEDs.

3.6.2 Results

In this section, we present experimental results obtained using an exam-
ple module represented in Verilog description. In order to demonstrate
the ability of the presented iCE40 PCH flow to counter the attack pre-
sented in [26], we have used the example Verilog provided by the authors
and the tools that they described where applicable. We have infected the
EDA tools with the patches provided by them, and thus to the best of our
knowledge have a faithful recreation of one of their experiments at our
disposal, which we embedded into the flow described in Section 3.3.

For our experiments, we have first used the example Verilog code
with unmodified EDA tools, thus validating the overall flow depicted
in Figure. 3.3. Using uninfected versions of yosys and arachne-pnr on the
producer side allowed us to synthesize the design for an iCE40-HX1K
FPGA, and icepack produced the corresponding bitstream (.bin in Fig-
ure 3.5). Using the reverse tool iceunpack together with one of the icebox
scripts allowed us, also on the consumer side, to obtain a Verilog rep-
resentation of the implemented design. Using the original (behavioral)
Verilog as specification counterpart, generically synthesized by a clean
yosys, we formed a miter circuit and successfully proved its unsatisfiabil-
ity using a SAT solver. On the consumer side, we then matched the miter
functions and retraced the proof, leading us to an accepted proof-carrying
bitstream. This confirmed that we had indeed successfully merged the

3.6. Experimental Validation 57

iCE40 tool flow with the PCH tool flow to enable PCH-certified bit-
streams for iCE40-HX1K FPGAs. We then replaced the synthesis tools
with the infected versions and reran the experiment. After computing the
bitstream on the producer side, we unpacked and reversed it again in or-
der to form the miter function with the specification (the specification blif
was still generated by a clean yosys). This miter, however, proved to be
satisfiable, since the implementation now actually had been altered. We
hence achieved the expected result from Table 3.1, where PCH allowed
us to detect the malicious modification of the design at the producer. A
malicious producer could now try to hide the infection from the user,
but as detailed in Section 3.5.1, this would then definitely be detected by
the consumer in a later phase. Also, we compare our results against the
stealthy attack presented in [26] with the state-of-the-art techniques and
show that our bitstream-level verification approach is able to detect even
the Trojans which remain inert in early design stages and are not detected
by the design time testing techniques [12–14]. Furthermore, to evaluate
our technique against all the possible configurations of a malicious LUT
explained in [26], we have done experiments with the iCE40-HX8K de-
vice which confirms that our PCH tool flow is effective against all the
configurations of malicious LUT and also supports iCE40-HX8K FPGA
device.

I0

I1

I2

I3

I OO

Malicious LUT

SB_LUT4

I0

I1

I2

I3

I OO

Malicious LUT

SB_LUT4

Figure 3.9: 4-input malicious LUT exhibiting malicious unary operation.
Taken from [26].

The functional behavior of the malicious LUT remains the same as the
original unary operations of a LUT during the simulation and varies in
hardware, this is referred to as the malicious unary operations by the
authors in [26] which are shown in Table 3.3. Since the input I of the ma-
licious LUT is simultaneously applied to all of the four inputs of the LUT
which results in either the least significant bit (LSB) or most significant bit

58
Chapter 3. Proof-Carrying Hardware Versus the Bitstream-level

Hardware Trojans in FPGAs

(MSB) bits to the output, hence realizing a malicious unary operation, as
depicted in Figure 3.9. The Table 3.3 shows the 16 possible configurations
of malicious LUT based on the KEEP and FLIP patterns, such that each
pattern consists of 7-bits wide configuration words, i.e., higher-order con-
figuration word (HOCW) and lower-order configuration word (LOCW).
Fundamentally, these patterns form the basis for the malicious LUT to
behave functionally equivalent to the original design during the design-
time testing, therefore, helping the Trojan to evade any verification at this
stage. To better understand the configuration of malicious unary opera-
tion of malicious LUT explained in Table 3.3, it is however important to
know about the ordinary unary operation in LUT that is shown in Ta-
ble 3.2 where the two inputs MSB and LSB drive the output function. For
instance, if both the inputs are “0”, the output re-mains “ZRO”, similarly,
the LUT operation will be “ONE”, or a constant one, when both the in-
puts are “1”, for the inputs “01” the LUT will perform “NOT” operation,
and for the inputs “10” the output of the LUT will be “BUF” operation.

Table 3.2: LUT’s unary operation

MSB LSB Unary operation
0 0 ZRO
0 1 NOT
1 0 BUF
1 1 ONE

We evaluate our example design for each of the 16 configuration pat-
terns. To confirm that the malicious LUT’s output does not change after
the synthesis step, i.e., the first step in the attack, we connect the output of
the malicious LUT to the light emitting diode (LED) of the iCE40-HX8K
FPGA device. From the given KEEP and FLIP patterns, we can deter-
mine the expected behavior at the output, e.g., if there is no change at the
output of the LUT, the LED will not blink and if there is a FLIP, the LED
will indicate the flipping of the bits at the output. This behavior reflects
the results given in columns 5 and 6 of the Table 3.3 where the fsimulated

column shows the output that is similar to the original unary output (cp.
Table 3.2), while the fhardware column shows that the bits are flipped in a
bitstream after the activation of a Trojan, i.e., in the second phase of the
attack. Note that here the fhardware means that the Trojan is activated in the
bitstream, which is the final design used to configure the reconfigurable
hardware. We repeat the same phenomena after the place-and-route step
where the blinking of LED will show the successiveness of the attack and
otherwise, the activation of the trigger may either failed or the backend

3.6. Experimental Validation 59

tool could not match the properties of malicious LUT to activate the Tro-
jan. After this step, we generate a bitstream for each of the 16 configu-
ration patterns and verify the bitstream against any malicious behavior
by applying our proposed bitstream-level PCH approach as explained in
Section 3.3. Based on the observation, it is shown in Table 3.3, (cp. Col-
umn 7), that our PCH approach is able to detect the malicious LUT Trojan
for all its possible configurations. Since the state-of-the-art such as [12–
14] approaches mainly focus on the outcomes of the functional simula-
tions of the design at RTL, which in the case of malicious LUT does not
vary from the expected behavior (cp. fsimulated in Table 3.3), thus the ma-
licious LUT would easily evade them and would change the function of
the design in the final stage, i.e., bitstream (cp. fhardware in Table 3.3). As
our bitstream-level PCH approach compares the functional equivalence
of the specified design, i.e., design at RTL, and the design that is obtained
by reversing the final bitstream, i.e., the final design, so any functional
changes made by the malicious LUT in the bitstream would be detected.
For example, for each pattern used for configuring the malicious LUT in
Table 3.3, where the functionality differs from the original implementa-
tion would result in a proof that can not prove its unsatisfiability using
its miter at the consumer site in our approach, thus detecting any config-
uration of malicious LUT.

Table 3.3: Malicious LUT’s possible configurations detected by our pro-
posed PCH approach

MSB HOCW LOCW LSB Function
PCH observation

15 14–8 7–1 0 f simulated f hardware

0 KEEP KEEP 0 ZRO ZRO Detected
0 KEEP FLIP 0 ZRO NOT Detected
0 FLIP KEEP 0 ZRO BUF Detected
0 FLIP FLIP 0 ZRO ONE Detected
0 KEEP FLIP 1 NOT ZRO Detected
0 KEEP KEEP 1 NOT NOT Detected
0 FLIP FLIP 1 NOT BUF Detected
0 FLIP KEEP 1 NOT ONE Detected
1 FLIP KEEP 0 BUF ZRO Detected
1 FLIP FLIP 0 BUF NOT Detected
1 KEEP KEEP 0 BUF BUF Detected
1 KEEP FLIP 0 BUF ONE Detected
1 FLIP FLIP 1 ONE ZRO Detected
1 FLIP KEEP 1 ONE NOT Detected
1 KEEP FLIP 1 ONE BUF Detected
1 FLIP KEEP 1 ONE ONE Detected

The runtimes of our flow to detect the stealthy malicious LUT Trojan

60
Chapter 3. Proof-Carrying Hardware Versus the Bitstream-level

Hardware Trojans in FPGAs

(example design from [26]) at both the parties are discussed in Table 3.4.
Column one of the table shows the infected designs with an inactive and
active Trojan. In a first experiment, the infected design with an inactive
Trojan, i.e., the malicious LUT is not triggered, is given to the producer
flow which takes ≈ 2.317 seconds for the complete design synthesis and
verification where the time taken to generate the miter and the proof val-
idation is ≈ 0.088 and ≈ 0.001 seconds respectively. Since the Trojan is
inactive thus the design is functionally the same which would lead to the
unsatisfiable miter function and the proof is created and sent to the con-
sumer alongside the bitstream. The consumer then regenerates the miter
and a proof trace from the reversed bitstream for the comparison with
the received proof trace which takes only ≈ 0.853 seconds along with
the ≈ 0.084 seconds for miter generation and ≈ 0.011 seconds for proof
checking. The success of both the proof checks shows that the infection of
the design is harmless at this stage. The results from the first row on the
table show a significant amount of workload shift from a consumer to a
producer.

In a second experiment, the design in which the malicious LUT Trojan
is activated using the compromised PnR tool is developed at the producer
site. The runtime for synthesizing the design is ≈ 1.995 seconds, whereas
the miter generation and proof check take ≈ 0.075 and ≈ 0.001 seconds
respectively. In this case, the activation of Trojan would change the func-
tional behavior of the circuit therefore the miter generation step would
result in a satisfiable miter function which would prevent the producer
to send the Trojan-infected design to the consumer. Columns two, four,
and six of the table show that the consumer flow, in this case, would be
irrelevant/not applicable. It can also be observed from Table 3.4 that the
Trojan can be detected by any of the parties in a short amount of time
which might be fast in comparison to the side-channel analysis technique
based on the EM [97] and thermal scans [87] where the additional time is
required to collect and process the EM and thermal signals.

Table 3.4: Verification runtimes to detect malicious LUT hardware Trojan.
Averages of 5 runs.

Infected design [26]

Runtimes [s]
Prod.a Cons.b Miter gen.c Proof check

Prod. Cons. Prod. Cons.
Trojan inactive 2.317 0.853 0.078 0.084 0.001 0.011
Trojan active 1.995 – 0.075 – 0.001 –
a Producer
b Consumer
c Miter generation

3.7. Discussion 61

3.7 Discussion

If we bring up the discussion about the hardware Trojans inserted during
the FPGA design-flow, that would refer all the Trojans inserted at RTL to
bitstream level. Although the threat model at different levels could be
different, the purpose of an adversary might always be to configure an
FPGA device with the intended malicious design. However, the design-
time verification in FPGAs makes it difficult for an attacker to preserve
the extra logic in the original design until configuration. Nonetheless,
design-time verification can be eluded using the compromised FPGA de-
sign flow attack discussed in Section 3.1. It can be concluded that func-
tional simulation at the RTL or gate level is not sufficient for the FP-
GA/bitstream security, as the Trojan could be injected in higher levels
of the design flow which remain inactive to thwart functional verification
and become active only at the last stage of the design flow. As there is no
standard verification mechanism at lower levels in the design hierarchy,
i.e., bitstream-level, there are chances that the adversary may bring out
the attack by configuring the FPGA with a malicious bitstream.

Our bitstream-level PCH approach provides an opportunity for the
verification engineers to successfully validate the FPGA designs against
hardware Trojans that are either inserted directly in the bitstream or the
higher levels of the design hierarchy and evaded the earlier design-time
verification. Our technique for detecting the bitstream-level Trojans, such
as stealthy malicious LUT Trojan, is effective yet scalable for the larger cir-
cuits containing Trojan-based on a two-stage infection mechanism. Our
approach depends on the scalability of PCH technology presented in [85].
Since the presented PCH approach shifts the burden of verification from
the consumer to the producer, therefore, allows the end-user to verify
the bitstream quickly. On the other hand, if we discuss the limitations of
our approach, we assume that in its current state, it is challenging for the
bitstream-level proof-carrying hardware (PCH) to detect the Trojans that
are not functional, i.e., a Trojan that provides the covert channel to leak
some secret information from a circuit. Even, for the functional Trojans,
if the malicious activation does not happen in the bitstream but in actual
hardware, the proofs generated by the PCH would not be valid ones.

3.8 Chapter Conclusion

As already concluded by Krieg et al. [26], bitstream formats have to
be publicly available to enable users to reveal and protect themselves

62
Chapter 3. Proof-Carrying Hardware Versus the Bitstream-level

Hardware Trojans in FPGAs

against malicious bitstream manipulations. Unfortunately, for commer-
cial EDA tools this is usually not the case. In this chapter, we have demon-
strated that bitstream-level verification using proof-carrying hardware is
indeed able to reveal the stealthy two-stage hardware Trojan attack pre-
sented in [26], which is undetectable using regular state-of-the-art pre-
configuration detection approaches. The power of PCH ensures that even
in a two-party contract work scenario, where the producer’s tools are
compromised, the consumer is protected against the modifications. We
thus underline the claim by Krieg et al. that their attack is only possible
because of the closed nature of commercial bitstream formats, and con-
clude that in a world with open bitstream formats the problem would not
only be solvable but is indeed already solved. Not only for the one party
version described in [26] (consumer + attacker), but also in the two party
version defined by PCH (consumer, producer + attacker), which is a com-
mon case in today’s market, where designers build their designs from a
multitude of third-party IP cores.

However, irrespective of being a powerful verification tool, our pro-
posed PCH flow would only detect the Trojans which change the func-
tionality of the circuit upon activation, e.g., the Trojan in malicious LUT
attack. Skillfully designed non-functional Trojans, e.g., the Trojan that
provides a covert channel upon activation to leak secret information or
the Trojans that are externally triggered to change the behavior of de-
vice parameters, may even avoid our proposed bitstream-level verifica-
tion. To show the ineffectiveness of a bitstream-level verification for a
non-functional key leakage Trojan, we propose a novel malicious routing-
based Trojan in Chapter 4, which successfully leaks the secret key through
a covert channel (e.g., I/O pin).

63

Chapter 4

Post-Configuration Activation
of Hardware Trojans in FPGAs

4.1 Overview and Threat Model 64
4.2 Methodology . 65

4.2.1 Overview of Malicious Design Flow Attack 65
4.2.2 Flow of Information Between the Compromised Tools 70

4.3 Experimental Validation . 71
4.3.1 Experimental Setup 71
4.3.2 Overview of an AES Core 71
4.3.3 Secret Key Leakage of an AES Core 72
4.3.4 Trojan Impact . 75
4.3.5 Demonstration Example 78

4.4 Discussion . 80
4.5 Chapter Conclusion . 81

We will begin this chapter with a brief overview of the attack and the
threat model that is considered to realize the attack in Section 4.1, the
detailed methodology concerning the malicious insertion, routing, and
activation of a Trojan along with the communication between compro-
mised tools in a design flow is described in Section 4.2, the experimental
setup and the successful key-leakage from an AES-128 core are explained
in Section 4.3 followed by the discussion on the attack with respect to
its applicability and detectability in Section 4.4, finally, we conclude the
chapter in Section 4.5.

The worked described in this chapter was presented in Design, Au-
tomation and Test in Europe (DATE) conference in 2021 and the findings
are published in [49].

64
Chapter 4. Post-Configuration Activation of Hardware Trojans in

FPGAs

4.1 Overview and Threat Model

In this section we provide and overview of a propose a novel attack that
exploits malicious routing of the inserted Trojan circuit to attain a dor-
mant state even in the generated and transmitted bitstream, thus circum-
vents bitstream-level verification techniques described in Chapter 3. The
Trojan is inserted in the second stage of the field-programmable gate ar-
ray (FPGA) design flow, i.e., when the design’s netlist is read by a ma-
licious placement-and-routing (PnR) and is activated only in the FPGA
device itself. The novelty of our attack lies in the fact that the routing
tool disconnects the Trojan circuit from the original circuit before writing
the bitstream and the FPGA programming tool again connects the Trojan
circuit with the original circuit, thus activating the Trojan during/post
configuration. Consequently circumventing bitstream-level verification
which would lead to false negatives to the certificates generated by PCH,
as the functionality of the circuit in the a bitstream is not changed but
only the behavior in the step after that.

