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Abstract 

Compared to subthreshold leakage, dynamic power is 
normally much less sensitive to the process variation due 
to its approximately linear relation to the process 
parameters. However, the average dynamic power of a 
circuit optimized by deterministic glitch elimination 
(using hazard filtering and path balancing) increases 
because glitches randomly start reappearing under the 
influence of process variation. Combining existing 
techniques, we propose a new statistical mixed integer 
linear programming (MILP) formulation, which combines 
glitch elimination and dual-threshold design to 
statistically minimize the total power in a glitch-free 
circuit under process variation. 

1. Introduction 

With the continuous increase of the density and 
performance of integrated circuits due to the scaling 
down of the CMOS technology, reducing power 
dissipation becomes a serious problem that every circuit 
designer has to face. At the same time, the increase in 
variability of several key process parameters can 
significantly affect the design and optimization of low 
power circuits in the nanometer regime [1-3]. Due to the 
exponential relation of leakage current with some process 
parameters, such as the effective gate length, oxide 
thickness and doping concentration, process variations 
can cause a significant increase in the leakage current. To 
minimize the effect of process variation, some techniques 
[1-3] statistically optimize the leakage power and circuit 
performance by dual-Vth assignment. Leakage current and 
delay are treated as random variables. A dynamic 
programming approach for leakage optimization by dual-
Vth assignment has been proposed [2] using two pruning 
criteria that stochastically identify pareto-optimal 
solutions and prune the sub-optimal ones. Another 
approach [1] solves the statistical leakage minimization 
problem by a theoretically rigorous formulation for dual-
Vth assignment and gate sizing.  

Glitches are unnecessary signal transitions that account 
for 20%-70% of the dynamic switching power [4]. To 
eliminate glitches, we combine the techniques of 
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hazard filtering [5, 8-12] and path balancing [6, 8, 11], 
referred to in this paper as glitch elimination. Compared to 
leakage power, dynamic power is normally much less 
sensitive to the process variation because of its 
approximately linear dependency on the process 
parameters. However, any deterministic glitch elimination 
technique becomes less effective under process variation, 
since the perfect hazard filtering conditions can be easily 
corrupted even with a small variation in some process 
parameters. Hu and Agrawal [13-14] proposed a technique 
to eliminate glitches under process variation. However, 
performance is sacrificed to obtain a process-variation-
resistant circuit, and the effect of process variation on 
leakage power is not considered. 

Our work is motivated by the above research. To minimize 
the leakage power, we use a mixed integer linear 
programming (MILP) model to determine the optimal 
assignment of Vth while controlling any reduction in 
performance. To eliminate the glitch power, additional 
MILP constraints determine the positions and values of the 
delay elements to be inserted to balance path delays. 
Statistical delay and leakage models are further adopted to 
reduce the total power in glitch-free circuits considering 
process variation. 

2. Background 

Lu and Agrawal [17] propose a statistical MILP 
formulation to minimize the impact of process variation on 
the subthreshold leakage. In this section, we extend that 
discussion to study the impact of process variation on 
dynamic power. Dynamic power comprises of two parts, 
logic switching power and glitch power: 

FAVCP Ldyn ⋅⋅= 2

2
1   

    = Logic switching power + Glitch power        (1) 
 
where A is switching activity and F is the circuit operating 
frequency.  

Logic switching power is directly proportional to the 
loading capacitances, CL, which linearly depends upon 
gate sizes, gate width and gate length. Local (intra-die) 
process variation causes gate sizes to vary randomly and 
hence does not affect logic switching power too much. 
Global (inter-die) process variation changes gate sizes in 
similar ways and does vary the logic switching power. This 
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also does not affect the solution of our MILP formulation, 
since gate delays and gate sizes in the MILP constraints 
either increase or decrease by the same percentage when 
global process variation is considered, and Tmax (critical 
path delay that affects the circuit performance) is assumed 
to change accordingly [15]. 

The impact of process variation on glitch power is 
different and more complicated. Glitches are generated if 
the glitch filtering condition (2) [6] is not satisfied for cell 
i. Since inertial gate delays di vary with process 
variations, inequality (2) may not be satisfied.  

iii tTd −>      (2) 

Where Ti – ti is the differential path delay at gate i. We 
consider the impact of global process variation and local 
process variation on glitch power, separately. 

