
PREPRINT - accepted by 31th IFIP/IEEE International Conference on Very Large Scale Integration 2023 (VLSI-SoC 2023)

Mapping of CNNs on multi-core RRAM-based
CIM architectures

Rebecca Pelke , Nils Bosbach , Jose Cubero , Felix Staudigl , Rainer Leupers , and Jan Moritz Joseph
RWTH Aachen University, Germany

Abstract—Resistive random access memory (RRAM)-based
multi-core systems improve the energy efficiency and perfor-
mance of convolutional neural networks (CNNs). Thereby, the
distributed parallel execution of convolutional layers causes
critical data dependencies that limit the potential speedup. This
paper presents synchronization techniques for parallel inference
of convolutional layers on RRAM-based computing-in-memory
(CIM) architectures. We propose an architecture optimization
that enables efficient data exchange and discuss the impact of dif-
ferent architecture setups on the performance. The corresponding
compiler algorithms are optimized for high speedup and low
memory consumption during CNN inference. We achieve more
than 99 % of the theoretical acceleration limit with a marginal
data transmission overhead of less than 4 % for state-of-the-art
CNN benchmarks.

Index Terms—CNN, RRAM, CIM, weight mapping

I. INTRODUCTION

In recent years, the broad use of convolutional neural
networks (CNNs) in computer vision applications yielded an
ever-growing demand for efficient architectures to handle these
compute- and data-intensive workloads. Due to the massive
parallelism and reuse capabilities in CNNs, these applications
are not only executed on classical von-Neumann architectures
but also on specialized hardware including graphics processing
units (GPUs) and tensor processing units (TPUs). Today, CNN
accelerators exist in various form factors, from power-efficient
edge devices to hyper-scaled compute clusters.

Despite the extensive innovation sparked by the ubiquitous
use of CNNs, all these custom architectures suffer from
one major performance limitation, namely, moving data from
the system’s main memory to the compute units, and vice
versa [1]. In other words, CNN accelerators suffer from the
von-Neumann bottleneck [2]. Novel computing-in-memory
(CIM) technologies, such as resistive random access memory
(RRAM), promise to tackle this bottleneck by unifying mem-
ory and computation unit [3]. These designs offer a significant
advantage over CMOS-based designs in terms of memory
capacity, device density, and power consumption [4].

Previous works presented accelerator architectures that
use RRAM crossbars as matrix-vector multiplication (MVM)
units [5]–[8]. These architectures are designed hierarchically to
scale from single MVM units to complex multi-core systems.
To achieve maximum flexibility and scalability, the MVM
units are often embedded in CIM cores, which can communi-
cate with each other over a bus system [6], [7].

This work was funded by the Federal Ministry of Education and Research
(BMBF, Germany) in the project NeuroSys (Project Nos. 03ZU1106CA).

Statistics

Compiler

Pre-trained CNN
(TF model)

Specification
Parameter Value

Cores 16
Xbar dim 128x128
Bus width 16 byte

Latency results,
bus utilization,

…..

Compiler and
workload stats,

…..

….. …..

b)Architecture

Core Core

Core

CPU

Memory

Interconnect (AXI4)

…

a)

.bin

cfg

…

Fig. 1. Evaluation framework containing architecture (a) and compiler (b).

The accelerators aim at a weight stationary data flow, i.e.,
the weights of the CNN are statically assigned to RRAM
crossbars [9]. This requires the development of new concepts
in the compiler domain. The authors of [10]–[15] investigated
the translation of conv2D operations to MVMs. They focused
on the mapping of kernel weights to RRAM crossbars. To
achieve a high speedup, the kernel weights of one layer must
be split across multiple CIM cores for parallel processing.
This causes critical data dependencies between cores, which
are often neglected. Synchronization techniques are needed
to resolve these dependencies. They must be considered in
the context of the underlying architecture. The authors of
[6] proposed a centrally organized synchronization technique.
This scheme requires a high amount of non-RRAM memory.