Trojan insertion by the design house and a third-party intellectual
property (IP) provider are considered as major threats for FPGA system-
on-chip (SoC), however, in our attack model we consider that both the
design house and the IP vendor are trustworthy, but the EDA tools used
by the design house are compromised by an attack; either by reverse-
engineering the binaries of commercial electronic design automation
(EDA) tools to insert malicious code, or via an insider in the EDA tools
provider who maliciously swaps the legitimate binaries with malignant
ones used for compilation by the design houses. We consider the foundry
as a trusted entity in our threat model, since even though some FPGA
vendors are fabless and outsource device fabrication to a third party [47],
attacking the FPGA fabric itself is less effective than for application-
specific integrated circuits (ASICs) as the design to be implemented is
loaded after the device is fully tested and shipped. We follow the threat
scenario presented in [26], where the malicious code is inserted into an
open-source tool that is then compiled to a binary version which in turn
is used to intrude on the design house, ideally over the Internet, in order
to replace the legitimate binary of the tool in the design house with the
malicious one to infect multiple machines of the design house in one go.
However, the compromised EDA tools are not only limited to synthesis
and place-and-route tools, but the tool that programs the FPGA could
also be subverted to activate a Trojan inserted in the earlier stages.

Figure 4.1 highlights the entities involved for the development of the

4.2. Methodology 65

hardware module specified by the consumer. It can be seen that the de-
sign house itself is trusted but the EDA tools used by the design house
are subverted by attacker, as explained above, to gain control over the de-
vice when it is configured without being noticed by the producer or the
consumer. In our threat model, the place-and-route tool and the FPGA

Design

Synthesis

FPGA Place

& Route

Configuration

File

FPGA Design Flow

Design

Specification

ProducerConsumer

Design House

Place & route

tool
Synthesis tool

Bitstream

generation tool

Programming

tool (FPGA)

Consumer

1010101010101010101010

1010101010101010101111

1110010001010101111001

1000001000101010100110

EDA Tools

Pristine Compromised Trojan inactive Trojan active

Figure 4.1: Threat model: Compromised EDA tools.

programming tool are compromised to inject and activate the Trojan, and
thus their binaries are marked as a red dotted box in the compromised
EDA tool-chain in Figure 4.1.

We would also like to stress that our attack only activates the Trojan if
the FPGA programming tool used by the consumer to program the FPGA
device is compromised along with the place-and-route tool used by the
design house and the configuration bitstream is either un-encrypted or
the programming tool is capable to decrypt it, otherwise, the output of
the infected tools will behave similarly as the original ones when the
FPGA is programmed with the genuine programming tool. In this way,
the attacker can conduct multiple targeted attacks by infecting only the
programming tools of intended targets, which implies that the inserted
Trojan will remain inert and therefore virtually undetectable in most of
the customers’ designs, thus there are fewer chances of the attack being
revealed by chance.

4.2 Methodology

4.2.1 Overview of Malicious Design Flow Attack

The general design flow of our attack for malicious insertion, routing,
and activation is shown in Figure 4.2. The attack works in two phases,
i.e., in the first phase the Trojan circuit is injected, attached and then dis-
connected at one of the FPGA’s programmable interconnect points (PIPs)

66
Chapter 4. Post-Configuration Activation of Hardware Trojans in

FPGAs

by the PnR tool. We call this temporary breaking point Trojan PIP (TPIP).
This step is marked with a dotted red box in Figure 4.2, to indicate that
it is modified. In the second phase, i.e., the last stage in the design flow,
the TPIP is activated again by the modified FPGA programming tool to
connect the Trojan circuit to the original circuit.

*.v

Synthesis (ICE40)

Synthesis tool (Yosys)

.blif
Place-and-route tool

(Arachne-pnr)

Bitstream generation

tool (IcePack)

Bitstream

FPGA programming

tool (IceProg)

search_unconnected_PIP_bit(s)

FPGA

I/O BANK 0

I/
O

 B
A

N
K

 3

I/O
 B

A
N

K
 1

I/O BANK 2

Malicious activation

Malicious insertion & routing

add_trojan_gates

place_and_route

unconnect_PIP_bit(s)

F
u
n
ct

io
n
al

 s
im

u
la

ti
o
n

B
it

st
re

am
 v

er
if

ic
at

io
n

flip_PIP_bit(s)

.ascii

.bin

HDL design

Pristine

Compromised

Figure 4.2: Compromised FPGA design flow for malicious insertion and
activation of a Trojan.

Each of the stages of the design flow is explained in the following:
The first step in our design flow, the synthesis of an hardware description
language (HDL) design by a synthesis tool, is not infected, and therefore
the generated netlist remains unchanged compared to the design flow us-
ing pristine EDA tools. The next step of the design flow is compromised
such that the Trojan circuitry is added to the synthesized netlist when it
is read by the PnR tool, e.g., barrier gates who route secret information to
primary outputs, but prevent it from leaking until the Trojan is activated.
After placement and routing, the connection of the Trojan to the original
circuit is removed by flipping the TPIP configuration bit to “0” so that
the output at this stage behaves functionally equivalent to the original
design, thus avoiding detection by any functional simulation and verifi-
cation methods.

Note that in contrast to compromised tools targeting the register-
transfer level (RTL), the benefit of the post-synthesis Trojan insertion is
that it still works if an IP core provided by a third-party to a design house

4.2. Methodology 67

is a gate-level netlist. Even if the design is already a verified synthe-
sized netlist, it can be infected in the next step. Furthermore, machine
learning (ML) approaches based on reverse-engineering the bitstream to
obtain a gate-level netlist for feature extraction mainly consider trigger
nets [88–90], and thus cannot detect our Trojan circuit for two reasons: a)
The information-leaking version is trigger-less, and b) in the general case,
the payload of the Trojan is unconnected from its trigger in the bitstream,
hence a reverse-engineered netlist would result in false negatives.

In the next step, a bitstream configuration file is generated by the un-
modified bitstream generation tool which carries the Trojan payload that
stays unconnected at this stage, hence evading any bitstream verification
mechanism such as PCH. In the last stage of the FPGA design flow, when
the bitstream is loaded onto the FPGA by the programming tool, the con-
nection of the Trojan to the original circuit is re-established by flipping
the TPIP configuration bit again to “1”.

The complete flow of the proposed Trojan insertion methodology is
described in Algorithm 1. Only the steps that are compromised, i.e., steps
2 and 4 that are marked as red boxes in Figure 4.2, are depicted in the al-
gorithm. Since the Trojan is inserted after the synthesis step, therefore the
malicious routing algorithm is initiated during the placement and routing
step. The algorithm takes the netlist (.blif) file as an input together with
the constraints file (.pcf). The output of the algorithm is a Trojan inserted
bitstream that is activated only when the FPGA is being programmed. To
exemplify, we target a netlist of an advanced encryption standard (AES)
module that has to be modified with compromised tools to leak the secret
key. The algorithm first initiates a validation step to verify if the given
netlist is comprised of the AES module. If the netlist is valid, the algo-
rithm looks for the output registers, i.e, the registers located just before
the primary output, and connects a multiplexer (MUX) to each of the out-
put registers in each iteration. This step is marked as the Trojan insertion
step in Algorithm 1 line 2. The enable line of MUX is also appended in
the inputs list of the circuit (.model in a blif format). In our attack, only
the 8-bits of key are to be leaked, thus, as long as the condition i<8 is true,
where i is the iteration count for inserted MUXes, the barrier gates com-
prising of 2× 1 MUX are connected to the output registers along with the
desired key bits to be leaked.

Next, when reading the constraints file, the algorithm searches for an
unused input/output (I/O) pin of the device and assigns it to the en-
able line of MUX. The design with added barrier gates is then placed and
routed by the PnR tool. Only when the PnR tool writes the design as a

68
Chapter 4. Post-Configuration Activation of Hardware Trojans in

FPGAs

Algorithm 1: Malicious routing algorithm
Input: { DO = Original design (.blif), C = Constraints file (.pcf) }
Output: { DT = Trojan inserted design }

1 if (aes_128 in DO) then
// *Trojan insertion Step* //

2 Identify output registers
3 for i = 0; i < 8; i = i + 1 do
4 barr_gate← 2× 1 MUX as LUT
5 Connect barr_gate to ith output register
6 Update netlist
7 end
8 Append enable line of barrier_gate(s) to inputs
9 Read constraints file (.pc f)

10 if (unsued I/O pin in constraints file) then
11 Assign enable line to the I/O pin
12 end
13 Update constraints file with enable line

// *Trojan Disconnection Step* //

14 Search (T)PIP bit(s) connecting enable line to the I/O pin
15 if TPIP_bit(s) then
16 Flip TPIP_bit(s)
17 end
18 Generate text_ f ile from placed and routed design
19 bitstream_ f ile← Generate bitstream file(text_ f ile)

// *Trojan Activation Step* //

20 if program_mode then
21 Search flipped TPIPbit(s)
22 if TPIP_bit(s) then
23 flip TPIP_bit(s)
24 end
25 end
26 Update bitstream_ f ile with connected TPIPbit(s)
27 end
28 return DT ← bitstream_ f ile

4.2. Methodology 69

text file, the algorithm delves for the PIP bit(s) (the TPIP) that connects
the enable line to the I/O pin and flips it, i.e., Trojan disconnection step
in Algorithm 1 line 14. The output of the PnR tool, e.g., text file, will have
a Trojan but disconnected at this stage which is given to the bitstream
generation tool to generate a bitstream configuration file. In the last step,
i.e., the Trojan activation step in Algorithm 1 line 19, when the bitstream
is available to program the FPGA, the algorithm searches for the flipped
TPIP bit(s), and overturns it again to re-establish the connection between
the enable line of barrier gates and I/O pin. Once, the connection is es-
tablished, the 8-bit key can be leaked by the attacker using the specified
I/O pin.

For functional Trojans, the circuit diagram of a simple design with
inserted Trojan trigger and payload shown in Figure 4.3 describes the in-
ternal schematic view of the design in a bitstream and the FPGA to better
understand the attack. The switch between the trigger and the payload
refers to the TPIP used to disconnect and connect the trigger, thus render-
ing the payload inactive and the Trojan dormant. Though our malicious
flow is generic and any kind of Trojans can be implemented, an intelli-
gent attacker would be interested to get higher level attacks and much
control to the design such as secret key leakage from a cryptographic cir-
cuit without external resources.

In FPGA

PO
PI

a

b

y y`

Original circuit

Trojan payload

Trigger

In bitstream

PO
PI

a

b

y y`

Original circuit

Trojan payload

Trigger

TPIP TPIP

In FPGA

PO
PI

a

b

y y`

Original circuit

Trojan payload

Trigger

In bitstream

PO
PI

a

b

y y`

Original circuit

Trojan payload

Trigger

TPIP TPIP

Figure 4.3: An exemplary circuit schematic of an infected design in a bit-
stream and FPGA.

This can be done if the enable pin of the barrier gates is maliciously
routed to one of the unused I/O pins and the connection through the
TPIP is removed when the tool writes the output into a bitstream. The
information of the unused I/O pin can be obtained by scanning the con-
straints file, therefore making this pin available for activating the Trojan
in the final stage. After the connection of the I/O pin is re-established by
the modified programming tool and the FPGA is configured, the attacker
can apply voltage to the pin to activate the Trojan circuit which leaks the
key through the output pins used by the original design instead of cipher

70
Chapter 4. Post-Configuration Activation of Hardware Trojans in

FPGAs

text. The key leakage of an AES core by a Trojan payload is explained in
Section 4.3.3.

4.2.2 Flow of Information Between the Compromised Tools

A prerequisite for a successful attack is that the FPGA programming tool
knows the location of the TPIP in the infected design. The attacker there-
fore has to communicate this location from the tool that chooses it to the
tool where it is used, requiring them to create a hidden communication
channel between the design house and the consumer site. The attacker
can realize this communication explicitly, i.e., over a new channel, or im-
plicitly, i.e., by hiding the information among the regularly transmitted
data. With explicit communication, the TPIP location is decoupled from
the bitstream, and hence needs to be related within the programming
tool in order to apply the correct TPIP flip for the loaded design. De-
pending on whether the attacker wants to target specific individual de-
signs created at the design house, or rather infect all designs originating
from there, they have to either transmit one location or create and query
a database that maps design identifiers (e.g., design hashes) to TPIP lo-
cations. The former would require the attacker to closely monitor the
designs that should be written in the near future, which would likely ne-
cessitate the continued presence of an agent on-premises, who could then
also be leveraged to exfiltrate the information via human communication.
The widespread infection of many designs, on the other hand, would gen-
erate more traffic over the hidden channels, increasing the chance of the
channel being detected by the victims. However, to scale such an attack
to multiple design houses and consumers, an attacker could then lever-
age existing botnet solutions to create a command-and-control infrastruc-
ture akin to modern software Trojans, resulting in exactly the same ad-
vantages and disadvantages as in the software world, i.e., fast and easy
scalability, high degree of automation and flexibility, versus vulnerabil-
ity to automated, pattern-based communication-detection methods and
a complete failure of the attack in a high-security environment, where the
programming tool is not connected to the internet and thus cannot query
TPIP locations.

Using implicit communication instead, the attacker can only rely on
the one communication that the victims cannot avoid, which is the trans-
mission of the bitstream. By reverse engineering the bitstream format
used by both parties, the attacker could leverage unused portions of the
stream to hide the TPIP location in plain sight, e.g., pockets of legacy in-
formation that are no longer in use for modern devices, or information

4.3. Experimental Validation 71

that follow the end-of-stream and which would thus be ignored by the
regular tools. This form of communication implicitly matches the TPIP
location to a design and therefore does not require any method of design
identification afterwards, but in order for the attacker to sustain such an
attack, they would need to continue to reverse engineer bitstream formats
and update their transmission code every time that a format is updated
or the involved parties switch to a new format. However, since the attack
itself also relies on modified binaries within the EDA suite, the attacker
would have to update the compromised tools anyway in these cases.

4.3 Experimental Validation

4.3.1 Experimental Setup

We perform our experiments on a machine having an Intel Core i7-2600
CPU @ 3.40 GHz processor that includes eight cores with 8 GiB RAM
and running a 64-bit Ubuntu 20.04.2 LTS operating system (OS) on it. We
have installed the original versions of the EDA tools and their dependen-
cies together with their source files from the Icestorm project [27] on our
machine. The original EDA tools are used to verify the efficacy of the at-
tack performed by the infected tool flow. Furthermore, we have installed
an iCEcube2 tool for power estimation. We use the iCE40HX-1K FPGA
device, which has 1280 logic elements (LUT and FF) with five user LEDs,
provided by Lattice semiconductor for evaluation.

4.3.2 Overview of an AES Core

The advanced encryption standard (AES) is a symmetric-key encryption
algorithm used to encrypt the input data to make it secure during trans-
mission and works efficiently in both hardware and software. The AES
has different encryption packages (such as keys with 128, 192, and 256
bits), and a fixed block size of 128 bits, where the size of the key used to
convert the plaintext into the ciphertext determine the number of trans-
formation rounds, which are 10 for 128-bit keys, 12 for 192-bits keys, and
in case of 256-bit keys, the total number of rounds are 14. The number
of rounds enhances the level of difficulty to break the encryption using,
for example, brute-force attacks [91]. The AES core has been getting more
advanced with every next iteration, respecting its architecture with dat-
apath ranging from 8-bits to 32-bits, besides supporting 128-bit, 192-bit,
and 256-bit keys, to make compact and low power encryption solutions
in modern-day devices. Recently, a compact variant of an AES core with

72
Chapter 4. Post-Configuration Activation of Hardware Trojans in

FPGAs

Figure 4.4: The top-level architecture of an 8-bit datapath AES-128 core.
Taken from [92].