• Impact of global process variation on glitches 

For every gate i, the timing window Ti - ti is actually 
determined by two timing paths, the fastest path (FPath) 
and the slowest path (SPath) from primary inputs to gate 
i. Ti is the cumulative inertial gate delay along the slowest 
path, and ti is the cumulative inertial gate delay along that 
fastest path. Thus, 

∑∑
∈∈

−=−
FPathn

n
SPathm

mii ddtT     (3) 

Assuming that there is r·100% (r: 0~1) of global variation 
applied to the circuit, glitch filtering condition (2) for gate 
i remains unchanged since both timing window, Ti – ti, 
and gate delay vary by r·100%. Therefore, the technique 
of glitch elimination is resistant to the global process 
variation. 

• Impact of local process variation on glitches 

Let us consider the impact of local process variation on 
glitch elimination. When local variations occur in a 
circuit, Ti and ti are the sum of gate delays, which vary 
randomly, along the slowest and fastest paths from 
primary inputs to cell i’s inputs, so, Ti - ti is not very 
sensitive to process variations, while di does change with 
the process variation. Therefore, it is very possible that 
the original glitch filtering conditions (2) can not be 
satisfied in the presence of local process variation.  

As shown in Figure 1, there are three possible glitch 
filtering conditions. Both Figures 1(b) and 1(c) are glitch 
free while Figure 1(a) has a glitch. In an un-optimized 
circuit (with glitches), Figures 1(a) or 1(b) is represents a 
much more common condition for a gate. Although the 
condition of Figure 1(c) is still possible it has lower 
possibility. On the contrary, in an optimized glitch-free 
circuit, Figure 1(c) applies to many gates because Figure 
1(a) is always forced to become Figure 1(c) by path 
balancing for glitch elimination. 

With local process variation, Figures 2(a) and 2(b) show 
that the original condition is not so easily corrupted if only 
the variation of the timing window or the gate delay falls 
into the shaded areas, while Figure 2(c) is extremely 
sensitive to the local process variation, since a slight 
increase in the timing window or decrease in the gate delay 
can simply let an original glitch-free gate generate glitches 
at its output. 

Figure 1. Three possible glitch elimination conditions. 

Figure 2. Three glitch elimination conditions under local 
process variation. 
 

This explains why the dynamic power of an un-optimized 
circuit is much more resistant to local process variation 
than that of an optimized glitch-free circuit. The glitch 
elimination condition shown in Figure 1(c) cannot be 
really satisfied even with quite small process variation. 
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Figure 3. Normalized dynamic power distribution of un-
optimized (with -glitches) C432 under local delay variation. 

Figure 3 demonstrates the resistance of un-optimized 
circuits to the local process variation. We applied 10%, 
20% and 30% local delay variations, as may be caused by 
variations in gate-length-independent Vth, to an un-
optimized (with-glitch) version of circuit C432. The largest 
percentage of the mean value deviated from the nominal 

di 
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value is 0.22% and the maximum spread, 3×standard 
deviation / mean, is only 4.5%. 

The sensitivity of optimized glitch-free circuits to local 
process variation is illustrated in Figure 4. Both mean 
value and standard deviation of dynamic power 
distribution increase significantly with the increase of the 
local process variation. When 30% local variation was 
applied to the optimized glitch-free C432, its average 
dynamic power increased by 32% and almost became 
equal to the normalized dynamic power (1.34) of the un-
optimized C432. In Figure 4, some samples of optimized 
C432 have dynamic power even larger than 1.34. We also 
note that every sample in Figure 4 consumes more than 
the nominal value, 1, which is the expected minimum-
normalized-dynamic-power of the optimized glitch-free 
C432. Process variation causes some glitches to be 
generated in the glitch-free circuit and hence increases the 
dynamic power. 

0.00
0.02

0.04
0.06

0.08
0.10
0.12

0.14
0.16

0.18
0.20

1.00 
1.05 

1.10 
1.15 

1.20 
1.25 

1.30 
1.35 

1.40 
1.45 

Normalized Dyanmic Power

Pr
ob

ab
ili

ty

10% delay variation 
20% delay variation 
30% delay variation

Figure 4. Normalized dynamic power distribution of 
optimized (glitch-free) C432 under local delay variation. 