In our work, we enable efficient, low-overhead parallel
execution of CNN layers on multi-core RRAM-based CIM
architectures. We use decentralized synchronization methods
to minimize memory consumption with marginal data traffic
overhead. This includes the following contributions:

• An architecture optimized for efficient, decentralized, and
event-based communication.

• Compiler algorithms that achieve more than 99 % of the
theoretical acceleration limit for conv2D layers.

• A cycle-accurate simulator to analyze the influence of
different algorithms and architecture parameters.

Fig. 1 illustrates our evaluation framework. The architecture
simulator is used to validate and evaluate the proposed algo-
rithms (see Fig. 1(a)). The specification allows setting different
architecture parameters to investigate their influence on the
CNN inference. The compiler receives a CNN model and an
architecture specification as input and generates code that can
be executed on the simulator (see Fig. 1(b)).979-8-3503-2599-7/23/$31.00 ©2023 IEEE

ar
X

iv
:2

30
9.

03
80

5v
4

 [
cs

.A
R

]
 2

6
O

ct
 2

02
3

https://orcid.org/0000-0001-5156-7072
https://orcid.org/0000-0002-2284-949X
https://orcid.org/0000-0001-9575-0856
https://orcid.org/0000-0001-9673-3070
https://orcid.org/0000-0002-6735-3033
https://orcid.org/0000-0001-8669-1225

PREPRINT - accepted by 31th IFIP/IEEE International Conference on Very Large Scale Integration 2023 (VLSI-SoC 2023)

II. BACKGROUND

A. RRAM crossbars

A RRAM device is a non-volatile emerging memory that
stores a conductance value. Multiple RRAM devices can be
arranged in crossbar structures to enable in-memory comput-
ing [16]. On RRAM crossbars, MVMs can be performed in
the analog domain in O(1) [17]. The weights of the neural
network are stored in the crossbar. By applying the input
values as voltages, currents are generated that correspond to
the result of the MVM. Modern RRAM crossbars have been
fabricated in different sizes, e.g., 64× 64 [6], 128× 128 [7].

B. Weight mapping

Performing MVMs is significantly faster than programming
the crossbar cells [5]. If the accelerator provides a sufficient
number of crossbars, the weights should therefore be pro-
grammed only once to ensure an efficient inference phase.
Conv2D layers are well suited for the execution on RRAM
crossbars since they can be translated into MVMs and the
matrices can be reused multiple times. This has been investi-
gated in previous works. One of the first methods, im2col [10],
assigns kernel values to crossbar cells with the densest RRAM
cell occupancy. In other approaches, the crossbar is more
sparsely packed and kernel values are duplicated to increase
the input reuse [11], [13]. Since the im2col scheme requires
the least number of RRAM cells, an extended im2col method
is used in this work, which splits the kernel values of one layer
over several crossbars [14], [15].

C. RRAM-based CIM architectures

Several RRAM-based CIM architectures have been pre-
sented [6]–[8], [18]. They aim at efficient and parallel exe-
cution of MVMs. Besides different interconnect models, they
mainly differ in how autonomously the CIM cores can operate.
It ranges from simple MVM units to powerful instruction set
architecture (ISA)-based cores [19]. Simple MVM units can be
driven and synchronized by a central control unit. Autonomous
cores, on the other hand, can execute workloads independently
and do not need to be actively controlled. This makes them
more flexible and performant. They require a more advanced
synchronization procedure, which is addressed in this work.

D. Synchronization techniques

The parallel execution of layers causes critical data depen-
dencies that can lead to incorrect results (see Section IV-A).
This can be avoided at the cost of performance loss by execut-
ing the critical sections in sequence [13] (see Section IV-B).
For parallel execution, synchronization methods are required
that need to be supported by the architecture.

The authors of [6] introduced a central synchronization
scheme. In their architecture, several tiles form the accelerator.
A tile is structured similar to the architecture in Fig. 1(a)
and contains a controller, several CIM cores, and shared
memory. The synchronization is solved centrally by extending
the shared memory with an attribute buffer. This attribute
buffer contains two attributes for each data entry, valid and

MVMU
𝑀 × 𝑁

….