8-bit datapath and capable of encrypting the block of 128 bits of keys has
been presented in [92], which supports the execution of the operation of
AES rounds in parallel, in contrast to sequential operations, ultimately
decreasing the cycle count and increasing the efficiency. The top-level ar-
chitectural view of an AES with an 8-bit datapath, (i.e., 8 bits data width
of all the registers and connections) is shown in Figure 4.4, which con-
sists of the following components to perform the specific functions: Byte
permutation unit for ShiftRows operation after every cipher round, Mix-
Columns multiplier for matrix multiplication and AddRoundKey opera-
tion, S-box for key-substitution, Key expansion unit for expansion of key
by pre-calculating the RoundKeys and to store them, and a Parallel-to-
serial converter. Further detail about the working of the complete AES
encryption process can be found in [92]. We will employ the Verilog code
of an AES-128 core with an 8-bit datapath provided in [92, 93] for the as-
sessment of our technique in the context of this thesis, which is the topic
of the next section.

4.3.3 Secret Key Leakage of an AES Core

As a proof of concept, we demonstrate our attack by implementing an
AES core1 with an 8-bit data interface from [93] to an iCE40HX-1K de-
vice, iCEstick Evaluation Kit provided by Lattice semiconductor [84]. We
use the open-source design flow from the project IceStorm [27] for iCE40
FPGAs, which consists of the Yosys open synthesis suite [94] for hardware
synthesis, Arachne-pnr [86] for placement and routing, IcePack and IceProg

1Note that we will use the terms AES Core, AES module and AES design interchange-
ably in this thesis.

4.3. Experimental Validation 73

for bitstream generation and programming the FPGA respectively. To cir-
cumvent verification at the gate level, we did not modify Yosys; hence the
output at this stage is a legitimate synthesized netlist (.blif) of the AES
design synthesized for iCE40 FPGAs, i.e., using synth_ice40 command.
After that when the compromised Arachne-pnr reads the netlist by invok-
ing read_blif, it inserts the Trojan circuit into the original circuit. The
commands used in our flow are given in Listing 4.1, where the commands
in rows three and five call the malicious script from the tool to infect the
design.

1 yosys -p read_verilog example.v

2 yosys -p synth_ice40 -blif example.blif

3 arachne-pnr -d 1k -o example.asc icestick.pcf example.blif

4 icepack example.asc example.bin

5 iceprog example.bin

Listing 4.1: Commands used by the malicious design flow in our exam-
ples. Line 2 and 5 show that these commands are used by the compro-

mised tools.

An example for the two-phased process of inserting and activating an
I/O-triggered key-leaking Trojan based on barrier gates into an AES core
is shown in Figure 4.5 and Figure 4.6, respectively. Figure 4.5 refers to
Phase 1 that shows the barrier gate insertion and routing of the enable
signal to an unused I/O pin, which is disconnected at a PIP, the TPIP,
while writing the design output. Our barrier gates consist of eight 2× 1
MUXes connected to the very last register before the primary output. The
inputs to each MUX is the output of the register containing cipher text,
and the secret key to be leaked. The key from any of the rounds can be

AES 128 CT

PT

8-bit

8-bit

Key
8(2X1)

 MUX
CT

8-bit
I0

I1

S

PT= Plain Text

CT= Cipher Text

Barrier gates (MUXes)

insertion, routing and

disconnection

Disconnect enable line (S)

from the PIP by flipping the

bit(s) to “0” while writing

output file

Arachne-pnr (place-and-route tool)

Phase 1

Unused I/O Pin

8-bit

AES 128 CT

PT

8-bit

8-bit

Key
8(2X1)

 MUX
CT

8-bit
I0

I1

S

PT= Plain Text

CT= Cipher Text

Barrier gates (MUXes)

insertion, routing and

disconnection

Disconnect enable line (S)

from the PIP by flipping the

bit(s) to “0” while writing

output file

Arachne-pnr (place-and-route tool)

Phase 1

Unused I/O Pin

8-bit

Figure 4.5: Phase 1: Trojan insertion and disconnection in AES core by the
compromised PnR tool.

74
Chapter 4. Post-Configuration Activation of Hardware Trojans in

FPGAs

leaked, however for the sake of simplicity, we take the key that is used
as an input to the AES module. Depending on the attacker’s intentions
the enable input “S” of the barrier gates in Figure 4.5 could be attached in
two different ways: a) A constant “1”, or b) an unused I/O pin which is
added by Arachne-pnr when it reads the constraints file, (.pcf). In the first
case, after placement and routing, the TPIP connecting the enable line to
the barrier gates is flipped when the output file is being written.

In the second case, the infected design is placed and routed making
sure that the enable line “S” of the barrier gates is routed to the newly
assigned input pin and the address of the I/O tile containing the input pin
is stored. When the routed design is being written to a text file (.ascii), the
modified write_text function is invoked in the backend, which accesses
the corresponding I/O tile and its connection to the barrier gates via the
TPIP is removed. In the architecture of the iCE40HX-1K device, each I/O
tile can have two I/O blocks, one for inputs and an other for outputs with
two local tracks. Each I/O block in a tile is connected to the other I/O or
logic blocks with the help of PIPs called vertical and horizontal spans in
the iCE40 family. To remove the connection of the enable line from the
input pin, the PIP that connects the enable signal to the I/O tile is flipped
to “0”. Likewise, when the FPGA programming tool, IceProg configures
the FPGA, the corresponding TPIP bit in the bitstream, communicated by
the design flow, is flipped again to make the connection of the enable line
to the barrier gates which is illustrated as Phase 2 in Figure 4.6.

AES 128

PT

8-bit

8-bit

Key
8(2X1)

 MUX

CT`/Key8-bit
I0

I1

S

Search the flipped bits and

connect enable line (S) to the

PIP by setting the bit(s) to “1”

Iceprog (FPGA Programming tool)

Phase 2

Unused I/O Pin

8-bit
CT

Barrier gates reconnection

for Trojan activation

AES 128

PT

8-bit

8-bit

Key
8(2X1)

 MUX

CT`/Key8-bit
I0

I1

S

Search the flipped bits and

connect enable line (S) to the

PIP by setting the bit(s) to “1”

Iceprog (FPGA Programming tool)

Phase 2

Unused I/O Pin

8-bit
CT

Barrier gates reconnection

for Trojan activation

Figure 4.6: Phase 2: Trojan re-connection and activation in AES core by
the compromised programming tool

In our example, the TPIP is located in I/O tile (10, 17), correspond-
ing to the bit at address 0× 4743 in the bitstream. Once the connection
is made, the cyclic redundancy checksum cyclic redundancy checksum
(CRC) is updated and the FPGA is configured with the infected bitstream.
Since one of the inputs to the barrier gates is a cipher text bit and the other

4.3. Experimental Validation 75

is a secret key bit, the barrier gates act as buffers that pass the cipher text
to the outputs when the enable line is disconnected or low. In the first
case, the Trojan circuit will be activated and start leaking the key straight
away, and can hence be accessed remotely or locally by the attacker. How-
ever, in the second case, the attacker needs physical access to the device
to activate the Trojan circuit by giving voltage to the specified I/O pin
used by the malicious tools, thus triggering the key leakage.

Although physical access is required, the attacker, in this case, has
more control over the device, i.e., switching between the original circuit
and the Trojan circuit using an input pin to leak the secret key. There-
fore, the attack is more difficult to be revealed in the field as compared to
the first case where the output of the implemented design will always be
a malicious one. Nevertheless, in both cases, we have successfully per-
formed the attack to leak the 8-bit secret key in our example. In order to
illustrate, we have used the five available LED’s on the device and con-
nected three external LED’s to read out the leaked key byte.

4.3.4 Trojan Impact

One of the important aspects of a Trojan circuit that underpins a trigger
to remain stealthy is a low switching activity. The attacker intends to
hide a Trojan into the areas where the transition probability of a circuit is
considerably low, thereby preventing the Trojan to be detected during the
design-time testing. Whereas, the defender’s goal is to monitor the rarely
triggered conditions by applying advanced test patterns; marking them
as malicious and removing them, or increasing the switching activity of
the circuit to activate even the smaller size Trojans [95]. As our Trojan is
inserted after the synthesis step and also remains unconnected during the
rest of the design flow, thus will have no impact on the switching activity
of the design, hence cannot be caught by monitoring the rarely triggered
nets or by increasing the switching activity of the circuit.

Side-channel analysis methods are usually effective for larger designs,
thus to remain undetectable and to escape side-channel analysis tech-
niques, a Trojan circuit has to be small enough, causing a minimum im-
pact on the area, power, and delay parameters. In order to evaluate the
impact of our Trojan on these parameters, we acquire the resource uti-
lization report for original AES design and the malicious design using
the command icebox_stat from IceBox tool within the project IceStorm.

Table 4.1 highlights the resource utilization of an original and ma-
licious AES design implemented on an iCE40-HX1K device. The device

76
Chapter 4. Post-Configuration Activation of Hardware Trojans in

FPGAs

Table 4.1: Resource utilization of AES design in iCE40-HX1K

Resource name
Utilized by AES design

Available Original Malicious
of LUTs (4-input) 1280 543 551
of FFs 1280 319 319

consists of 1, 280× 4-input LUTs for user design implementation together
with the 64KB of an embedded random access memory (RAM). Addition-
ally, 16 general-purpose input/output (GPI/O) pins and 5 user-LEDs are
available for design analysis of different inputs and outputs. It can be
observed from the Table 4.1 that the difference between the utilization of
LUTs, and the flip-flops (FFs) in both designs is significantly low which
proves that our Trojan circuit is small in contrast to 49 gates in [57] and
14 LUTs in [96]. The number of LUTs used by the original design is 543
out of 1280 available, whereas the number of LUTs used by the malicious
design is 551 with a difference (δA) of only 8 LUTs, that is ≈ 1.4% of the
total LUTs used by the original AES design, also depicted in Figure 4.7.

As the size of the Trojan decreases, the detection probability also de-
creases, e.g., the false-negative rate of the Trojan circuit, of size 1.7% of
the original circuit, climbs from 5% to 17% for a Trojan size of 1% in [97]
which is very much closer to the size of our Trojan circuit. Moreover, due
to compatibility grounds, we chose to implement a smaller compact ver-
sion of AES, however, for standard AES design, leaking 8 bits of a secret
key using only 8 LUTs would have further low detection probability. (δA)
is calculated by using the equation (4.1), written as follows:

δA =
AreaMD − AreaOD

AreaOD
∗ 100 (4.1)

Where, AreaOD corresponds to the area utilized by the original design
and AreaMD is the area utilized by the malicious design which is calcu-
lated by using equation (4.2), written as follows:

Area(%) =
No. o f LUTs used

Total available LUTs
∗ 100 (4.2)

Note that we calculate the area in terms of the number of LUTs. The
Trojan does not contain any register element, hence, the flip-flops (FFs)
utilization is unchanged in a malicious design. Moreover, our Trojan cir-
cuit is disconnected in a bitstream, therefore, it will have no impact on
the power consumption if the placed-and-routed design is simulated to
obtain the power traces for verification purposes. Furthermore, our Tro-
jan is only triggered when the input is applied to the specific pin, which

4.3. Experimental Validation 77

is hidden from the user and only the attacker knows about it.
So, the runtime Trojan detection techniques relying on Electromag-

netic (EM) and physical side channels [97], exploiting the fact that the
Trojan is already triggered, may not be able to distinguish between the
power traces of the original design and the compromised design. Also,
considering the circumstances for the larger designs, it would not be vi-
able for the user to verify all the I/O pins for Trojan activation. Similarly,
there is low chance that a user may accidentally apply voltage to the pin
which has not even used in the actual design, to activate the Trojan. There
may be a slight increase in the power consumption due to the addition
of 8 LUTs, yet lower in comparison to [57, 96], where the Trojan circuit
inserted in AES-128 design contains 49 gates and 14 LUTs, respectively,
which should be negligible considering the process variations and the en-
vironmental noise. Nevertheless, for a fair comparison, we first measure
the power consumption for the original AES design using the power es-
timator tool within the iCEcube2 design software for Lattice FPGAs [98].
Next, we implement a compromised design and use the power estima-
tor tool to measure the power consumption. The bars at the bottom of

10.448

19.97

43.047

10.246

19.82

42.422

D
y
n
am

ic

P
o
w

er
 (

m
W

)
D

el
ay

 (
n

s)
A

re
a

(L
U

T
 %

) Malicious Design Original Design

δP=1.96%

δD=0.76%

δA=1.45%

Figure 4.7: Power consumption, delay and area utilization in original and
malicious AES design

Figure 4.7 show the dynamic power consumption in nano-Watt (nW) by
the original and malicious AES designs. It can be seen that there is only
a difference (δP) of ≈ 1.96% in power consumption by the original and
compromised designs.

78
Chapter 4. Post-Configuration Activation of Hardware Trojans in

FPGAs

Where, (δP) is obtained by applying equation (4.3), which is written
as follows:

δP =
PowerMD − PowerOD

PowerOD
∗ 100 (4.3)

While PowerMD and PowerOD refer to the dynamic power consumption
in malicious and original design accordingly. Also, the dynamic power
consumption of a circuit depends on the switching activity of the circuit
with the clock frequency which in our case is set to 50 MHz. It is also
important to note that if the barrier gates are not inserted on the critical
path, it will not have any impact on the delay of the circuit. To avoid the
insertion of the barrier gates on the critical path, the information of critical
paths can be acquired before inserting the Trojan gates. However, in our
case even if the barrier gate, i.e., one LUT is inserted on the critical path,
that will have minimum effect on the timing of the circuit that could easily
evade the delay-based detection techniques [99]. Even so, for the purpose
of clarification, we insert a barrier gate without avoiding the critical path
and measure the difference (δD) in delays of both the circuits, estimated
in nano-second (ns) by the IceTime; a timing analysis tool within IceStorm,
using the equation (4.4) which is given as follows:

δD =
DelayMD − DelayOD

DelayOD
∗ 100 (4.4)

The total path delay in the original and malicious design is 19.82ns and
19.97ns, respectively, with the increase of only 0.15ns delay. The bars in
the middle in Figure 4.7 enlighten the percentage difference (δD) that is
≈ 0.76%.

4.3.5 Demonstration Example

To assess that our barrier gates inserted and connected properly, we have
synthesized the example design given in Listing 4.2 with Yosys and then
gave it to the compromised PnR tool. We have read out the example
design in a text file from Arachne-pnr before enabling the malicious back-
end script that is used to disconnect the TPIP. The left part of Figure 4.8
shows this design as visualized by the ICE40 layout viewer [100].

Next, we enabled the back-end script and compiled the tool to a fi-
nal compromised version. Using a synthesized netlist of an AND-gate
as an example design for the compromised PnR tool, we have obtained
the design depicted on the right-hand side of Figure 4.8, confirming the
successful removal of the enable line after the TPIP has been flipped. To
confirm the disconnection of the enable line from PIP, the text file is again

4.3. Experimental Validation 79

B
ar

ri
er

 g
at

es
 i

n
se

rt
ed

an
d
 c

o
n

n
ec

te
d

E
n
ab

le
 l

in
e

co
n
n
ec

te
d

 t
o

u
n
u
se

d
 I

/O
 p

in

E
n
ab

le
 l

in
e

d
is

co
n

n
ec

te
d

fr
o
m

P
IP

L
ay

o
u
t

b
ef

o
re

d
is

co
n
n

ec
ti

n
g

en
ab

le
 l

in
e

L
ay

o
u
t

af
te

r

d
is

co
n

n
ec

ti
n
g

en
ab

le
 l

in
e

Fi
gu

re
4.