 
It is remarkable that the advantage of glitch elimination is 
totally lost due to the local process variation. Hence, the 
deterministic approach of glitch elimination is not useful 
for power optimization with process variation. In the 
following section, we combine the MILP formulations 
introduced in [15-17], and thus a new statistical MILP 
formulation is proposed to optimize total power under 
process variation and to fully utilize the advantage of the 
glitch elimination procedure.  

The deterministic MILP [15-16] using glitch elimination 
and dual-Vth assignment to reduce the total power 
consumption is a prerequisite procedure, which is 
modified to consider process variation.  

3. Statistical MILP for Total Power 
Optimization with Process Variation 

In the statistical MILP formulation, we treat all gate 
delays and timing window variables as random variables 
with normal distribution whose standard deviation is σr. 

3.1 Variables 

• Integer variables: 

In our cell library, each standard cell has two possible 
threshold voltages and three alternative sizes (1X, 2X and 
4X). Therefore, this MILP has six integer variables to 
allow alternative choices. The variables are denoted as, 

X1L[i], X2L[i], X4L[i], X1H[i], X2H[i], X4H[i] 

• Continuous Variables: 

δ[i] - relaxed variable for the glitch filtering constraint 
of cell i. It will be discussed in Section 3.3. 

Size[i] - size of cell i.       

Ileak[i] - nominal value of leakage of cell i.  

u_D[i] - mean of inertial gate delay of cell i. 

s_D[i] - standard deviation of inertial gate delay.  

u_T[i] - mean of T[i].    

s_T[i] - standard deviation of T[i].  

u_t[i] - mean of t[i].  

s_t[i] - standard deviation of t[i]. 

u_Δd[i,j] - mean of Δd[i,j] (the delay of the inserted 
delay element). 

s_Δd[i,j] - standard deviation of Δd[i,j]. 

3.2 Constants  

σr - standard deviation of the process parameter 
variations. 

Tmax - the maximum expected circuit performance. 

SX2[i] - gate size of cell i with 2X driving strength.  

W1, W2 ,W3 - weight factors. 

IX2L[i], IX2H[i] - nominal values of the subthrehold 
leakage of cell i with 2X driving strength. 

DX1L[i], DX2L[i], DX4L[i], DX1H[i], DX2H[i], DX4H[i] - 
nominal values of the inertial gate delay of cell i at all six 
corners.  

3.3 Constraints 

• Basic constraints 

Let LP solver choose one and only one optimal version for 
cell i. 

1][4][2][1][4][2][1 =+++++ iHXiHXiHXiLXiLXiLX  (4) 

Nominal value of the subthreshold leakage of cell i: 

[ ] [ ]
[ ]iIiHXiHXiHX

iIiLXiLXiLXiI

HX

LXleak

2

2

])[42][2][15.0(

])[42][2][15.0(

⋅⋅++⋅
+⋅⋅++⋅=

 (5) 

Mean and standard deviation of the gate delay of cell i: 
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[ ] [ ] [ ] [ ]
[ ] [ ] [ ] ][4][2][1

][4][2][1_

422

421

iHXiDiHXiDiHXiD

iLXiDiLXiDiLXiDiDu

LXLXLX

LXLXLX

⋅+⋅+⋅
+⋅+⋅+⋅=

  (6) 

[ ] [ ]iDuiDs r __ ⋅= σ             (7) 

The size of cell i: 

[ ] [ ]iS
iHXiLX

iHXiLXiHXiLX
iSize X 2])[4][4(2

])[2][2(])[1][1(5.0
⋅

⎭
⎬
⎫

⎩
⎨
⎧

+⋅
++++⋅

=

 (8) 

• For glitch elimination 

Instead of using inequality (2), in the statistical method, 
we adopt the following glitch filtering constraint:  

[ ] ])[_3][_(])[_3][_(][_3_ itsituiTsiTuiDsiDu ×−−×+≥×−
     (9) 

This constraint can leave certain margin for process 
variation in advance as shown in Figure 2(b) instead of 
Figure 2(c). However, normally the above worst case 
constraint is too tight to make CPLEX LP solver find a 
feasible solution. So, we add one nonnegative relaxed 
variable δ[i] to each glitch filtering constraint (9).  