….
….

…
.

…
.

…
.

….

Output regs:
4 ⋅ 𝑀 Byte

D
A

C

ADC,S+A

Ctrl

In
pu

t
re

gs
:

𝑁
B

yt
e

Instruction
memory:

4 KB

Data
buffer:

8 ⋅ 𝑀 Byte
Controller:
MVM, LOAD,
STORE, MOV,
CALL, WAIT

GPEU:
ADD, MUL,

SUB, DIV, MIN,
MAX, SHIFT

Setup phase
Control
IFM data
OFM data
Instructions
Dimensioning

CIM Core

Bus interconnect

Config:
20 regs

Fig. 2. CIM core architecture, data flow, instructions, and dimensioning.

count. A memory controller maintains the attributes to ensure
the correct exchange of data. In this solution, a significant
amount of memory is needed to store the attributes. For 64 kB
of data in the shared memory, 32 K attributes are required [6].
We improve on this idea by proposing a decentralized syn-
chronization scheme that requires significantly less memory.

III. ARCHITECTURE

We model a multi-core system as a reference architecture
(see Fig. 1(a)). The CIM cores are connected by a bus and
use shared memory to exchange their data. In this work, the
bus system is used to execute one layer. To be able to execute
whole CNNs, the system can simply be duplicated. Architec-
ture parameters, e.g., the number of cores and the size of the
crossbars, can be specified variably in our model to investigate
their influence on the performance (see Section V-C).

Fig. 2 illustrates the CIM core model including data flow,
instructions, and dimensioning. The buffer sizes depend on
the matrix size that the MVM unit can process. Cores act
as initiators and targets of bus transactions. As initiators,
they can, e.g., perform LOAD and STORE operations. As a
target, they can receive config parameters. The general purpose
execution unit (GPEU) can perform arithmetic operations and
some activation functions like ReLU and LeakyReLU.

Cores operate in two phases. In the setup phase, the CPU
configures the CIM cores. The instructions are loaded and ker-
nel values are programmed into crossbar cells. In the inference
phase, the CNN layer is executed. After all calculations are
completed, an interrupt is signaled to the CPU.

IV. COMPILER

Our compiler is written in Python to enable simple proofs of
concept. It compiles conv2D and dense layers from Tensorflow
models and generates a bin and a cfg file for each layer
depending on the architecture specification. The cfg file is
interpreted by the CPU to configure the CIM cores in the
setup phase. The bin file is loaded into the shared memory of
the CIM cores. It contains an instructions section for each core
separately in case not all instructions fit into the instruction
memory of the core. It provides placeholders for the input
feature map (IFM) and output feature map (OFM) of the layer.
In the following, mapping and synchronization techniques

PREPRINT - accepted by 31th IFIP/IEEE International Conference on Very Large Scale Integration 2023 (VLSI-SoC 2023)

are discussed for the conv2D operation. Dense layers can be
treated analogously.

A. Operation remapping

Fig. 3(a) shows the main components of a conv2D layer,
i.e., IFM, OFM, and kernels. Fig. 3(b) illustrates the im2col
scheme [15]. The unrolled kernels form a matrix, which can
then be multiplied by OX ·OY unrolled vectors from the IFM.

State-of-the-art CNN layers are often too big to be stored
in a single crossbar. The kernel values of one layer have to
be split over several crossbars (red lines) [10], [14]. Fig. 3(c)
shows the assignment of kernel values to cores. In the setup
phase, the CPU loads the IFM to the associated placeholder
in the shared memory. Bias values are initially written to the
placeholder of the OFM. The GPEU is used to accumulate the
bias values and to accomplish the activation function.