8:
IC

E4
0

La
yo

ut
V

ie
w

er
to

ev
al

ua
te

th
e

ba
rr

ie
r

ga
te

s
in

se
rt

io
n

an
d

di
sc

on
ne

ct
io

n
by

a
co

m
pr

om
is

ed
Pn

R
to

ol
in

A
N

D
-g

at
e

de
si

gn

80
Chapter 4. Post-Configuration Activation of Hardware Trojans in

FPGAs

given to the ICE40 layout viewer, see the right part of Figure 4.8. After
this successful subversion of the PnR tool, we have modified the pro-
gramming tool and then have programmed the FPGA with it to see the
output of the design. We have verified the output with both, the original
version of the programming tool and the compromised version, where
the output of the former is not affected when the enable line is high while
the latter then leaks the input “b” at the outputs.

1 module top (input a, b, output y);

2 assign y = a & b;

3 endmodule

Listing 4.2: Original Verilog code for AND-gate example

4.4 Discussion

When we talk about Trojans in FPGAs, the common question discussed
is the way Trojans are inserted into the design such that it cannot be de-
tected by conventional testing methods. In this regard, we present a hard-
ware Trojan attack employing compromised EDA tool flow in which the
Trojan is inserted into a design during the place-and-route step, remains
dormant in the bitstream and is activated while loading the bitstream
configuration file into the FPGA. Note that we use an open-source tool
flow to present our attack, however, in principle, the attack would work
for the commercial tools provided by other FPGA vendors, e.g., Xilinx, if
the bitstream format is known and there is access to the code of tools. Our
attack is versatile and can be implemented according to the attacker’s de-
sire and suited scenario, for example, the attack presented in [26] can also
use our compromised tool flow to hide the malicious LUT Trojan even
in the bitstream to evade bitstream-level detection mechanisms. Also, in
literature, a lot of effort has been given to design a Trojan which could
assist in leaking the secret key through side channels [24, 57, 96]. This
requires huge amount of power traces to be computed to model the at-
tack and therefore it may take days to correctly leak the secret key. Ad-
ditionally an expensive setup such as digital oscilloscope is required for
leakage assessment from the device. However, our attack is subtle yet
effective in providing the attacker with a means to leak the secret key
directly through the primary outputs at runtime, i.e., opening a covert
channel. On the other hand, if we discuss the detection of sneaky Trojans,
a trigger-less implementation of a Trojan in our attack renders pre-and-
post-synthesis detection mechanisms based on static or dynamic trigger

4.5. Chapter Conclusion 81

characteristic ineffective [12–14]. Power side channel analysis techniques
inspect and visualize the power traces obtained from the design running
on the device with the golden one to detect the Trojan. In our key leak-
age example no logic is implemented as trigger, and the payload consists
of only a few gates, i.e., eight 4× 1 LUTs, in contrast to 49 gates in [57],
hence the extra power consumption by an infected design should have
negligible effect to the noise power levels as compared to the original de-
sign thus potentially evades the most of the detection techniques relying
of side-channel analysis [97, 101–103].

To reveal our attack, post-configuration methods such as the read-
back feature of the FPGA, if enabled, can be used at the consumer side to
read out the bitstream and apply verification mechanisms such as func-
tional equivalence checking using PCH. However, ReadBack command is
disabled in FPGAs to avoid the unauthorized readout of a design [25] for
security reasons.

4.5 Chapter Conclusion

In this chapter, we have presented a novel attack that is based on the mali-
cious routing of an inserted Trojan circuit to retain a dormant state even in
the bitstream for a reconfigurable hardware device. For the information-
leaking variant, the inserted Trojan circuit in our approach does not even
need any trigger logic as the payload is maliciously routed to the pri-
mary outputs. In all variants, the last programmable interconnect point
(PIP) connecting the payload to a trigger or an enable signal is removed
during place-and-route and is established again only at the very last step
when the FPGA is being programmed, thus activating the Trojan circuit.
We have demonstrated our attack on an 8-bit datapath AES-128 design to
successfully read out the first eight key bits of an AES module. The con-
ventional testing and verification methods presented at the RTL or gate
level so far cannot prevent or detect our proposed attack as the Trojan is
injected in a post-synthesis step of the design flow, thus circumventing
conventional testing and verification methods. Furthermore, we have
shown that our Trojan circuit stays unconnected in the bitstream, there
by evading even bitstream-level verification techniques.

83

Chapter 5

Conclusion

The research contributions presented in this thesis have effectively broad-
ened the scope of hardware security in reconfigurable systems, especially,
with regards to the hardware Trojan detection method employed at the
bitstream level to counter the Trojans that evade standard verification
methods due to their property of adapting the passive state in every stage
the field-programmable gate array (FPGA) design flow and turning into
the active state only in the bitstream. Ideally, an intellectual property
(IP) core must be verified against malicious inclusion at each of the de-
sign stages during its development. However, due to plenty of potential
attack vectors possible at each stage with distinct properties of being hid-
den, no single solution exists so far which could be applied to counteract
the multifaceted attacks or even nullify the effect of those attacks. For
example, the dynamic verification methods applied at register-transfer
level (RTL) of a design (cp. Section 2.3) may detect the faults and errors
perfectly, but deliberately inserted logic by an attacker could mimic the
original logic of the design, i.e., having the same attribute as the orig-
inal circuit or playing its part to pass the signal to the next level, may
deceive the simulation-based testing and verification techniques. Also,
due to the lack of a standard way to verifying the design after the RTL
or gate level, i.e., placement and routing and even a bitstream level, the
attacker would have a large space during these steps to insert malicious
logic which would likely go undetected. The bitstream-level verification
was not possible for many commercial devices due to the lack of pub-
licly available documentation of bitstream formats which are copyrights
of particular vendors. However, the availability of the complete open-
source tool flow for commercial FPGAs urged us to render the feasibility
of verifying the design at the bitstream level and detecting any malicious
inclusion in the bitstream configuration file before loading it to the device
for configuration.

We have proposed bitstream-level proof-carrying hardware (PCH)
approach in Chapter 3 which provides an effective way of detecting the

84 Chapter 5. Conclusion

Trojans in the bitstream by offering the security guarantees in the form
of certificates (proofs) considering the manifold of malicious parties in-
volved during the development and the consignment of the design. We
have used IceStorm, an open-source design flow for Lattice FPGAs, to im-
plement the stealthy malicious lookup table (LUT) attack and then suc-
cessfully detected using a bitstream-level PCH approach (cp. Section 3.3)
by integrating the IceStorm tool flow with the PCH tool flow for iCE40-
HX1K FPGAs. We thus believe that if the bitstream format would be
openly accessible, there would be even more opportunities for the recon-
figurable system’s end-user to verify the design against malicious inclu-
sions, i.e., hardware Trojans. Verily, our proposed PCH approach already
provides a powerful solution against the RTL and bitstream-level Trojans,
for both the developer of the design and the end-user, therefore renders
strong grounds to be adapted for the bitstream verification for commer-
cial FPGAs.

The research on hardware Trojans from an attacker as well as de-
fender’s perspective presents a valuable improvement to provide secu-
rity and trust in reconfigurable hardware. The defender would only be
able to develop a robust system for securing a device as long as the at-
tack is known to him. However, for unknown attacks, the device may
still be susceptible under trusted conditions. So, the hardware design
verification and trust methods mainly depend on both the attacker’s and
defender’s interpretations, i.e., the defender would update the security
properties of a system according to the new attack launched by the at-
tacker. To contribute further in this direction, we have presented a new
kind of hardware Trojan attack in Chapter 4 that circumvents all the con-
ventional pre-configuration design-time and even bitstream-level verifi-
cation techniques for FPGAs.

The attack is carried out in two phases: In Phase-1, the Trojan is
inserted after the design synthesis step, i.e., during the placement and
routing step, attached to the original circuit to get the fully placed-and-
routed design which is then disconnected from the original circuit by flip-
ping only one programmable interconnect point (PIP) bit, the Trojan PIP
(TPIP), while writing the design into the text file with the help of com-
promised placement-and-routing tool (cp. Figure 4.5). The generated bit-
stream configuration file would then be carrying an unconnected Trojan
along with the original design. This step thus makes sure for the success-
ful insertion of the Trojan that would remain undetected in a bitstream
verification process due to its disconnection from the original circuit via
(T)PIP. In Phase 2, the connection is re-established by the compromised

Chapter 5. Conclusion 85

programming tool when reading the bitstream of the design to configure
the device. This is essentially done by flipping the corresponding TPIP
bit, communicated by the design flow, again to restore the connection be-
tween the original circuit and the Trojan circuit, therefore directly activat-
ing the Trojan or making it possible for an attacker to activate the Trojan
(cp. Figure 4.6). We have also demonstrated the feasibility of the attack in
Section 4.3 by successfully leaking the 8-bits of a secret key of an AES-128
core, implemented on iCE40-HX1K FPGA, via an unused I/O pin.

To summarize, through the research presented in this thesis, we have
been able to contribute to enhancing the security and trust-building in re-
configurable computing with respect to both, the defender’s and the at-
tacker’s perspective. Our bitstream-level proof-carrying hardware (PCH)
approach to detect the stealthy malicious LUT hardware Trojan is a true
example of a defender’s frame of mind which can be employed to ver-
ify the Lattice iCE40 FPGAs bitstreams against hardware Trojan’s threat,
therefore, creating an opportunity for the trust-building through the PCH
certified designs running directly on the reconfigurable hardware. Fur-
thermore, the malicious routing-based hardware Trojan signifies the at-
tacker’s point of view to carry out the attack by using the compro-
mised design flow tools, which remains undetectable even by bitstream-
verification methods thus opens a new research challenge to the hard-
ware design and verification teams.

87

Chapter 6

Outlook

This chapter mainly points out some of the possible future directions to
counter the attack presented in Chapter 4 by extending the work pre-
sented in Chapter 3. Moreover, some of the new attacks and their possible
mitigation ideas are also discussed in the following:

1. Enabling Post-Configuration Verification for FPGAs: With the intro-
duction of the malicious routing-based Trojan attack in Chap-
ter 4, the pre-configuration verification techniques for field-
programmable gate array (FPGA)’s bitstream have been jeopar-
dized badly. This might be a good step to bring in the post-
configuration verification methods for the detection of Trojans that
only activate in the FPGA device. One possible countermeasure

cnf

IP

Specification

IP

Specification

Compute

equivalence

miter

Miter formula

match?

Proof trace

correct?

Load IPRefuse IP

Bitstream-

to-Verilog

No

No

Yes

Consumer

Compute

equivalence

miter

Synthesize

IP for iCE40

FPGA

SAT solver

Bitstream-

to-Verilog

Producer

Yes

Verilog

Bitstream

Bitstream

unSAT proof trace

CNF

formula

Verilog

CNF

formula

Verilog

FGPA

I/O BANK 0

I/
O

 B
A

N
K

 3

I/O BANK 2

I/
O

 B
A

N
K

 1

Program

FPGA

Read back

Accept IP

Yosys

Synthesis .blif

Arachne-pnr

Place, route

and encode

.asc

Icepack

.binVerilog

.v.v IceunpackIcebox_vlog

.asc

.bin

Iceunpack

.asc

Icebox_vlog.v.v

.v.v

Producer’s

tools

Consumer’s

tools

cnf

IP

Specification

Compute

equivalence

miter

Miter formula

match?

Proof trace

correct?

Load IPRefuse IP

Bitstream-

to-Verilog

No

No

Yes

Consumer

Compute

equivalence

miter

Synthesize

IP for iCE40

FPGA

SAT solver

Bitstream-

to-Verilog

Producer

Yes

Verilog

Bitstream

Bitstream

unSAT proof trace

CNF

formula

Verilog

CNF

formula

Verilog

FGPA

I/O BANK 0

I/
O

 B
A

N
K

 3

I/O BANK 2

I/
O

 B
A

N
K

 1

Program

FPGA

Read back

Accept IP

Yosys

Synthesis .blif

Arachne-pnr

Place, route

and encode

.asc

Icepack

.binVerilog

.v IceunpackIcebox_vlog

.asc

.bin

Iceunpack

.asc

Icebox_vlog.v

.v

Producer’s

tools

Consumer’s

tools

cnf

IP

Specification

Compute

equivalence

miter

Miter formula

match?

Proof trace

correct?

Load IPRefuse IP

Bitstream-

to-Verilog

No

No

Yes

Consumer

Compute

equivalence

miter

Synthesize

IP for iCE40

FPGA

SAT solver

Bitstream-

to-Verilog

Producer

Yes

Verilog

Bitstream

Bitstream

unSAT proof trace

CNF

formula

Verilog

CNF

formula

Verilog

FGPA

I/O BANK 0

I/
O

 B
A

N
K

 3

I/O BANK 2

I/
O

 B
A

N
K

 1

Program

FPGA

Read back

Accept IP

Yosys

Synthesis .blif

Arachne-pnr

Place, route

and encode

.asc

Icepack

.binVerilog

.v IceunpackIcebox_vlog

.asc

.bin

Iceunpack

.asc

Icebox_vlog.v

.v

Producer’s

tools

Consumer’s

tools

Figure 6.1: Post-configuration verification for FPGAs using PCH.

to detect such Trojans could be utilizing the read-back option in
FPGAs to retrieve a complete functional bitstream file and then ap-
plying the proof-carrying hardware (PCH) as a post configuration

88 Chapter 6. Outlook

verification methodology, as explained in Section 3.3 and illustrated
in Figure 6.1, with an additional miter formation using the retrieved
bitstream. Since the Trojan would be connected to the original cir-
cuit during configuration, the miter formed by using the bitstream
retrieved after configuration would not match the miter obtained
by the original specification at the consumer end, consequently, the
malicious routing-based Trojan attack would be revealed. However,
if the Trojan is triggered externally by an attacker, i.e., by applying a
voltage to the specific input pin, the probability to detect the Trojan
would be low during verification, since it would be tricky to guess
the input pin from a large number of available input/output (I/O)
pins to which the voltage might be applied to activate the Trojan.
Moreover, checking each unused I/O pin in a larger designs would
demand plenty of time to expose the attack.

2. Malicious Bitstream: The malicious routing-based attack presented
in Section 4.3 can be improved in terms of the communication be-
tween the compromised tools for sharing the TPIP locations/ad-
dresses. An attacker could essentially hide the database of TPIP lo-
cations to the free spaces available in the bitstream itself, for exam-
ple, an array with a precise set of rules which consists of one TPIP
for each of the outputs. The is feasible since, in most of the designs
implemented on larger FPGAs, the significant area of a bitstream
remains unconfigured which can be exploited by the attacker. Mod-
ification of a bitstream to hide any additional information or a cir-
cuit to its unused spaces is plausible and is shown in [75]. While
programming the FPGA device, the programmer or the malicious
programming tool will try to find the first TPIP from the array/-
database in a bitstream that is not yet configured, if found, it will be
configured to activate the Trojan. Figure 6.2 demonstrates the attack
with respect to the attacker in the design house and a malicious pro-
grammer/programming tool in the SoC integration site, where the
former inserts and disconnects the Trojan on certain TPIP locations
and embeds the addresses of those TPIP locations into the unused
spaces of the bitstream and sends to the latter which identifies the
TPIP locations and activates the Trojan.