[ ] ])[_3][_(])[_3][_(])[_3_(][ itsituiTsiTuiDsiDui ×−−×+≥×−+δ

 (10) 

In the objective function, by minimizing Σδ[i], CPLEX 
LP solver will try to find one optimal solution to make as 
many of the constraints (10) satisfied as possible with a 
zero δ[i], which means the glitches of corresponding cells 
can be truly eliminated even in the worst case condition 
of process variation. Those constraints only being 
satisfied with the help of a positive δ[i] quite likely fail to 
filter glitches.  

• For maximal performance 

To keep the maximal performance, at every primary 
output k, let, 

 .              (11) 
max][_3][_ TkTskTu ≤×+

3.4 Objective function 

The objective function minimizes the impact of process 
variation on the total power consumption: 

  Min {the impact of process variation on the total power 
 consumption} 

= Min {mean and standard deviation of leakage power + 
 mean and standard deviation of dynamic power} 
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  (12) 

 

C1, C2 and C3 are fitting parameters to let three terms    
(C1ΣIleak[i], C2Σsize[i] and C3ΣΣu_Δd[i,j]) have the same 
units (μW). 

The impact of process variation on both mean and standard 
deviation of the power consumption should be considered. 
For leakage, a smaller mean value automatically implies a 
narrower spread of leakage power distribution since more 
gates are assigned high Vth. Min(C1ΣIleak[i]) should be 
enough to minimize the impact of process variation on the 
total subthreshold leakage. For the dynamic power, 
standard deviation of the dynamic power distribution is 
determined by Σδ[i], and (C2Σsize[i]+C3ΣΣu_Δd[i,j]) 
affects the average dynamic power. Therefore, we should 
minimize (C2Σsize[i]+C3ΣΣ u_Δd[i,j]) and Σδ[i], 
simultaneously.  

The objective function (12) is composed of three parts 
(three single objectives), namely, minimize the average 
leakage power, minimize the average dynamic power and 
minimize the standard deviation of the dynamic power. It 
is a multi-objective function in which individual objectives 
conflict. For instance, minimization of Σδ[i] results in an 
increase of ΣΣu_Δd[i,j], and optimization of ΣIleak[i] leads 
to a larger Σsize[i], etc. It is not easy to get one optimum 
value for every single objective. What we can do 
instinctively is to carefully select weight factors, W1, W2 
and W3 to make a tradeoff among the three objectives.  

It should be noticed that the solution provided by a 
deterministic MILP [15-16] gives us a rough idea of which 
one is the dominant component between leakage and 
dynamic power. We also get their exact optimal values 
(power consumption) for the optimized circuit. Based on 
that information, we can choose weight factors and add 
some empirical constraints on the largest allowable 
minimal leakage or dynamic power in the statistical MILP 
formulation.  

The choice of minimizing the impact of process variation 
either on leakage or on dynamic power depends on which 
one is the dominant power consumer, and the circuit 
applications as well. For a circuit optimized by the 
deterministic MILP, we consider: 

• Case 1 - if the optimal leakage is much less than the 
optimal dynamic power and its large spread due to 
process variation (for example, 5X difference under 
30% global process variation ) can still be ignored, we 
need put much more emphasis on dynamic power 
changes being resistant to process variation; 

• Case 2 - if the optimal leakage is comparable to the 
optimal dynamic power, and most of the time the 
circuit remains in standby mode( for example, circuits 
of cell phones) the impact of process variation on the 
optimal leakage should be minimized with priority 
since leakage is much more sensitive to the process 
variation; 

• Case 3 - if the optimal leakage is comparable to the 
optimal dynamic power, and most of the time the 
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circuit is in the active mode (for example, circuits of 
portable GPS, portable game machines, etc.) both the 
mean and standard deviation of the dynamic power 
distribution should be optimized.  