We extend the multi-core im2col scheme by assigning two
group IDs to each core. All cores sharing the same vertical
group (VG) ID operate on the same values of the IFM. All
cores sharing the same horizontal group (HG) ID generate
partial results for the same values in the OFM that have to
be accumulated. In the following, the cores are denoted as
CHG,V G. While the IFM is read-only, both, read and write
accesses are performed on the OFM. Considering M × N
crossbars and (KY ,KX ,KZ ,KNUM) conv2D kernels (HWIO
layout), the total number of needed cores CNUM is

CNUM =

⌈
KX ·KY ·KZ

N

⌉
︸ ︷︷ ︸

=:PV

·
⌈
KNUM

M

⌉
︸ ︷︷ ︸

=:PH

.

The area in the shared memory dedicated to the OFM is
reused for the exchange of partial results. This keeps the CIM
cores lean since the required buffer sizes and synchronization
complexity remain minimal. As a consequence, all cores
sharing the same HG ID operate on the same OFM locations in
the shared memory. The access must be regulated to avoid race
conditions. Hence, a synchronization technique is required to
ensure that all partial results are accumulated correctly. This
means PH sets of PV cores need to be synchronized for
OV,NUM = OX ·OY different output vectors of size M .

B. Synchronization schemes

All output vectors of the OFM stored in the shared memory
can be treated as a resource that may only be owned by
one core at any time. Fig. 4 illustrates the proposed syn-
chronization techniques for the example of three conflicting
cores C0,0, C0,1, and C0,PV −1 = C0,2 (PH = 1, PV = 3)
with 12 different output vectors, i.e., 12 different resources. To
calculate correctly, each core must have owned each resource
once to accumulate its partial results.

In the following, the different parallelization and synchro-
nization schemes are presented. A red sync line means that the
core that releases a resource notifies (CALL) its successor.
That is the core that will receive the resource next. The
successor must wait (WAIT) for the notification.

VG

… ...

….

….

KX ∙ KY ∙ KZ

KNUM

…
.

…
.

…
.

…
.

…
.

…
.

…. =

HGOX ∙ OY

…
.

…
.

…
.

…. +

Bias

1

0

PH-1

0 1 2 PV-1

IFM

A
ct

iv
at

io
n

fu
nc

ti
on

OX ∙ OY

….

OFM

·

…* =
IX

IY

IZ KX
KY

KZ

KNUM

OX

OY

OZIFM OFM
Kernel

C0,0 C0,PV-1 C1,0 C1,PV-1

… … … …

Interconnect (AXI4)

Shared
Memory

IFM

... OFM/Bias

...

CPU

a)

b)

c)

Fig. 3. Translation of a conv2D operation (a) into multiple MVMs with matrix
dimension M ×N (b) and distribution of kernel matrix values to cores (c).

1) Sequential synchronization: This scheme is the most
basic one. It is used in [12], [13]. Conflicting cores operate
sequentially and not in parallel, which eliminates the need
for complex synchronization procedures. In the example, C0,0

gets all resources first. After it has completed all calculations,
the next core, C0,1, is allowed to operate. The first core, C0,0,
accumulates the bias values and the last core, C0,PV −1, applies
the activation function to all output vectors (see Fig. 4(a)).

In the following, we propose two schemes, linear and cyclic
synchronization, to achieve parallel processing, i.e., cores of
the same HG can operate in parallel.

2) Linear synchronization: The cores process the output
vectors in the same order, starting from C0,0 to C0,2 in
the example. Core C0,0 has no predecessor and C0,2 has
no successor. Core C0,0 accumulates the bias values and
C0,PV −1 applies the activation function for all output vectors
(see Fig. 4(b)). In this case, the number of CALL and WAIT
operations is

PH ·OV,NUM · (PV − 1) .

3) Cyclic synchronization: In cyclic synchronization, tasks
are distributed as fair as possible among the cores. Each core
has exactly one predecessor and one successor. The output
vectors are processed cyclically by the cores. The core that first
gains access to an output vector accumulates the bias values
to its partial results. The core that receives access to an output
vector last executes the activation function (see Fig. 4(c)).
As a result, the execution of the activation functions and the
addition of the bias values are shared equally among all cores.
In this case, the number of CALL and WAIT operations is

PH ·
⌈
OV,NUM

PV

⌉
· PV · (PV − 1) .