All other intermediate locations of TPIP that are not used by the
actual design are arbitrarily configured which would not have any
effect on the functionality of the original circuit. Note that, if the
attack is carried out with more than one TPIPs, those TPIPs in the

Chapter 6. Outlook 89

01010110011110111001100000000

01010110011110111001101100101

Configured bits with inactive Trojan Unused bits

TPIP Address

Attacker

Bitstream

Malicious

Routing Attack

Design HouseSystem Integrator

01010110011110111001100000000

01010110111110111001101100101

Configured bits with inactive Trojan Unused bits

TPIP Address

Bitstream

FGPA

I/O BANK 0

I/
O

 B
A

N
K

 3

I/O BANK 2

I/
O

 B
A

N
K

 1

Malicious programmer

Trojan activated

Figure 6.2: TPIP addresses embedded within the bitstream for malicious
programmer.

array are left unconfigured by the attacker for facilitating the ma-
licious programmer to find them. This would potentially exclude
the communication dependencies between the compromised tools
to carry out the successful attack.

3. Malicious Programmer in Multi-tenant FPGAs: The partial reconfigu-
ration feature in FPGAs has allowed the users to share a single fab-
ric among different application designs for gaining the maximum
resource utilization, especially in resource starving environments,
e.g., cloud computing. This property along with the normal con-
figurations in FPGAs have preceded them towards the concept of
multi-tenancy in which the FPGA is shared among various users in
the cloud, this is also referred to as multi-tenant FPGA devices. Al-
though the tenants share a single FPGA device to implement their
logic, there is a logical separation provided at different regions to
keep the privacy between them.

However, such type of model, i.e., FPGA-as-a-Service, in which
the resources are explicitly disclosed to cloud tenants, might raise
certain security concerns. For example, different tenants despite
logically isolated, share the same supply voltage that is not phys-
ically isolated, thus potentially exploitable to remote attacks such
as remote power analysis attacks to leak cryptographic key [104],

90 Chapter 6. Outlook

and denial-of-service (DoS) attacks [105, 106]. Nevertheless, a ma-
licious programmer or a subverted programming model, as de-
scribed in Chapter 4, for single FPGAs could be applied to multi-
tenant FPGAs which can provide valuable insights to the attacker
through the malicious IP (receptor), by extracting random informa-
tion from a victim IP in a shared environment. At this point, the
programmer would know which resources will be going to be used
by which IP, thus would have a power to connect the malicious IP
to the isolated IP, but would not know about the internal details of
the IP to carry out the full attack. However, the acquired data from
a victim’s IP can be processed offline to get valuable information.
For instance, if the victim IP is an encryption core, the program-
mer could potentially attempt to read out the states of the flip-flops
(FFs) that are configured in the victim IP to process the key bits that
are being used. This attack would potentially be more powerful re-
garding the fact that it will directly provide the way of analyzing
the registers state to guess the cryptographic key in contrast to the
power analysis attack [104].

4. PCH4HLS: Detection of Hardware Trojans in High-level Synthesis using
PCH: In recent years, with the development of high-level synthesis
(HLS) being another design representation to RTL, the third-party
IP vendors are advancing towards the provision of SystemC HLS
designs as it potentially provides the flexibility to create many alter-
nate versions of the same design. The SystemC design provided at
the HLS abstraction in the FPGA design flow is generally converted
automatically to its equivalent RTL in a much shorter amount of
time using HLS tools. However, the acceptance of this abstraction
level in hardware design flow has opened another challenge for de-
sign trust and security. A Trojan inserted into the HLS design, could
go deep into the levels without being observed by the other levels, if
not detected at the HLS level. One such benchmark of HLS Trojans
has been presented in [107]. Unfortunately, this level of abstraction
has not got much attention concerning security issues, especially
hardware Trojan attacks, which are as important to address as at
RTL or other levels of hierarchy in the FPGA design flow. We pro-
pose to extend a proof-carrying hardware (PCH) approach to one
level above in the abstraction for the detection of HLS Trojans. The
current variant of PCH, (cp. Section 3.3) takes the RTL design as

Chapter 6. Outlook 91

an input, however, an open-source HLS tool LegUp could be inte-
grated into PCH flow which will convert the SystemC representa-
tion of the design to its comparable RTL. Later, the typical PCH flow
can be followed to verify the design against hardware Trojans.

5. Verilog2Bitstream Verification: A Multi-level approach for hardware Tro-
jan detection in FPGAs: The research presented in recent times to
detect hardware Trojan in FPGAs has been mostly targeted to a cer-
tain level of abstraction in a design flow hierarchy. This is mainly
due to the variations in the implementation of hardware Trojan de-
signs and their insertion and activation mechanisms into the orig-
inal design. For instance, Trojan detection at the register-transfer
level (RTL) may not be applicable to the lower levels, such as gate
level and bitstream level. To overcome this limitation, a multi-level
Trojan detection approach can be offered which may incorporate the
outcomes acquired during the previous levels until the last level,
e.g., bitstream level. The detection at each level would decrease
the probability of the Trojan being hidden, therefore, providing a
unique and enhanced framework to verify the IP cores against Tro-
jans from Verilog code to bitstream.

6. MAAS: Malicious Approximate Accelerator Synthesis: Approximate
computing (AC) has emerged as an effective alternative for perfor-
mance improvement in computing systems. AC targets the intrinsic
error resilience present in several applications, e.g., image and sig-
nal processing, computer vision, and machine learning. Approxi-
mate computing has been largely applied to generate hardware ac-
celerator circuits that offer substantial benefits of power consump-
tion, area, and delay while occasionally providing erroneous yet
acceptable outputs.

Existing works in approximate circuit (AxC) synthesis provide var-
ious automated frameworks, such as the one proposed in [108],
which accepts the original circuit description along with an error
bound defined by the user and generates an approximate version
of the circuit that adheres to the given bounds. The main target
for approximation is arithmetic components, such as adders and
multipliers. However, the security breaches due to inclusions of
third-party’s malicious arithmetic components in a circuit have not
been investigated yet. An automated approximate circuit synthesis
flow such as the MCTS-based framework in [108] and the CIRCA

92 Chapter 6. Outlook

framework [109] could be compromised either due to the addi-
tion of maligned logic or a bad employee binding a Trojan dur-
ing the automated flow. The threat model illustrated in the Fig-

Preprocessing

MAAS

Original

Circuit (*.c)

Config file

(*.txt)

Malicious Designer

Rogue Employee

Subverted Tool

Threat Model

Approximate

Circuit (*.c)

USER

Third-party AC Synthesis

Figure 6.3: Threat model for malicious approximation.

ure 6.3 throws light on the malicious approximate accelerator syn-
thesis (MAAS) by a third party. The user provides the design spec-
ifications (usually in SystemC) along with the required error met-
rics, i.e., a configuration file (in text) to an approximate accelerator
synthesis provider who first runs some preprocessing and then gen-
erates the approximate versions of the design and synthesizes the
circuit. In our threat model, we consider that the approximate ac-
celerator synthesis provider is itself trusted, however, a Trojan can
be inserted by one of the following entities: malicious designer, a
rogue employee, or a subverted accelerator synthesis tool/frame-
work. After the synthesis, the design is sent back to the user who
runs the test vectors to verify the according to the given constraints,
such as error metrics, but there is no verification performed by the
user against potential hardware Trojans. To investigate the afore-
mentioned threat model, the approximate circuit synthesis flows
proposed in [108, 109] could be manipulated with malicious ap-
proximate components (Trojan), which likely fulfills the constraints
such as error and performance parameters, but could lead to catas-
trophic results later when the Trojan is activated. Moreover, the Tro-
jan insertion has been so far targeted at the netlist level whereas the
state-of-the-art approximate circuit synthesis frameworks, i.e., [108]
target higher levels of abstraction such as SystemC. Therefore, con-
sidering a higher level of abstraction to evaluate hardware Trojan

Chapter 6. Outlook 93

insertion in an automated AxC synthesis flow could be a valuable
contribution to the AC and thus preventive measures could be pro-
posed to alert the system-on-chip (SoC) integrator about the mali-
cious logic before integrating it into a system.

95

List of Tables

Table 2.1 Sources of hardware Trojans and related threat models 23

Table 3.1 Threat scenarios . 55
Table 3.2 LUT’s unary operation 58
Table 3.3 Malicious LUT’s possible configurations 59
Table 3.4 Verification runtimes to detect Trojan 60

Table 4.1 Resource utilization of AES design in iCE40-HX1K . . 76

97

Listings

Listing 4.1 Commands used by the malicious design flow . . . 73
Listing 4.2 Original Verilog code for AND-gate example . . . 80

99

List of Algorithms

1 Malicious routing algorithm 68

101

List of Figures

Figure 1.1 Hardware Trojan circuits and use of FPGA 4

Figure 2.1 A typical FPGA 4× 4 array structure 15
Figure 2.2 The inside view of a simple CLB 16
Figure 2.3 Island-style routing 17
Figure 2.4 Vivado design suite 19
Figure 2.5 Trojan circuit insertion into the original circuit 22
Figure 2.6 Components-based hardware Trojan classification . 25
Figure 2.7 Characteristics-based hardware Trojan classification 26
Figure 2.8 Hardware Trojan taxonomy 27
Figure 2.9 FPGA’s hardware Trojan taxonomy 30
Figure 2.10 Trojan circuit attached to decryption module 31
Figure 2.11 IP core hardware Trojan taxonomy 33
Figure 2.12 Unused circuit identification (UCI) 36
Figure 2.13 Veritrust: Verification for trust 37
Figure 2.14 FANCI: Boolean function analysis 38

Figure 3.1 Two-stage FPGA design flow attack 43
Figure 3.2 Overview of two-party agreement model within PCH 45
Figure 3.3 PCH tool flow for bitstream-level verification 46
Figure 3.4 Miter function for functional equivalence checking . 47
Figure 3.5 iCE40 tool flow used for PCH. 49
Figure 3.6 Attack scenario 1 . 50
Figure 3.7 Attack scenario 2 . 52
Figure 3.8 Attack scenario 3 . 53
Figure 3.9 4-input malicious LUT 57

Figure 4.1 Threat model . 65
Figure 4.2 Compromised FPGA design flow 66
Figure 4.3 Infected design in a bitstream and FPGA 69
Figure 4.4 Top-level architecture of an AES-128 core 72
Figure 4.5 Phase 1: Trojan insertion and disconnection in AES . 73
Figure 4.6 Phase 2: Trojan re-connection and activation in AES 74
Figure 4.7 Analysis of power consumption, delay and area . . . 77

102 List of Figures

Figure 4.8 ICE40 Layout Viewer for Trojan circuit evaluation . 79

Figure 6.1 Post-configuration verification for FPGAs 87
Figure 6.2 TPIP addresses within the bitstream 89
Figure 6.3 Threat model for malicious approximation 92

103

List of Abbreviations

AC Approximate Computing 75, 76

ADAS Advanced Driver Assisted Systems 1

AES Advanced Encryption Standard 5, 8, 29, 55–59, 62

AES-128 AES With Key Size Of 128 Bits 59, 63, 67

AI Artificial Intelligence 1

ASCII American Standard Code For Information Interchange 40

ASIC Application-specific Integrated Circuit 2, 4, 9, 17, 23, 24, 29

ASICs Application-specific Integrated Circuits 2, 4, 5, 15, 24, 26, 29, 52

AxC Approximate Circuit 76

BLE Basic Logic Element 12

BLEs Basic Logic Elements 12, 13

BLIF Berkeley Logic Interchange Format 40

BRAM Block RAM 11

CAD Computer-aided Design 16

CEC Combinational Equivalence Checking 41

CLB Configurable Logic Block 13, 14

CLBs Configurable Logic Blocks 9, 11, 12, 26

CNF Conjunctive Normal Form 39, 40

COTS Commercial Off-the-shelf 3, 19

CPLDs Complex-programmable Logic Devices 10

CPU Central Processing Unit 46, 58

CRC Cyclic Redundancy Checksum 61

104 List of Abbreviations

DARPA Defense Advanced Research Projects Agency 3

DCM Digital Clock Manager 26

DES Data Encryption Standard 27

DL Deep Learning 1

DoS Denial-of-service 18, 34, 74

DSP Digital Signal Processing 12

EDA Electronic Design Automation 2, 4, 7, 8, 15–17, 19, 23, 33, 34, 37, 43,
46, 49, 52, 53, 58, 65

EM Electromagnetic 63

EPROM Erasable Programmable Read-only Memory 11

FF Flip-flop 12, 13, 58

FFs Flip-flops 22, 46, 62, 63, 74

FPDs Field-programmable Devices 10

FPGA Field-programmable Gate Array 1, 7, 9, 10, 12, 13, 23–25, 29, 34,
40, 52, 53, 67, 69, 70, 73

FPGAs Field-programmable Gate Arrays 1, 2, 4, 8, 9, 11, 24, 25, 65, 69,
73, 74

GDSII Graphic Database System Information Interchange 23

GPI/O General-purpose Input/output 62

HDL Hardware Description Language 16, 40, 41, 53

HLS High-level Synthesis 75

I/O Input/output 11–15, 23, 50, 56, 57, 59–61, 63, 70, 73

IC Integrated Circuit 2–4, 9, 17, 19, 21

ICs Integrated Circuits 1, 3, 17, 29

IEEE Institute Of Electrical And Electronics Engineers 3

IOB Input/output Block 15

IOBs Input/output Blocks 15

IoT Internet-of-things 1, 4

List of Abbreviations 105

IP Intellectual Property 2, 4, 5, 16, 17, 19, 26–29, 32, 37, 41, 50, 52, 54, 69,
74, 75

IT Information Technology 1

LAB Logic Array Block 13

LED Light Emitting Diode 48, 61

LSB Least Significant Bit 47

LUT Lookup Table 5, 6, 13, 34, 36, 37, 44, 47, 50, 58, 64, 65, 67, 69, 70

LUTs Lookup Tables 10, 17, 24, 26, 46, 62

MAC Media Access Controller 27

MiM Man-in-the-middle 33

ML Machine Learning 54

MPGAs Masked Programmable Gate Arrays 9

MSB Most Significant Bit 47

MUX Multiplexer 12, 13, 55, 56, 60

MUXes Multiplexers 17, 56

nW Nano-Watt 63

OS Operating System 18, 46, 58

PAL Programmable Array Logic 10

PALs Programmable Arrays Logic 10

PCB Proof-carrying Bitstream 37, 42, 44

PCC Proof-carrying Code 37

PCH Proof-carrying Hardware 6, 7, 35, 37, 38, 40, 42, 46, 47, 49–52, 54, 65,
67, 69, 70, 73, 75

PIP Programmable Interconnect Point 56, 65, 67, 70

PIPs Programmable Interconnect Points 15, 53, 60

PIs Programmable Interconnects 11, 17

PLA Programmable Logic Array 9

106 List of Abbreviations

PLD Programmable Logic Device 9

PLDs Programmable Logic Devices 10

PnR Placement-and-routing 52, 53, 56, 60, 65

POSs Product-of-sums 31

RAM Random Access Memory 46, 58, 62

RO Ring Oscillator 29

RTL Register-transfer Level 8, 16, 22, 30, 32, 38, 54, 67, 69, 70, 75

SAT Boolean Satisfiability 39, 46

SoC System-on-chip 4, 16, 19, 29, 37, 52, 76

SOPs Sum-of-products 31

SPLDs Simple Programmable Logic Devices 10

SRAM Static Random Access Memory 11, 26

TERO Transient Effect Ring Oscillator 29

TPIP Trojan PIP 15, 53–57, 60, 70, 73, 74

UCI Unused Circuit Identification 30, 42

107

Author’s Publications

[1] Qazi Arbab Ahmed, Tobias Wiersema, and Marco Platzner., “Proof-
Carrying Hardware Versus the Stealthy Malicious LUT Hardware
Trojan”. In Applied Reconfigurable Computing (ARC) 2019. Ed. by
Christian Hochberger et al. Cham: Springer International Pub-
lishing, 2019, pp. 127–136. ISBN : 978-3-030-17227-5. URL : https:
//doi.org/10.1007/978-3-030-17227-5_10.