3.5 Minimizing impact of process variation on leakage 

In case 1 and case 3, dynamic power is the dominant 
component of the total power consumption. Its standard 
deviation is determined by the number of glitch filtering 
constraints (10) whose δ[i] have positive values. So, in 
the MILP objective function (13), we first let W3 be 
infinitely large to put the highest priority on minimizing 
Σδ[i]: 

[ ] [ ] [ ]
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ+⋅+⋅∑ ∑∑∑∑

∞>−
i i

W
i ji

leak iWjidisizeWiIWMin ][3,21
3

δ

 (13) 

Although MILP tries to minimize Σδ[i], δ[i] for some 
gates may still be positive since the constraint (9) is too 
tight to be satisfied without the help of a positive δ[i]. 
Every positive δ[i] possibly results in the glitch 
generation at gate i’s output. From Figure 4, we also see 
that the average dynamic power almost linearly increases 
with the process variation. This increase is contributed by 
the glitches caused by the process variatio. To counteract 
the increase in the average dynamic power due to those 
glitches, or to let the really average dynamic power in 
process variation condition still be close to that achieved 
by the deterministic MILP formulation, we sacrifice some 
leakage power and get a smaller logic switching power. 
This can be achieved by letting W1 and W2 both equal to 
1 in the MILP objective function (14) and adding a new 
constraint (15) to the statistical MILP formation. 

[ ] [ ] [ ]
⎪⎭

⎪
⎬
⎫
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⎪
⎨
⎧

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ++∑ ∑∑∑∑

∞>−
i i

W
i ji

leak iWjidCisizeCiICMin ][3,321 δ

  (14) 

[ ] [ ] ρ/, _32 optdyn
i ji

PjidCisizeC <Δ+ ∑∑∑   ( ρ>1)  (15) 

Pdyn_opt is the optimal dynamic power obtained by the 
deterministic MILP [15-16] and ρ is a constant 
determined by the process variation. By letting ρ larger 
than 1, the statistical MILP formulation can give an 
optimal circuit with less dynamic power.  

3.6 Minimizing impact of process variation on leakage  

In case 2, leakage almost equals or is even larger than the 
dynamic power. Since leakage is so sensitive to the 
process variation that we cannot minimize the effect of 
process variation on the dynamic power by sacrificing 
leakage any more. The technique of eliminating glitches 
has to be discarded since the increase in the average 
dynamic power under process variation may be close to 
or even larger than the glitch power saved. To make the 

leakage of optimized circuits resistant to the process 
variation, we can still use the MILP proposed in [17] 
except every gate has six possible choices instead of two 
choices. 
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Figure5. Comparison of the impacts of 15% local process 
variation on the dynamic power in C432 which is 
optimized by the statistical MILP with the emphasis on the 
resistance of dynamic power to process variation, or by the 
deterministic MILP [15-16]. (Dynamic power = 1 is the 
expected normalized minimum dynamic power in the 
optimized glitch-free C432). 
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Figure 6. Comparison of the impacts of 15% local Leff 
process variation on the leakage power in C432 which are 
optimized by the statistical MILP with the emphasis on the 
resistance of dynamic power to process variation, or the 
deterministic MILP [15-16]. (N1 and N2 are the 
normalized nominal leakage power in the optimized glitch-
free C432). 

4. Results 

In C432 optimized by the deterministic MILP formulation 
[15-16], the optimized total power comprises 59.3μW 
dynamic power and 5.54μW leakage power. With 15% 
local process variation, the average dynamic power 
increases 13.53% with 5.13% standard deviation. To 
reduce the impact of process variation on the dynamic 
power, the objective function (14) and constraint (15) (let 
Pdyn_opt=59.3μW and ρ=1.10) are adopted in the statistical 
MILP formulation. The two curves in Figure 5 show that 
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the average dynamic power only increases 3.63% instead 
of 13.53%, and standard deviation is also reduced to 
2.82% from 5.13% when 15% local process variation is 
applied to the optimized glitch-free C432, although at a 
cost of 94% average leakage power increase (from 1.0 to 
1.94) and a little bit wider spread of leakage power 
distribution, which is shown in Figure 6. 

Use determinstic MILP
to

get the optimal power

Use statistical MILP
to

minimize process variation
impact on dynamic power

Use statistical MILP
to

minimize process variation
impact on leakge power

Is circuit most time
in standby mode?

Y N
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ignored under certain

process variation?

Simulate optimized circuit
with certain process

variation, get mean and
standard deviation of

leakage

 
Figure 7. An algorithm to determine whether leakage or 
dynamic power should be optimized with process 
variation.  

5. Summary  

In this paper, the impact of process variation on dynamic 
power is analyzed, and a statistical MILP formulation is 
presented to minimize the total (dynamic and leakage) 
power in glitch-free circuits considering process 
variation. The impact of process variation on dynamic 
power can be minimized by giving up some leakage if the 
dynamic power is still the dominant power component 
under process variation. Figure 7 gives a flowchart of 
how to make a decision about which one, leakage or 
dynamic power, should be optimized with process 
variation. 