PREPRINT - accepted by 31th IFIP/IEEE International Conference on Very Large Scale Integration 2023 (VLSI-SoC 2023)

C0,0 C0,1 C0,2

0 1 2

1 2 0

2 0 1

3 4 5

4 5 3

5 3 4

6 7 8

7 8 6

8 6 7

9 10 11

10 11 9

11 9 10

ti
m
e

sync

C0,0 C0,1 C0,2

0

1 0

2 1 0

3 2 1

4 3 2

5 4 3

6 5 4

7 6 5

8 7 6

9 8 7

10 9 8

11 10 9

11 10

11

LINEAR

CYCLIC

C0,0 C0,1 C0,2

0

1

2

3

4

5

6

7

8

9

10

11

0

…

11

0

…

11

SEQUENTIAL

C0,0

C0,1 Shared
Memory

SEQ NR

SEQ NR

C0,2
SEQ NR

++

++
++

C0,0

Shared
Memory

SEQ NR

C0,2
SEQ NR

++

++
Data
Wait
Call

Pseudo instructions

LOAD input 0
MVM
LOAD bias 0
ADD
STORE output 0
CALL seq nr 1
....
LOAD input i
MVM
WAIT seq nr i+1
LOAD output i
ADD
STORE output i
CALL seq nr i+1
....
LOAD input K-1
MVM
WAIT seq nr K
LOAD output K-1
ADD
ACTIVATION
STORE output K-1

sync

C0,1
SEQ NR

a) b) c) d)

++

I

II

III

Fig. 4. Sequential computation of OFM without synchronization scheme (a), parallel computation of OFM with linear (b) and cyclic (c) synchronization for
conflicting cores C0,0, C0,1 and C0,2, pseudo instructions for parallel computation of a conv2D operation (d).

C. Sequence number

We extend each core with a single register to enable par-
allelization and synchronization on the architecture side. That
is illustrated in Fig. 4(b) and Fig. 4(c). This register contains
a sequence number (SEQ NR) which is writable for other
cores. The initial value is 0. A CALL operation increments
the sequence number of the successor core (blue line). When
executing a WAIT operation, the core waits for its sequence
number to reach at least a certain value. Fig. 4(d) shows the
pseudo instructions. Three cases are distinguished. In the first
case, the core has no predecessor for the output it is working
on. In the second case, the core has both, a predecessor and
a successor. The last case describes the scenario in which a
core is the last one operating on an output.

V. RESULTS

We evaluate our proposed parallelization techniques in terms
of speedup gain and overhead costs using the conv2D layers
of Mobilenet [20] and ResNet-18 [21]. Those layers are also
found in other CNNs. The synchronization methods do not
affect the accuracy of the CNNs, which is therefore not
examined here. The conv2D layers are compiled for differ-
ent architecture parameters and synchronization schemes to
investigate their effects on the performance.

A. Architecture simulator

Compiled layers are executed on our SystemC/TLM-2.0-
based simulator to verify the compiler concepts and algo-
rithms. To obtain realistic latency values and enable archi-
tectural exploration on a high abstraction level, the TLM-
2.0 non-blocking interface is used in combination with the
approximately-timed coding style [22]. We use a multi-
initiator-multi-target AXI4 bus interconnect [23]. The AXI4
bus protocol [24] supports burst transactions and out-of-
order transaction completion, which are beneficial features
for data-intensive and highly parallel workloads. We capture
relevant data during runtime to evaluate the impact of different
architecture parameters and synchronization methods on the
performance [25].

B. Performance speedup

To evaluate the parallelization and synchronization methods,
we examine the speedup of the linear (Fig. 4(b)) and cyclic
schemes (Fig. 4(c)). The speedup always refers to the latency
of the corresponding sequential version [12], [13] (Fig. 4(a)).