[2] Qazi Arbab Ahmed, Tobias Wiersema, and Marco Platzner., “Ma-
licious Routing: Circumventing Bitstream-level Verification for
FPGAs”. In: 2021 Design, Automation Test in Europe Conference
Exhibition (DATE). 2021, pp. 1490–1495. URL : https://doi.org/
10.23919/DATE51398.2021.9474026.

[3] Qazi Arbab Ahmed., “Hardware Trojans in Reconfigurable Com-
puting”. In: 2021 IFIP/IEEE 29th International Conference on Very
Large Scale Integration (VLSI-SoC), 2021, pp. 1-2. URL : https://
doi.org/10.1109/VLSI-SoC53125.2021.9606974.

https://doi.org/10.1007/978-3-030-17227-5_10
https://doi.org/10.1007/978-3-030-17227-5_10
https://doi.org/10.23919/DATE51398.2021.9474026
https://doi.org/10.23919/DATE51398.2021.9474026
https://doi.org/10.1109/VLSI-SoC53125.2021.9606974
https://doi.org/10.1109/VLSI-SoC53125.2021.9606974

109

Bibliography

[1] S. Adee. “The Hunt For The Kill Switch”. In: IEEE Spectrum 45.5
(2008), pp. 34–39. ISSN: 0018-9235. DOI: 10.1109/MSPEC.2008.
4505310.

[2] Ethical Hackers Sabotage F-15 Fighter Jet, Expose Serious Vulnerabili-
ties. [Online]. URL: {https://www.newsweek.com/cybersecurity-
vulnerability - fighter - jet - f15 - defcon - hacking - tads -

flight-system-hack-pentagon-1454491}.

[3] K. Xiao et al. “Hardware Trojans: Lessons Learned After One
Decade of Research”. In: ACM Trans. Des. Autom. Electron. Syst.
22.1 (May 2016), 6:1–6:23. ISSN: 1084-4309. DOI: 10.1145/2906147.

[4] M. Tehranipoor et al. “Trustworthy Hardware: Trojan Detection
and Design-for-Trust Challenges”. In: Computer 44.7 (July 2011),
pp. 66–74. ISSN: 0018-9162. DOI: 10.1109/MC.2010.369.

[5] Francis Wolff et al. “Towards Trojan-Free Trusted ICs: Problem
Analysis and Detection Scheme”. en. In: 2008 Design, Automation
and Test in Europe. Munich, Germany: IEEE, Mar. 2008, pp. 1362–
1365. ISBN: 978-3-9810801-3-1 978-3-9810801-4-8. DOI: 10 .1109/
DATE . 2008 . 4484928. URL: http : / / ieeexplore . ieee . org /
document/4484928/ (visited on 11/25/2019).

[6] R. S. Chakraborty, S. Narasimhan, and S. Bhunia. “Hardware Tro-
jan: Threats and emerging solutions”. In: 2009 IEEE International
High Level Design Validation and Test Workshop. 2009, pp. 166–171.
DOI: 10.1109/HLDVT.2009.5340158.

[7] Swarup Bhunia et al. “Hardware Trojan Attacks: Threat Analysis
and Countermeasures”. en. In: Proceedings of the IEEE 102.8 (Aug.
2014), pp. 1229–1247. ISSN: 0018-9219, 1558-2256. DOI: 10.1109/
JPROC . 2014 . 2334493. URL: http : / / ieeexplore . ieee . org /
document/6856140/ (visited on 11/25/2019).

[8] Samuel T. King et al. “Designing and Implementing Malicious
Hardware”. In: Proceedings of the 1st Usenix Workshop on Large-Scale
Exploits and Emergent Threats. LEET’08. San Francisco, California:
USENIX Association, 2008.

https://doi.org/10.1109/MSPEC.2008.4505310
https://doi.org/10.1109/MSPEC.2008.4505310
{https://www.newsweek.com/cybersecurity-vulnerability-fighter-jet-f15-defcon-hacking-tads-flight-system-hack-pentagon-1454491}
{https://www.newsweek.com/cybersecurity-vulnerability-fighter-jet-f15-defcon-hacking-tads-flight-system-hack-pentagon-1454491}
{https://www.newsweek.com/cybersecurity-vulnerability-fighter-jet-f15-defcon-hacking-tads-flight-system-hack-pentagon-1454491}
https://doi.org/10.1145/2906147
https://doi.org/10.1109/MC.2010.369
https://doi.org/10.1109/DATE.2008.4484928
https://doi.org/10.1109/DATE.2008.4484928
http://ieeexplore.ieee.org/document/4484928/
http://ieeexplore.ieee.org/document/4484928/
https://doi.org/10.1109/HLDVT.2009.5340158
https://doi.org/10.1109/JPROC.2014.2334493
https://doi.org/10.1109/JPROC.2014.2334493
http://ieeexplore.ieee.org/document/6856140/
http://ieeexplore.ieee.org/document/6856140/

110 Bibliography

[9] Jie Zhang and Qiang Xu. “On hardware Trojan design and im-
plementation at register-transfer level”. en. In: 2013 IEEE Interna-
tional Symposium on Hardware-Oriented Security and Trust (HOST).
Austin, TX, USA: IEEE, June 2013, pp. 107–112. ISBN: 978-1-4799-
0601-7 978-1-4799-0559-1 978-1-4799-0600-0. DOI: 10.1109/HST.
2013.6581574. URL: http://ieeexplore.ieee.org/document/
6581574/ (visited on 11/25/2019).

[10] C. Sturton et al. “Defeating UCI: Building Stealthy and Malicious
Hardware”. In: 2011 IEEE Symposium on Security and Privacy. 2011,
pp. 64–77. DOI: 10.1109/SP.2011.32.

[11] Ramesh Karri et al. “Trustworthy Hardware: Identifying and Clas-
sifying Hardware Trojans”. en. In: Computer 43.10 (Oct. 2010),
pp. 39–46. ISSN: 0018-9162. DOI: 10 . 1109 / MC . 2010 . 299. URL:
http://ieeexplore.ieee.org/document/5604161/ (visited on
11/25/2019).

[12] M. Hicks et al. “Overcoming an Untrusted Computing Base: De-
tecting and Removing Malicious Hardware Automatically”. In:
2010 IEEE Symposium on Security and Privacy. IEEE, 2010, pp. 159–
172. DOI: 10.1109/SP.2010.18.

[13] J. Zhang et al. “VeriTrust: Verification for hardware trust”. In: 2013
50th ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,
May 2013, pp. 1–8. DOI: 10.1145/2463209.2488808.

[14] Adam Waksman, Matthew Suozzo, and Simha Sethumadhavan.
“FANCI: Identification of Stealthy Malicious Logic Using Boolean
Functional Analysis”. In: Proceedings of the 2013 ACM SIGSAC Con-
ference on Computer & Communications Security. CCS ’13. Berlin,
Germany: ACM, 2013, pp. 697–708. ISBN: 978-1-4503-2477-9. DOI:
10.1145/2508859.2516654. URL: http://doi.acm.org/10.1145/
2508859.2516654.

[15] Intel® FPGAs. Automotive FPGA Applications. [Online]. URL:
{https://www.intel.com/content/www/us/en/automotive/

products/programmable/applications.html/}.

[16] Kaiyuan Guo et al. “[DL] A Survey of FPGA-Based Neural Net-
work Inference Accelerators”. In: ACM Trans. Reconfigurable Tech-
nol. Syst. 12.1 (2019). ISSN: 1936-7406. DOI: 10.1145/3289185. URL:
https://doi.org/10.1145/3289185.

[17] Amazon.com Inc. Amazon EC2 F1 Instances. [Online]. URL: {https:
//aws.amazon.com/ec2/instance-types/f1/}.

https://doi.org/10.1109/HST.2013.6581574
https://doi.org/10.1109/HST.2013.6581574
http://ieeexplore.ieee.org/document/6581574/
http://ieeexplore.ieee.org/document/6581574/
https://doi.org/10.1109/SP.2011.32
https://doi.org/10.1109/MC.2010.299
http://ieeexplore.ieee.org/document/5604161/
https://doi.org/10.1109/SP.2010.18
https://doi.org/10.1145/2463209.2488808
https://doi.org/10.1145/2508859.2516654
http://doi.acm.org/10.1145/2508859.2516654
http://doi.acm.org/10.1145/2508859.2516654
{https://www.intel.com/content/www/us/en/automotive/products/programmable/applications.html/}
{https://www.intel.com/content/www/us/en/automotive/products/programmable/applications.html/}
https://doi.org/10.1145/3289185
https://doi.org/10.1145/3289185
{https://aws.amazon.com/ec2/instance-types/f1/}
{https://aws.amazon.com/ec2/instance-types/f1/}

Bibliography 111

[18] Deep Dive into Alibaba Cloud F3 FPGA as a Service Instances. [Online].
URL: {https://www.alibabacloud.com/blog/deep-dive-into-
alibaba-cloud-f3-fpga-as-a-service-instances_594057}

(visited on 2018).

[19] Huawei Cloud. FPGA Accelerated Cloud Server (FACS). [Online].
URL: {https://www.huaweicloud.com/en- us/product/fcs.
html} (visited on 2020).

[20] Andrew Putnam et al. “A Reconfigurable Fabric for Accelerat-
ing Large-Scale Datacenter Services”. In: SIGARCH Comput. Ar-
chit. News 42.3 (June 2014), 13–24. ISSN: 0163-5964. DOI: 10.1145/
2678373.2665678. URL: https://doi.org/10.1145/2678373.
2665678.

[21] Yier Jin, Nathan Kupp, and Y. Makris. “Experiences in Hardware
Trojan design and implementation”. In: 2009 IEEE International
Workshop on Hardware-Oriented Security and Trust (2009), pp. 50–
57.

[22] Sebastian Wallat et al. “A look at the dark side of hardware re-
verse engineering - a case study”. In: 2017 IEEE 2nd International
Verification and Security Workshop (IVSW). 2017, pp. 95–100. DOI:
10.1109/IVSW.2017.8031551.

[23] Seyedeh Sharareh Mirzargar and Mirjana Stojilovic. “Physical
Side-Channel Attacks and Covert Communication on FPGAs: A
Survey”. en. In: 2019 29th International Conference on Field Pro-
grammable Logic and Applications (FPL). Barcelona, Spain: IEEE,
2019, pp. 202–210. ISBN: 978-1-72814-884-7. DOI: 10.1109/FPL.
2019.00039. URL: https://ieeexplore.ieee.org/document/
8892083/ (visited on 06/02/2021).

[24] Maik Ender et al. “The First Thorough Side-Channel Hardware
Trojan”. In: Advances in Cryptology – ASIACRYPT 2017. Ed. by
Tsuyoshi Takagi and Thomas Peyrin. Cham: Springer Interna-
tional Publishing, 2017, pp. 755–780. ISBN: 978-3-319-70694-8.

[25] Stephen M. Trimberger and Jason J. Moore. “FPGA Security: Mo-
tivations, Features, and Applications”. In: Proceedings of the IEEE
102.8 (2014). Conference Name: Proceedings of the IEEE, pp. 1248–
1265. ISSN: 1558-2256. DOI: 10.1109/JPROC.2014.2331672.

[26] C. Krieg, C. Wolf, and A. Jantsch. “Malicious LUT: A stealthy
FPGA Trojan injected and triggered by the design flow”. In: 2016
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD). IEEE, 2016, pp. 1–8. DOI: 10.1145/2966986.2967054.

{https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057}
{https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057}
{https://www.huaweicloud.com/en-us/product/fcs.html}
{https://www.huaweicloud.com/en-us/product/fcs.html}
https://doi.org/10.1145/2678373.2665678
https://doi.org/10.1145/2678373.2665678
https://doi.org/10.1145/2678373.2665678
https://doi.org/10.1145/2678373.2665678
https://doi.org/10.1109/IVSW.2017.8031551
https://doi.org/10.1109/FPL.2019.00039
https://doi.org/10.1109/FPL.2019.00039
https://ieeexplore.ieee.org/document/8892083/
https://ieeexplore.ieee.org/document/8892083/
https://doi.org/10.1109/JPROC.2014.2331672
https://doi.org/10.1145/2966986.2967054

112 Bibliography

[27] Clifford Wolf and Mathias Lasser. Project IceStorm. URL: {http:
//www.clifford.at/icestorm/}.

[28] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli. “Architec-
ture of field-programmable gate arrays”. In: Proceedings of the IEEE
81.7 (1993), pp. 1013–1029. DOI: 10.1109/5.231340.

[29] Stephen D. Brown et al. “Chapter 1 - Introduction to FPGAs”. In:
Field-Programmable Gate Arrays. Boston, MA: Springer US, 1992,
pp. 1–11. ISBN: 978-1-4615-3572-0. DOI: 10.1007/978- 1- 4615-
3572-0_1. URL: https://doi.org/10.1007/978-1-4615-3572-
0_1.

[30] W. Carter et al. “A user programmable reconfigurable logic array”.
In: 1986.

[31] Stephen M. Trimberger. “Three Ages of FPGAs: A Retrospective
on the First Thirty Years of FPGA Technology”. In: Proceedings of
the IEEE 103.3 (2015), pp. 318–331. DOI: 10.1109/JPROC.2015.
2392104.

[32] Niccolò Battezzati, Luca Sterpone, and Massimo Violante. “Chap-
ter 1 - Introduction”. In: Reconfigurable Field Programmable Gate Ar-
rays for Mission-Critical Applications. New York, NY: Springer New
York, 2011, pp. 1–4. ISBN: 978-1-4419-7595-9. DOI: 10.1007/978-
1-4419-7595-9_1. URL: https://doi.org/10.1007/978-1-4419-
7595-9_1.

[33] Katherine Compton and Scott Hauck. “Reconfigurable Comput-
ing: A Survey of Systems and Software”. In: ACM Comput. Surv.
34.2 (2002), 171–210. ISSN: 0360-0300. DOI: 10 . 1145 / 508352 .

508353. URL: https://doi.org/10.1145/508352.508353.

[34] J. Greene, E. Hamdy, and S. Beal. “Antifuse field programmable
gate arrays”. In: Proceedings of the IEEE 81.7 (1993), pp. 1042–1056.
DOI: 10.1109/5.231343.

[35] Xilinx Inc. 7 Series FPGAs Configurable Logic Block. URL: {https://
www.xilinx.com/support/documentation/user_guides/ug474_

7Series_CLB.pdf}(Sept.2016).

[36] Clive Max Maxfield. “Chapter 2 - FPGA Architectures”. In:
FPGAs: Instant Access. Ed. by Clive Max Maxfield. Instant Ac-
cess. Burlington: Newnes, 2008, pp. 13–48. ISBN: 978-0-7506-8974-
8. DOI: https://doi.org/10.1016/B978-0-7506-8974-8.00002-
8. URL: https://www.sciencedirect.com/science/article/
pii/B9780750689748000028.

{http://www.clifford.at/icestorm/}
{http://www.clifford.at/icestorm/}
https://doi.org/10.1109/5.231340
https://doi.org/10.1007/978-1-4615-3572-0_1
https://doi.org/10.1007/978-1-4615-3572-0_1
https://doi.org/10.1007/978-1-4615-3572-0_1
https://doi.org/10.1007/978-1-4615-3572-0_1
https://doi.org/10.1109/JPROC.2015.2392104
https://doi.org/10.1109/JPROC.2015.2392104
https://doi.org/10.1007/978-1-4419-7595-9_1
https://doi.org/10.1007/978-1-4419-7595-9_1
https://doi.org/10.1007/978-1-4419-7595-9_1
https://doi.org/10.1007/978-1-4419-7595-9_1
https://doi.org/10.1145/508352.508353
https://doi.org/10.1145/508352.508353
https://doi.org/10.1145/508352.508353
https://doi.org/10.1109/5.231343
{https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf} (Sept. 2016)
{https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf} (Sept. 2016)
{https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf} (Sept. 2016)
https://doi.org/https://doi.org/10.1016/B978-0-7506-8974-8.00002-8
https://doi.org/https://doi.org/10.1016/B978-0-7506-8974-8.00002-8
https://www.sciencedirect.com/science/article/pii/B9780750689748000028
https://www.sciencedirect.com/science/article/pii/B9780750689748000028

Bibliography 113

[37] J. Rose and S. Brown. “Flexibility of interconnection structures for
field-programmable gate arrays”. In: IEEE Journal of Solid-state Cir-
cuits 26 (1991), pp. 277–282.