6. References 

[1] M. Mani, A. Devgan, and M. Orshansky, "An Efficient 
Algorithm for Statistical Minimization of Total Power 
Under Timing Yield Constraints," Proc. Design 
Automation Conference, 2005, pp. 309-314. 

[2] A. Davoodi and A. Srivastava, “Probabilistic Dual-Vth 
Optimization Under Variability,” Proc. ISLPED, 2005, pp. 
143-147.    

[3] A. Srivastava, D. Sylvester, D. Blaauw, “Statistical 
Optimization of Leakage Power Considering Process 
Variations Using Dual-Vth and Sizing,” Proc. Design 
Automation Conf., 2004, pp. 773-778.  

[4] A. P. Chandrakasan and R. W. Brodersen, Low Power 
Digital CMOS Design. Boston: Springer, 1995. 

[5] V. D. Agrawal, "Low Power Design by Hazard Filtering," 
Proc. 10th Int. Conf. VLSI Design, 1997, pp. 193-197. 

[6] V. D. Agrawal, M. L. Bushnell, G. Parthasarathy, and R. 
Ramadoss, "Digital Circuit Design for Minimum Transient 
Energy and a Linear Programming Method," Proc. 12th 
International Conf. VLSI Design, 1999, pp. 434-439. 

[7] E. Jacobs and M. Berkelaar, "Using Gate Sizing to Reduce 
Glitch Power," Proc. PRORISC/IEEE Workshop on Circuits, 
Systems and Signal Processing, 1996, pp. 183-188. 

[8] S. Kim, J. Kim, and S. Y. Hwang, "New Path Balancing 
Algorithm for Glitch Power Reduction," IEE Proc. Circuits, 
Devices and Systems, vol. 148, no. 3, pp. 151-156, 2001. 

[9] C. V. Schimpfle, A. Wroblewski, and J. A. Nossek, 
"Transistor Sizing for Switching Activity Reduction in 
Digital Circuits," Proc. European Conference on Theory and 
Design, 1999, pp. 114-117. 

[10] A. Wroblewski, C. V. Schimpfle, and J. A. Nossek, 
"Automated Transistor Sizing Algorithm for Minimizing 
Spurious Switching Activities in CMOS Circuits," Proc. 
IEEE International Symposium on Circuits and Systems, 
2000, pp. 291-294. 

[11] T. Raja, V. D. Agrawal, and M. L. Bushnell, "Minimum 
Dynamic Power CMOS Circuit Design by a Reduced 
Constraint Set Linear Program," Proc. 16th International 
Conf. VLSI Design, 2003, pp. 527-532. 

[12] T. Raja, V. D. Agrawal, and M. L. Bushnell, "Variable Input 
Delay CMOS Logic for Low Power Design,” Proc. 18th 
International Conf. VLSI Design, 2005, pp. 596-603. 

[13] F. Hu and V. D. Agrawal, "Input-Specific Dynamic Power 
Optimization for VLSI Circuits," Proc. Int. Symp. Low 
Power Electronics and Design, 2006, pp. 232-237. 

[14] F. Hu, "Process-Variation-Resistant Dynamic Power 
Optimization for VLSI Circuits," PhD Thesis, Auburn, 
Alabama: Auburn University, May 2006. 

[15] Y. Lu and V. D. Agrawal, "CMOS Leakage and Glitch 
Power Minimization for Power-Performance Tradeoff," 
Journal of Low Power Electronics, vol. 2, no. 3, pp. 378-
387, Dec. 2006. 

[16] Y. Lu and V. D. Agrawal, "Leakage and Dynamic Glitch 
Power Minimization Using Integer Linear Programming for 
Vth Assignment and Path Balancing," Proc. of the 
International Workshop on Power and Timing Modeling, 
Optimization and Simulation, 2005, pp. 217–226. 

[17] Y. Lu and V. D. Agrawal, "Statistical Leakage and Timing 
Optimization for Submicron Process Variation," Proc. 20th 
International Conf. VLSI Design, 2007, pp. 439-444. 

   

536532532532532532532


	3.4 Objective function
	3.6 Minimizing impact of process variation on leakage 
	5. Summary 