SLINEAR =
tSEQUENTIAL

tLINEAR
, SCY CLIC =

tSEQUENTIAL

tCY CLIC

The variable tX denotes the latency of the inference of a
conv2D layer using scheme X . An upper bound for the maxi-
mum achievable speedup is PV , i.e., all conflicting cores run in
parallel without synchronization overhead (see Section IV-B).

Fig. 5 shows the speedup of the linear (blue) and the cyclic
synchronization method (red) for different conv2D layers of
Mobilenet. The shapes of the used layers (Layer #) are listed
in Table I. The crossbar dimensions are 32× 32 and 64× 64.
This, in combination with the kernel shape of the layer, deter-
mines the number of needed cores. The upper bound for the
maximum achievable speedup (PV) is indicated by the dashed
lines. The speedup increases when reducing the crossbar size.
A reduction from 64 × 64 to 32 × 32 crossbars results in a
speedup of at most 2× referred to the corresponding sequential
scheme. Up to 4× more cores are required which increases the
bus utilization and synchronization complexity. This means
that higher speedups can be achieved at the cost of higher
numbers of cores and larger bus widths.

Fig. 5 also reveals the speedup which can be achieved
for conv2D layers depending on the bus width and crossbar
dimension. The figure demonstrates that the speedup limit can
be reached even for small bus widths (4 B) when the total
number of cores is small (≤ 32). Using a large bus width of
32 B, up to 128 cores can operate in parallel. Beyond this, the
speedup limit cannot be reached. Reaching the speedup limit
for sufficiently high bus widths proves that the synchronization
presented in this work does not cause long waiting times.
The highest speedup that is achieved is 16× for layer 5. The
speedup of the cyclic method is slightly higher compared to
the linear method because the instructions are distributed more
evenly among the cores (see Section IV-B). Thus, the linear

PREPRINT - accepted by 31th IFIP/IEEE International Conference on Very Large Scale Integration 2023 (VLSI-SoC 2023)

Fig. 5. Speedup vs. maximum achievable speedup (dashed lines) of the linear and cyclic synchronization for different layers, crossbar dimensions, and bus
widths. The number of cores depends on the layer and crossbar dimension. It refers to 32× 32 crossbars (left entry) and 64× 64 crossbars (right entry).

method should be preferred due to its simple implementation.

C. Bus width

We previously demonstrated that the synchronization meth-
ods are very efficient as the speedup limit can almost be
attained. However, this limit can only be achieved when the
bus is sufficiently wide which prevents it from becoming a
bottleneck. Fig. 6 shows to which extent the speedup limit can
be reached depending on the crossbar dimension, bus width,
and the number of cores. Each line represents one combination
of crossbar dimension and bus width. For every combination,
conv2D layers from the Mobilenet and ResNet-18 architecture
were compiled and simulated. The data from Fig. 6 can be used
to determine two things, the appropriate number of cores for
a given crossbar dimension and bus width or a reasonable bus
width for a given number of cores and crossbar dimension.

In general, the smaller the bus width, the lower the number
of cores the bus can handle without becoming a bottleneck.
For small bus widths (4 B, red line), only a maximum of 16
cores are worthwhile to achieve more than 90 % of the speedup
limit, with 64 B (blue line) the system can contain up to 512
cores. If the crossbar dimension is halved, i.e., the number
of required cores is quadrupled, then the bus width should at
least be doubled to achieve similar performance. For a given
number of cores, Fig. 6 can be used to determine a suitable
combination of crossbar dimension and bus width.

TABLE I
EXCERPT FROM MOBILNET’S CONV2D LAYERS

kernel shape matrix shape input shape
1 1× 1× 128× 128 128× 128 56× 56× 128
2 1× 1× 128× 256 256× 128 28× 28× 128
3 1× 1× 256× 256 256× 256 28× 28× 256
4 1× 1× 256× 512 512× 256 14× 14× 256
5 1× 1× 512× 512 512× 512 14× 14× 512
6 1× 1× 512× 1024 1024× 512 7× 7× 512
7 1× 1× 1024× 1024 1024× 1024 7× 7× 1024

D. Area overhead

Apart from the performance, the overhead caused by syn-
chronization needs to be considered. A major advantage of
the methods presented in this work is that synchronization can
be realized by simple register accesses. Only one register per
CIM core is needed. Assuming that one of the 32 K attributes
from [6] requires one byte of memory (see Section II-D), our
approach saves at least 87.5 % of the synchronization memory,
since with a maximum of 1024 cores and 4 B per register, only
4 kB of memory is required.