[38] Vaughn Betz and Jonathan Rose. “FPGA routing architecture: Seg-
mentation and buffering to optimize speed and density”. In: 1999,
pp. 59–68.

[39] Mark L. Chang. “Chapter 1 - Device Architecture”. In: Reconfig-
urable Computing. Ed. by Scott Hauck and André Dehon. Systems
on Silicon. Burlington: Morgan Kaufmann, 2008, pp. 3–27. DOI:
https : / / doi . org / 10 . 1016 / B978 - 012370522 - 8 . 50005 - 4.
URL: https://www.sciencedirect.com/science/article/pii/
B9780123705228500054.

[40] Nisha Jacob Kabakci. “Hardware Trojans and their Security Im-
pact on Reconfigurable System-on-Chips”. PhD thesis. Munich,
Germany, 2019.

[41] Jason Anderson et al. “A Placement Algorithm for FPGA De-
signs with Multiple I/O Standards”. In: Field-Programmable Logic
and Applications: The Roadmap to Reconfigurable Computing. Ed. by
Reiner W. Hartenstein and Herbert Grünbacher. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2000, pp. 211–220. ISBN: 978-3-
540-44614-9.

[42] Xilinx Inc. Vivado® Design Suite Documentation [Online]. URL:
{https://www.xilinx.com/products/design-tools/vivado.

html ? resultsTablePreSelect = xlnxdocumenttypes : SeeAll #

documentation}.

[43] Steven A. Guccione. “Chapter 19 - Configuration Bitstream Gener-
ation”. In: Reconfigurable Computing. Ed. by Scott Hauck and An-
dré Dehon. Systems on Silicon. Burlington: Morgan Kaufmann,
2008, pp. 401–409. DOI: https : / / doi . org / 10 . 1016 / B978 -
012370522-8.50026-1. URL: https://www.sciencedirect.com/
science/article/pii/B9780123705228500261.

[44] Jason Cong and Peichen Pan. “Chapter 13 - Technology Map-
ping”. In: Reconfigurable Computing. Ed. by Scott Hauck and André
Dehon. Systems on Silicon. Burlington: Morgan Kaufmann, 2008,
pp. 277–296. DOI: https://doi.org/10.1016/B978-012370522-
8.50019-4. URL: https://www.sciencedirect.com/science/
article/pii/B9780123705228500194.

https://doi.org/https://doi.org/10.1016/B978-012370522-8.50005-4
https://www.sciencedirect.com/science/article/pii/B9780123705228500054
https://www.sciencedirect.com/science/article/pii/B9780123705228500054
{https://www.xilinx.com/products/design-tools/vivado.html?resultsTablePreSelect=xlnxdocumenttypes:SeeAll#documentation}
{https://www.xilinx.com/products/design-tools/vivado.html?resultsTablePreSelect=xlnxdocumenttypes:SeeAll#documentation}
{https://www.xilinx.com/products/design-tools/vivado.html?resultsTablePreSelect=xlnxdocumenttypes:SeeAll#documentation}
https://doi.org/https://doi.org/10.1016/B978-012370522-8.50026-1
https://doi.org/https://doi.org/10.1016/B978-012370522-8.50026-1
https://www.sciencedirect.com/science/article/pii/B9780123705228500261
https://www.sciencedirect.com/science/article/pii/B9780123705228500261
https://doi.org/https://doi.org/10.1016/B978-012370522-8.50019-4
https://doi.org/https://doi.org/10.1016/B978-012370522-8.50019-4
https://www.sciencedirect.com/science/article/pii/B9780123705228500194
https://www.sciencedirect.com/science/article/pii/B9780123705228500194

114 Bibliography

[45] K. Xiao et al. “Hardware Trojans: Lessons Learned After One
Decade of Research”. In: ACM Trans. Des. Autom. Electron. Syst.
22.1 (2016), 6:1–6:23. ISSN: 1084-4309. DOI: 10.1145/2906147.

[46] M. Tehranipoor and C.Wang. Introduction to Hardware Security and
Trust. Springer, 2012.

[47] S. Bhunia et al. “Hardware Trojan Attacks: Threat Analysis
and Countermeasures”. In: Proceedings of the IEEE 102.8 (2014),
pp. 1229–1247. ISSN: 0018-9219. DOI: 10 . 1109 / JPROC . 2014 .

2334493.

[48] Carl E. Landwehr et al. “A Taxonomy of Computer Program Se-
curity Flaws”. In: ACM Comput. Surv. 26.3 (Sept. 1994), pp. 211–
254. ISSN: 0360-0300. DOI: 10.1145/185403.185412. URL: http:
//doi.acm.org/10.1145/185403.185412.

[49] Qazi Arbab Ahmed, Tobias Wiersema, and Marco Platzner. “Ma-
licious Routing: Circumventing Bitstream-level Verification for
FPGAs”. In: 2021 Design, Automation Test in Europe Conference Ex-
hibition (DATE). 2021, pp. 1490–1495. DOI: 10.23919/DATE51398.
2021.9474026.

[50] M. Tehranipoor et al. “Trustworthy Hardware: Trojan Detec-
tion and Design-for-Trust Challenges”. In: Computer 44.7 (2011),
pp. 66–74. ISSN: 0018-9162. DOI: 10.1109/MC.2010.369.

[51] Bicky Shakya et al. “Benchmarking of Hardware Trojans and Mali-
ciously Affected Circuits”. In: Journal of Hardware and Systems Secu-
rity 1.1 (2017), pp. 85–102. ISSN: 2509-3436. DOI: 10.1007/s41635-
017-0001-6. URL: http://dx.doi.org/10.1007/s41635-017-
0001-6.

[52] M. Tehranipoor and F. Koushanfar. “A Survey of Hardware Trojan
Taxonomy and Detection”. In: IEEE Design Test of Computers 27.1
(2010), pp. 10–25. ISSN: 0740-7475. DOI: 10.1109/MDT.2010.7.

[53] S. Mal-Sarkar et al. “Design and Validation for FPGA Trust un-
der Hardware Trojan Attacks”. In: IEEE Transactions on Multi-Scale
Computing Systems 2.3 (2016), pp. 186–198. ISSN: 2332-7766. DOI:
10.1109/TMSCS.2016.2584052.

[54] Xiaoxiao Wang, M. Tehranipoor, and J. Plusquellic. “Detecting ma-
licious inclusions in secure hardware: Challenges and solutions”.
In: 2008 IEEE International Workshop on Hardware-Oriented Security
and Trust. 2008, pp. 15–19. DOI: 10.1109/HST.2008.4559039.

https://doi.org/10.1145/2906147
https://doi.org/10.1109/JPROC.2014.2334493
https://doi.org/10.1109/JPROC.2014.2334493
https://doi.org/10.1145/185403.185412
http://doi.acm.org/10.1145/185403.185412
http://doi.acm.org/10.1145/185403.185412
https://doi.org/10.23919/DATE51398.2021.9474026
https://doi.org/10.23919/DATE51398.2021.9474026
https://doi.org/10.1109/MC.2010.369
https://doi.org/10.1007/s41635-017-0001-6
https://doi.org/10.1007/s41635-017-0001-6
http://dx.doi.org/10.1007/s41635-017-0001-6
http://dx.doi.org/10.1007/s41635-017-0001-6
https://doi.org/10.1109/MDT.2010.7
https://doi.org/10.1109/TMSCS.2016.2584052
https://doi.org/10.1109/HST.2008.4559039

Bibliography 115

[55] Steve Trimberger. “Trusted Design in FPGAs”. In: Proceedings of
the 44th Annual Design Automation Conference. DAC ’07. San Diego,
California: ACM, 2007, pp. 5–8. ISBN: 978-1-59593-627-1. DOI: 10.
1145/1278480.1278483. URL: http://doi.acm.org/10.1145/
1278480.1278483.

[56] Ryan Kastner and Ted Huffmire. “Threats and Challenges in Re-
configurable Hardware Security”. In: International Conference on
Engineering of Reconfigurable Systems and Algorithms (ERSA), Las Ve-
gas, NV. 2008.

[57] Lang Lin, Wayne Burleson, and Christof Paar. “MOLES: mali-
cious off-chip leakage enabled by side-channels”. en. In: Proceed-
ings of the 2009 International Conference on Computer-Aided Design
- ICCAD ’09. San Jose, California: ACM Press, 2009, p. 117. ISBN:
978-1-60558-800-1. DOI: 10.1145/1687399.1687425. URL: http:
//portal.acm.org/citation.cfm?doid=1687399.1687425 (vis-
ited on 11/25/2019).

[58] Amir Moradi et al. “On the Vulnerability of FPGA Bitstream En-
cryption against Power Analysis Attacks: Extracting Keys from
Xilinx Virtex-II FPGAs”. In: Proceedings of the 18th ACM Conference
on Computer and Communications Security. CCS ’11. Chicago, Illi-
nois, USA: Association for Computing Machinery, 2011, 111–124.
ISBN: 9781450309486. DOI: 10 . 1145 / 2046707 . 2046722. URL:
https://doi.org/10.1145/2046707.2046722.

[59] Amir Moradi and Tobias Schneider. “Improved Side-Channel
Analysis Attacks on Xilinx Bitstream Encryption of 5, 6, and 7
Series”. In: Constructive Side-Channel Analysis and Secure Design.
Ed. by François-Xavier Standaert and Elisabeth Oswald. Cham:
Springer International Publishing, 2016, pp. 71–87. ISBN: 978-3-
319-43283-0.

[60] Pawel Swierczynski et al. “Physical Security Evaluation of the
Bitstream Encryption Mechanism of Altera Stratix II and Stratix
III FPGAs”. In: ACM Trans. Reconfigurable Technol. Syst. 7.4 (Dec.
2014). ISSN: 1936-7406. DOI: 10.1145/2629462. URL: https://doi.
org/10.1145/2629462.

[61] Gedare Bloom et al. “FPGA SoC architecture and runtime to pre-
vent hardware Trojans from leaking secrets”. In: 2015 IEEE Interna-
tional Symposium on Hardware Oriented Security and Trust (HOST).
2015, pp. 48–51. DOI: 10.1109/HST.2015.7140235.

https://doi.org/10.1145/1278480.1278483
https://doi.org/10.1145/1278480.1278483
http://doi.acm.org/10.1145/1278480.1278483
http://doi.acm.org/10.1145/1278480.1278483
https://doi.org/10.1145/1687399.1687425
http://portal.acm.org/citation.cfm?doid=1687399.1687425
http://portal.acm.org/citation.cfm?doid=1687399.1687425
https://doi.org/10.1145/2046707.2046722
https://doi.org/10.1145/2046707.2046722
https://doi.org/10.1145/2629462
https://doi.org/10.1145/2629462
https://doi.org/10.1145/2629462
https://doi.org/10.1109/HST.2015.7140235

116 Bibliography

[62] X. Zhang and M. Tehranipoor. “Case study: Detecting hardware
Trojans in third-party digital IP cores”. In: 2011 IEEE International
Symposium on Hardware-Oriented Security and Trust. 2011, pp. 67–
70. DOI: 10.1109/HST.2011.5954998.

[63] Trey Reece et al. “Stealth assessment of hardware Trojans in a mi-
crocontroller”. In: 2012 IEEE 30th International Conference on Com-
puter Design (ICCD). 2012, pp. 139–142. DOI: 10.1109/ICCD.2012.
6378631.

[64] J. C. M. Santos and Y. Fei. “Designing and implementing a Ma-
licious 8051 processor”. In: 2012 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT). 2012, pp. 63–66. DOI: 10.1109/DFT.2012.6378201.

[65] Yier Jin, Michail Maniatakos, and Yiorgos Makris. “Exposing vul-
nerabilities of untrusted computing platforms”. In: 2012 IEEE 30th
International Conference on Computer Design (ICCD). 2012, pp. 131–
134. DOI: 10.1109/ICCD.2012.6378629.

[66] Michael Patterson et al. “A multi-faceted approach to FPGA-based
Trojan circuit detection”. In: 2013 IEEE 31st VLSI Test Symposium
(VTS). 2013, pp. 1–4. DOI: 10.1109/VTS.2013.6548925.

[67] Nisha Jacob et al. “Compromising FPGA SoCs using malicious
hardware blocks”. In: Design, Automation & Test in Europe Confer-
ence & Exhibition, DATE 2017, Lausanne, Switzerland, March 27-31,
2017. Ed. by David Atienza and Giorgio Di Natale. IEEE, 2017,
pp. 1122–1127. DOI: 10.23919/DATE.2017.7927157. URL: https:
//doi.org/10.23919/DATE.2017.7927157.

[68] Paris Kitsos and Artemios G. Voyiatzis. “FPGA Trojan Detection
Using Length-Optimized Ring Oscillators”. In: 2014 17th Euromi-
cro Conference on Digital System Design. 2014, pp. 675–678. DOI: 10.
1109/DSD.2014.74.

[69] Paris Kitsos, Kyriakos Stefanidis, and Artemios G. Voyiatzis.
“TERO-Based Detection of Hardware Trojans on FPGA Imple-
mentation of the AES Algorithm”. In: 2016 Euromicro Conference
on Digital System Design (DSD). 2016, pp. 678–681. DOI: 10.1109/
DSD.2016.47.

[70] Jie Zhang, Feng Yuan, and Qiang Xu. “DeTrust: Defeating Hard-
ware Trust Verification with Stealthy Implicitly-Triggered Hard-
ware Trojans”. In: Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security. CCS ’14. Scotts-
dale, Arizona, USA: Association for Computing Machinery, 2014,

https://doi.org/10.1109/HST.2011.5954998
https://doi.org/10.1109/ICCD.2012.6378631
https://doi.org/10.1109/ICCD.2012.6378631
https://doi.org/10.1109/DFT.2012.6378201
https://doi.org/10.1109/ICCD.2012.6378629
https://doi.org/10.1109/VTS.2013.6548925
https://doi.org/10.23919/DATE.2017.7927157
https://doi.org/10.23919/DATE.2017.7927157
https://doi.org/10.23919/DATE.2017.7927157
https://doi.org/10.1109/DSD.2014.74
https://doi.org/10.1109/DSD.2014.74
https://doi.org/10.1109/DSD.2016.47
https://doi.org/10.1109/DSD.2016.47

Bibliography 117

153–166. ISBN: 9781450329576. DOI: 10.1145/2660267.2660289.
URL: https://doi.org/10.1145/2660267.2660289.

[71] Masaru Oya et al. “A Score-Based Classification Method for Iden-
tifying Hardware-Trojans at Gate-Level Netlists”. In: Proceedings
of the 2015 Design, Automation & Test in Europe Conference & Exhibi-
tion. DATE ’15. Grenoble, France: EDA Consortium, 2015, 465–470.
ISBN: 9783981537048.

[72] H. Salmani, M. Tehranipoor, and R. Karri. “On design vulner-
ability analysis and trust benchmarks development”. In: 2013
IEEE 31st International Conference on Computer Design (ICCD). 2013,
pp. 471–474. DOI: 10.1109/ICCD.2013.6657085.

[73] H. Salmani. “COTD: Reference-Free Hardware Trojan Detection
and Recovery Based on Controllability and Observability in Gate-
Level Netlist”. In: IEEE Transactions on Information Forensics and Se-
curity 12 (2017), pp. 338–350.

[74] George AF Seber. Multivariate observations. Vol. 252. John Wiley &
Sons, 2009.