E. Synchronization overhead

Synchronization requires additional operations. In contrast
to the WAIT operation, the CALL operation must be trans-
ferred over the bus, which increases bus traffic. The smaller
the crossbar size, the more cores are needed, and the more
CALL operations have to be executed.

Fig. 7 shows that the bus traffic caused by CALL operations
is small compared to the data values transferred over the bus.
For CALL operations with a size of 4 B and data values with a
size of 1 B, the overhead is less than 4 % when using 32× 32

Fig. 6. Speedup divided by speedup limit of cyclic synchronization scheme
for different layers, bus widths, and crossbar dimensions.

PREPRINT - accepted by 31th IFIP/IEEE International Conference on Very Large Scale Integration 2023 (VLSI-SoC 2023)

TABLE II
NUMBER OF CALL INSTRUCTIONS AND LOAD/STORE VALUES

32x32 XBar 64x64 XBar 128x128 XBar
Cores[#] Load[val] Store[val] Calls[#] Cores[#] Load[val] Store[val] Calls[#] Cores[#] Load[val] Store[val] Calls[#]

1 16 2809856 1605632 37632 4 1204224 802816 6272 1 401408 401408 0
2 32 1404928 802816 18816 8 602112 401408 3136 2 200704 200704 0
3 64 3010560 1605632 43904 16 1404928 802816 9408 4 602112 401408 1568
4 128 1505280 802816 21952 32 702464 401408 4704 8 301056 200704 784
5 256 3110912 1605632 47040 64 1505280 802816 10976 16 702464 401408 2352
6 512 1555456 802816 23520 128 752640 401408 5488 32 351232 200704 1176
7 1024 3161088 1605632 48608 256 1555456 802816 11760 64 752640 401408 2744

crossbars, less than 2 % when using 64 × 64 crossbars, and
less than 1 % when using 128× 128 crossbars.

Table II shows the absolute number of LOAD and STORE
operations. Note that the number of loaded values is greater
than the number of values in the IFM and the number of stored
values is greater than the number of values in the OFM. The
reason for this is that the exchange of partial results and the
loading of bias values are also counted. Some input values
are loaded multiple times because the same input values are
multiplied by different kernel values (see [13]).

Fig. 7. Bus traffic caused by CALL operations (4 B per operation) in relation
to transferred data (1 B per data value).

VI. CONCLUSION

This paper proposes efficient, low-overhead synchronization
techniques to enable the parallel execution of single layers on
RRAM-based multi-core CIM architectures. We introduce an
architecture that supports synchronization and data exchange
in a decentralized and event-based manner. The synchroniza-
tion mechanisms require significantly less memory compared
to the state of the art. On the compiler side, we generate
code for different architecture setups and evaluate them on
a simulator. By exploiting the synchronization mechanisms of
the architecture, we achieve more than 99 % of the theoretical
acceleration limit for conv2D layers of state-of-the-art CNNs
with less than 4 % additional bus traffic.

This work contributes to understanding the challenges of
mapping CNNs to multi-core CIM systems. The presented
techniques can be used as building blocks for compilers to
enable parallel inference of CNN layers. As a future step, data
dependencies between different layers must be considered to
enable full system-level integration.

REFERENCES

[1] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in ISCA, 2017.

[2] X. Zou et al., “Breaking the von neumann bottleneck: architecture-level
processing-in-memory technology,” Sci. China Inf. Sci., 2021.

[3] Y.-F. Chang et al., “Memcomputing (memristor+ computing) in intrinsic
sio x-based resistive switching memory: Arithmetic operations for logic
applications,” IEEE (T-ED), vol. 64, no. 7, pp. 2977–2983, 2017.

[4] J. S. Vetter and S. Mittal, “Opportunities for nonvolatile memory systems
in extreme-scale high-performance computing,” CiSE, 2015.

[5] W. Wan et al., “A compute-in-memory chip based on resistive random-
access memory,” Nature, vol. 608, no. 7923, pp. 504–512, 2022.

[6] A. Ankit et al., “Puma: A programmable ultra-efficient memristor-based
accelerator for machine learning inference,” in ASPLOS XXIV, 2019.

[7] A. Shafiee et al., “Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 14–26, 2016.

[8] P. Chi et al., “Prime: A novel processing-in-memory architecture for neu-
ral network computation in reram-based main memory,” ACM SIGARCH
Computer Architecture News, vol. 44, no. 3, pp. 27–39, 2016.

[9] X. Liu et al., “Fpra: a fine-grained parallel rram architecture,” in 2021
ISLPED. IEEE.

[10] K. Yanai et al., “Efficient mobile implementation of a cnn-based object
recognition system,” in Proceedings of the 24th ACM international
conference on Multimedia, 2016, pp. 362–366.

[11] Y. Zhang et al., “Efficient and robust rram-based convolutional weight
mapping with shifted and duplicated kernel,” IEEE TCAD, vol. 40, 2020.

[12] J. Rhe et al., “Vw-sdk: efficient convolutional weight mapping using
variable windows for processing-in-memory architectures,” in DATE.
IEEE, 2022.

[13] J. Rhe et al., “Vwc-sdk: Convolutional weight mapping using shifted and
duplicated kernel with variable windows and channels,” IEEE JETCAS,
2022.

[14] S. Negi et al., “Nax: neural architecture and memristive xbar based
accelerator co-design,” in Proceedings of the 59th ACM/IEEE Design
Automation Conference (DAC), 2022, pp. 451–456.

[15] A. Agrawal et al., “X-changr: Changing memristive crossbar mapping
for mitigating line-resistance induced accuracy degradation in deep
neural networks,” arXiv preprint arXiv:1907.00285, 2019.

[16] W. Cao et al., “Neural-pim: Efficient processing-in-memory with neural
approximation of peripherals,” IEEE Transactions on Computers, 2021.

[17] B. Li et al., “Rram-based analog approximate computing,” IEEE TCAD,
vol. 34, no. 12, pp. 1905–1917, 2015.

[18] L. Song et al., “Pipelayer: A pipelined reram-based accelerator for deep
learning,” in 2017 IEEE HPCA. IEEE, 2017, pp. 541–552.

[19] S. Mittal, “A survey of reram-based architectures for processing-in-
memory and neural networks,” Machine learning and knowledge ex-
traction, vol. 1, no. 1, 2018.

[20] A. G. Howard et al., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv:1704.04861, 2017.

[21] K. He et al., “Deep residual learning for image recognition,” in IEEE
CVPR, 2016, pp. 770–778.

[22] J. Aynsley et al., “Osci tlm-2.0 language reference manual,” Open
SystemC Initiative (OSCI), p. 15, 2009.

[23] ARM, “Arm amba tlm 2.0 library developer guide,” 2019.
[24] ARM, “Amba axi and ace protocol specification,” 2013.
[25] N. Bosbach et al., “Nistt: A non-intrusive systemc-tlm 2.0 tracing tool,”

in 2022 IFIP/IEEE 30th International Conference on Very Large Scale
Integration (VLSI-SoC). IEEE, 2022.

	Introduction
	Background
	RRAM crossbars
	Weight mapping
	RRAM-based CIM architectures
	Synchronization techniques

	Architecture
	Compiler
	Operation remapping
	Synchronization schemes
	Sequential synchronization
	Linear synchronization
	Cyclic synchronization

	Sequence number

	Results
	Architecture simulator
	Performance speedup
	Bus width
	Area overhead
	Synchronization overhead

	Conclusion
	References