[75] Rajat Subhra Chakraborty et al. “Hardware Trojan Insertion by Di-
rect Modification of FPGA Configuration Bitstream”. In: IEEE De-
sign Test 30.2 (2013), pp. 45–54. DOI: 10.1109/MDT.2013.2247460.

[76] Cyrus Peikari and Anton Chuvakin. Security Warrior. O’Reilly &
Associates, Inc., 2004. ISBN: 0596005458.

[77] Adam Duncan et al. “FPGA Bitstream Security: A Day in the Life”.
en. In: 2019 IEEE International Test Conference (ITC). Washington,
DC, USA: IEEE, 2019, pp. 1–10. ISBN: 978-1-72814-823-6. DOI: 10.
1109/ITC44170.2019.9000145. URL: https://ieeexplore.ieee.
org/document/9000145/ (visited on 08/22/2020).

[78] Behnam Khaleghi et al. “FPGA-Based Protection Scheme against
Hardware Trojan Horse Insertion Using Dummy Logic”. In: IEEE
Embedded Systems Letters 7.2 (2015), pp. 46–50. DOI: 10.1109/LES.
2015.2406791.

[79] Ken Thompson. “Reflections on Trusting Trust”. In: Commun.
ACM 27.8 (Aug. 1984), 761–763. ISSN: 0001-0782. DOI: 10.1145/
358198.358210. URL: https://doi.org/10.1145/358198.358210.

[80] Qazi Arbab Ahmed, Tobias Wiersema, and Marco Platzner.
“Proof-Carrying Hardware Versus the Stealthy Malicious LUT
Hardware Trojan”. In: Applied Reconfigurable Computing. Ed. by

https://doi.org/10.1145/2660267.2660289
https://doi.org/10.1145/2660267.2660289
https://doi.org/10.1109/ICCD.2013.6657085
https://doi.org/10.1109/MDT.2013.2247460
https://doi.org/10.1109/ITC44170.2019.9000145
https://doi.org/10.1109/ITC44170.2019.9000145
https://ieeexplore.ieee.org/document/9000145/
https://ieeexplore.ieee.org/document/9000145/
https://doi.org/10.1109/LES.2015.2406791
https://doi.org/10.1109/LES.2015.2406791
https://doi.org/10.1145/358198.358210
https://doi.org/10.1145/358198.358210
https://doi.org/10.1145/358198.358210

118 Bibliography

Christian Hochberger et al. Cham: Springer International Publish-
ing, 2019, pp. 127–136. ISBN: 978-3-030-17227-5. URL: https : / /
doi.org/10.1007/978-3-030-17227-5_10.

[81] G. Necula and P. Lee. “Research on proof-carrying code for
untrusted-code security”. In: Proceedings. 1997 IEEE Symposium on
Security and Privacy (Cat. No.97CB36097). 1997, pp. 204–. DOI: 10.
1109/SECPRI.1997.601335.

[82] S. Drzevitzky, U. Kastens, and M. Platzner. “Proof-Carrying Hard-
ware: Towards Runtime Verification of Reconfigurable Modules”.
In: 2009 International Conference on Reconfigurable Computing and
FPGAs. IEEE, 2009, pp. 189–194. DOI: 10.1109/ReConFig.2009.31.

[83] Tobias Wiersema, Stephanie Drzevitzky, and Marco Platzner.
“Memory Security in Reconfigurable Computers: Combining For-
mal Verification with Monitoring”. In: International Conference on
Field-Programmable Technology (FPT 2014). IEEE, 2014, pp. 167–174.
DOI: 10.1109/FPT.2014.7082771.

[84] Lattice Semiconductor. last visited on 21/11/2018. URL: {http://
www.latticesemi.com/iCE40}.

[85] Tobias Isenberg et al. “Proof-Carrying Hardware via Inductive
Invariants”. In: ACM Trans. Des. Autom. Electron. Syst. 22.4 (July
2017). ISSN: 1084-4309. DOI: 10.1145/3054743. URL: https://doi.
org/10.1145/3054743.

[86] Cotton Seed. Arachne-pnr. last visited on 15/11/2018. URL:
{https://github.com/YosysHQ/arachne-pnr}.

[87] Maxime Cozzi, Jean-Marc Galliere, and Philippe Maurine. “Ther-
mal Scans for Detecting Hardware Trojans”. In: Constructive
Side-Channel Analysis and Secure Design. Ed. by Junfeng Fan
and Benedikt Gierlichs. Cham: Springer International Publishing,
2018, pp. 117–132. ISBN: 978-3-319-89641-0.

[88] Junghwan Yoon et al. “A Bitstream Reverse Engineering Tool for
FPGA Hardware Trojan Detection”. en. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security.
Toronto Canada: ACM, Oct. 2018, pp. 2318–2320. ISBN: 978-1-4503-
5693-0. DOI: 10.1145/3243734.3278487. URL: http://dl.acm.
org/doi/10.1145/3243734.3278487 (visited on 01/16/2020).

[89] Tao Zhang et al. “A Comprehensive FPGA Reverse Engineering
Tool-Chain: From Bitstream to RTL Code”. en. In: IEEE Access 7
(2019), pp. 38379–38389. ISSN: 2169-3536. DOI: 10.1109/ACCESS.

https://doi.org/10.1007/978-3-030-17227-5_10
https://doi.org/10.1007/978-3-030-17227-5_10
https://doi.org/10.1109/SECPRI.1997.601335
https://doi.org/10.1109/SECPRI.1997.601335
https://doi.org/10.1109/ReConFig.2009.31
https://doi.org/10.1109/FPT.2014.7082771
{http://www.latticesemi.com/iCE40}
{http://www.latticesemi.com/iCE40}
https://doi.org/10.1145/3054743
https://doi.org/10.1145/3054743
https://doi.org/10.1145/3054743
{https://github.com/YosysHQ/arachne-pnr}
https://doi.org/10.1145/3243734.3278487
http://dl.acm.org/doi/10.1145/3243734.3278487
http://dl.acm.org/doi/10.1145/3243734.3278487
https://doi.org/10.1109/ACCESS.2019.2901949
https://doi.org/10.1109/ACCESS.2019.2901949
https://doi.org/10.1109/ACCESS.2019.2901949

Bibliography 119

2019.2901949. URL: https://ieeexplore.ieee.org/document/
8653869/ (visited on 01/16/2020).

[90] Kento Hasegawa, Masao Yanagisawa, and Nozomu Togawa.
“Hardware Trojans classification for gate-level netlists using
multi-layer neural networks”. en. In: 2017 IEEE 23rd International
Symposium on On-Line Testing and Robust System Design (IOLTS).
Thessaloniki, Greece: IEEE, July 2017, pp. 227–232. ISBN: 978-1-
5386-0352-9. DOI: 10 . 1109 / IOLTS . 2017 . 8046227. URL: http :
/ / ieeexplore . ieee . org / document / 8046227/ (visited on
11/25/2019).

[91] National Institute of Standards and Technology (NIST). Advanced
Encryption Standard (AES). [Online]. URL: {https : / / nvlpubs .
nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf}.

[92] P. Hamalainen et al. “Design and Implementation of Low-Area
and Low-Power AES Encryption Hardware Core”. In: 9th EU-
ROMICRO Conference on Digital System Design (DSD’06). 2006,
pp. 577–583. DOI: 10.1109/DSD.2006.40.

[93] 8bit datapath AES. [Online]. URL: {https : / / github . com /

ChengluJin/8bit_datapath_AES}.

[94] Clifford Wolf. Yosys Open SYnthesis Suite. (last visited on
15/11/2018). URL: {http://www.clifford.at/yosys/}.

[95] Hassan Salmani, Mohammad Tehranipoor, and Jim Plusquellic.
“A Novel Technique for Improving Hardware Trojan Detection
and Reducing Trojan Activation Time”. en. In: IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 20.1 (2012), pp. 112–
125. ISSN: 1063-8210. DOI: 10.1109/TVLSI.2010.2093547. URL:
http://ieeexplore.ieee.org/document/5678829/ (visited on
06/02/2021).

[96] Lang Lin et al. “Trojan Side-Channels: Lightweight Hardware
Trojans through Side-Channel Engineering”. en. In: Cryptographic
Hardware and Embedded Systems - CHES 2009. Ed. by Christophe
Clavier and Kris Gaj. Vol. 5747. Series Title: Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2009, pp. 382–395. ISBN: 978-3-642-04137-2 978-3-642-04138-
9. DOI: 10.1007/978-3-642-04138-9_27. URL: http://link.
springer.com/10.1007/978- 3- 642- 04138- 9_27 (visited on
06/02/2021).

https://doi.org/10.1109/ACCESS.2019.2901949
https://doi.org/10.1109/ACCESS.2019.2901949
https://doi.org/10.1109/ACCESS.2019.2901949
https://doi.org/10.1109/ACCESS.2019.2901949
https://ieeexplore.ieee.org/document/8653869/
https://ieeexplore.ieee.org/document/8653869/
https://doi.org/10.1109/IOLTS.2017.8046227
http://ieeexplore.ieee.org/document/8046227/
http://ieeexplore.ieee.org/document/8046227/
{https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf}
{https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf}
https://doi.org/10.1109/DSD.2006.40
{https://github.com/ChengluJin/8bit_datapath_AES}
{https://github.com/ChengluJin/8bit_datapath_AES}
{http://www.clifford.at/yosys/}
https://doi.org/10.1109/TVLSI.2010.2093547
http://ieeexplore.ieee.org/document/5678829/
https://doi.org/10.1007/978-3-642-04138-9_27
http://link.springer.com/10.1007/978-3-642-04138-9_27
http://link.springer.com/10.1007/978-3-642-04138-9_27

120 Bibliography

[97] Jiaji He et al. “Hardware Trojan Detection Through Chip-
Free Electromagnetic Side-Channel Statistical Analysis”. In: IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 25.10
(2017). Conference Name: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, pp. 2939–2948. ISSN: 1557-9999. DOI:
10.1109/TVLSI.2017.2727985.

[98] Lattice Semiconductor. iCEcube2 Design Software. [Online]. URL:
{https : / / www . latticesemi . com / iCEcube2} (visited on
05/20/2021).

[99] X-T. Ngo et al. “Hardware Trojan detection by delay and elec-
tromagnetic measurements”. In: 2015 Design, Automation Test in
Europe Conference Exhibition (DATE). 2015, pp. 782–787. DOI: 10.
7873/DATE.2015.1103.

[100] K. Nielsen. ICE40 Layout Viewer. [Online]. URL: {https://github.
com/knielsen/ice40_viewer} (visited on 08/10/2020).

[101] Reza M. Rad et al. “Power supply signal calibration techniques for
improving detection resolution to hardware Trojans”. en. In: 2008
IEEE/ACM International Conference on Computer-Aided Design. San
Jose, CA, USA: IEEE, 2008, pp. 632–639. ISBN: 978-1-4244-2819-9.
DOI: 10.1109/ICCAD.2008.4681643. URL: http://ieeexplore.
ieee.org/document/4681643/ (visited on 06/02/2021).

[102] D. Agrawal et al. “Trojan Detection using IC Fingerprinting”.
In: 2007 IEEE Symposium on Security and Privacy (SP ’07). 2007,
pp. 296–310. DOI: 10.1109/SP.2007.36.

[103] Yier Jin and Y. Makris. “Hardware Trojan detection using path de-
lay fingerprint”. In: 2008 IEEE International Workshop on Hardware-
Oriented Security and Trust. 2008, pp. 51–57. DOI: 10.1109/HST.
2008.4559049.

[104] Falk Schellenberg et al. “An inside job: Remote power analysis at-
tacks on FPGAs”. In: 2018 Design, Automation Test in Europe Confer-
ence Exhibition (DATE). 2018, pp. 1111–1116. DOI: 10.23919/DATE.
2018.8342177.

[105] Dennis R. E. Gnad, Fabian Oboril, and Mehdi B. Tahoori. “Volt-
age drop-based fault attacks on FPGAs using valid bitstreams”.
In: 2017 27th International Conference on Field Programmable Logic
and Applications (FPL). 2017, pp. 1–7. DOI: 10.23919/FPL.2017.
8056840.

https://doi.org/10.1109/TVLSI.2017.2727985
{https://www.latticesemi.com/iCEcube2}
https://doi.org/10.7873/DATE.2015.1103
https://doi.org/10.7873/DATE.2015.1103
{https://github. com/knielsen/ice40_viewer}
{https://github. com/knielsen/ice40_viewer}
https://doi.org/10.1109/ICCAD.2008.4681643
http://ieeexplore.ieee.org/document/4681643/
http://ieeexplore.ieee.org/document/4681643/
https://doi.org/10.1109/SP.2007.36
https://doi.org/10.1109/HST.2008.4559049
https://doi.org/10.1109/HST.2008.4559049
https://doi.org/10.23919/DATE.2018.8342177
https://doi.org/10.23919/DATE.2018.8342177
https://doi.org/10.23919/FPL.2017.8056840
https://doi.org/10.23919/FPL.2017.8056840

Bibliography 121

[106] Dina Mahmoud and Mirjana Stojilović. “Timing Violation In-
duced Faults in Multi-Tenant FPGAs”. In: 2019 Design, Automation
Test in Europe Conference Exhibition (DATE). 2019, pp. 1745–1750.
DOI: 10.23919/DATE.2019.8715263.

[107] N. Veeranna and Benjamin Carrión Schäfer. “S3CBench: Synthe-
sizable Security SystemC Benchmarks for High-Level Synthesis”.
In: Journal of Hardware and Systems Security 1 (2017), pp. 103–113.

[108] Muhammad Awais, Hassan Ghasemzadeh Mohammadi, and
Marco Platzner. “An MCTS-based Framework for Synthesis of
Approximate Circuits”. In: 2018 IFIP/IEEE International Conference
on Very Large Scale Integration (VLSI-SoC). 2018, pp. 219–224. DOI:
10.1109/VLSI-SoC.2018.8645026.

[109] Linus Witschen et al. “CIRCA: Towards a modular and exten-
sible framework for approximate circuit generation”. In: Micro-
electronics Reliability 99 (2019), pp. 277–290. ISSN: 0026-2714. DOI:
https://doi.org/10.1016/j.microrel.2019.04.003. URL:
https : / / www . sciencedirect . com / science / article / pii /

S002627141830859X.

https://doi.org/10.23919/DATE.2019.8715263
https://doi.org/10.1109/VLSI-SoC.2018.8645026
https://doi.org/https://doi.org/10.1016/j.microrel.2019.04.003
https://www.sciencedirect.com/science/article/pii/S002627141830859X
https://www.sciencedirect.com/science/article/pii/S002627141830859X

	Acknowledgements
	Abstract
	Zusammenfassung
	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Focus of this thesis
	1.3 Contributions
	1.4 Organization of the thesis

	2 Background and Related Works
	2.1 Field-Programmable Gate Array
	2.2 Hardware Trojans
	2.3 Related Works

	3 Proof-Carrying Hardware Versus the Bitstream-level Hardware Trojans in FPGAs
	3.1 Malicious LUT Hardware Trojan
	3.2 Proof-Carrying Hardware
	3.3 Bitstream-level Proof-Carrying Hardware for ICE FPGAs
	3.4 Tool Flow for ICE FPGAs
	3.5 Attack Scenarios
	3.6 Experimental Validation
	3.7 Discussion
	3.8 Chapter Conclusion

	4 Post-Configuration Activation of Hardware Trojans in FPGAs
	4.1 Overview and Threat Model
	4.2 Methodology
	4.3 Experimental Validation
	4.4 Discussion
	4.5 Chapter Conclusion

	5 Conclusion
	6 Outlook
	List of Tables
	List of Listings
	List of Algorithms
	List of Figures
	List of Abbreviations
	Author's Publications
	Bibliography

