
Reversible Logic Synthesis with Output Permutation

Robert Wille1 Daniel Große1 Gerhard W. Dueck2 Rolf Drechsler1

1Institute of Computer Science 2Faculty of Computer Science
University of Bremen University of New Brunswick

28359 Bremen, Germany Fredericton, Canada
{rwille,grosse,drechsle}@informatik.uni-bremen.de

gdueck@unb.ca

Abstract

Synthesis of reversible logic has become a very impor-
tant research area. In recent years several algorithms –
heuristic as well as exact ones – have been introduced in
this area. Typically, they use the specification of a reversible
function in terms of a truth table as input. Here, the posi-
tion of the outputs are fixed. However, in general it is irrel-
evant, how the respective outputs are ordered. Thus, a syn-
thesis methodology is proposed that determines for a given
reversible function an equivalent circuit realization modulo
output permutation. More precisely, the result of the syn-
thesis process is a circuit realization whose output functions
have been permuted in comparison to the original specifi-
cation and the respective permutation vector. We show that
this synthesis methodology may lead to significant smaller
realizations. We apply Synthesis with Output Permutation
(SWOP) to both, an exact and a heuristic synthesis algo-
rithm. As our experiments show using the new synthesis
paradigm leads to multiple control Toffoli networks that are
smaller than the currently best known realizations.

1. Introduction
According to Moore’s Law the number of transistors in

an integrated circuit doubles every 18 months. Due to this
exponential growth, physical boundaries will be reached in
the near future. Furthermore, power consumption of circuits
becomes a major issue. Quantum computers [12] are an
alternative to classical systems. Here, information is stored
in so called qubits instead of bits. In comparison to present
computers, many problems can be handled more efficiently
with the help of quantum computers.

Since all quantum computations are reversible, the syn-
thesis of reversible logic has become an intensely studied
topic. In contrast to classical irreversible gates, there are
restrictions for reversible gates, e.g. fan-out and feed-back
are not allowed. Consequently a network for reversible
logic consists of a cascade of reversible gates. In the past
different types of reversible gates have been introduced,
e.g. (multiple control) Toffoli [18] and Fredkin [2] gates,
Peres gates [13], and elementary quantum gates [1].

For the synthesis of reversible logic several approaches
– heuristic as well as exact ones – have been proposed. A
method based on enumeration that uses network equiva-
lences to rewrite a limited set of gates has been presented

in [16]. Proposed heuristics methods are based on spec-
tral techniques [10], positive polarity Reed-Muller expan-
sions [5], or transformation based synthesis [11]. In [9] a
method is introduced that synthesizes the reversible func-
tion in a first step and then based on transformations (us-
ing so called templates) a realization with fewer gates is
computed. Techniques of group theory can also be used
in the synthesis of reversible logic functions [17]. The au-
thors of [15] introduced a non-search based algorithm run-
ning transformations to synthesize reversible functions with
CNOT gates. Minimal networks for functions with up to
three variables have been synthesized by the approach intro-
duced in [23]. An exact synthesis method based on reach-
ability analysis is described in [6]. In [3, 4, 20] approaches
based on Boolean satisfiability (SAT) and in [22] a method
employing Quantified Boolean Formula (QBF) satisfiability
are used for exact synthesis.

Usually, the specification of the reversible function to be
synthesized is given as a truth table. Thus, each output is
set to a fixed position. Since in general the output ordering
for a given reversible function f is irrelevant, we propose
a synthesis methodology that determines an equivalent cir-
cuit realization for f modulo output permutation. That is,
the result of the synthesis is a circuit whose outputs have
been permuted. Note that no extra gates are invested to
achieve the output permutation. In fact, output permuta-
tion becomes an integral part of the synthesis process such
that the final permutation corresponds to an “update” of re-
versible function specification. Hence, the synthesis result
is a circuit realization and the computed output permutation
vector.

Based on this idea we introduce first algorithms to ap-
ply Synthesis with Output Permutation (SWOP). The algo-
rithms focus on synthesis of multiple control Toffoli net-
works. As the main objective the number of gates is mini-
mized as done by many other researchers (see e.g. [5, 9, 11,
15,16,20]). The proposed methodology can also be adapted
for other gate libraries as well as other objectives.

The application of output permutations has been recog-
nized before in [11]. It was suggested that for functions with
few input variables, all output permutations could be con-
sidered. However, neither an analysis of the effect of out-
put permutation nor techniques facing the increasing com-
plexity in case of larger circuits have been considered. This
work is an initiative to address this missing domain.

To find the best permutation of outputs for a function,

Please note: Methods introduced in this paper are availabe at www.revkit.org.

Table 1. Function specification
c b a o3 o2 o1

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 0 0 1
1 0 1 0 1 1
1 1 0 1 0 1
1 1 1 1 1 0

i.e. the one which leads to the smallest network realization,
all n! permutations have to be checked in general (where
n is the number of variables of the reversible function).
We show how this complexity can be reduced for incom-
pletely specified function (i.e. functions with garbage out-
puts). Furthermore, we present an exact and a heuristic
approach applying synthesis with output permutation. We
show that significantly smaller networks (even smaller than
the ones known as minimal till today) can be obtained if this
new synthesis paradigm is used.

The paper is structured as follows. First, preliminaries
are given in Section 2. Section 3 describes the general idea
of SWOP while Section 4 gives some theoretical consider-
ation. We introduce an exact and heuristic synthesis algo-
rithm which applies output permutation in Section 5. Re-
sults are given and discussed in Section 6. Finally, we con-
clude the paper and give directions for future work in the
last section.

2. Preliminaries
To keep the paper self-contained, this section briefly re-

views the basics of reversible logic. For a more detailed
insight we refer to the respective publications.

A reversible logic gate realizes an n-input n-output func-
tion that maps each possible input vector to a unique output
vector. In other words this function is a bijection. Many
reversible gates have been studied. Multiple control Tof-
foli gates [18] (also known as generalized Toffoli gates) are
widely used. In the rest of this paper we only consider Tof-
foli gates that are defined as follows:

Definition 1 Let X := {x1, . . . , xn} be the set of do-
main variables. A multiple control Toffoli gate has
the form TOF (C, t), where C = {xi1 , . . . , xik

} ⊂
X is the set of control lines and t = {xj}
with C ∩ t = ∅ is the target line. The gate
maps (x1, . . . , xn) to (x1, . . . , xj−1, xj ⊕ xi1 . . . xik

,
xj+1, . . . , xn). If no control lines are given (C is empty),
then the target line is inverted, i.e. the input vector of the
gate is mapped to (x1, . . . , xj−1, xj ⊕ 1, xj+1, . . . , xn).

Due to restrictions in quantum mechanics the only pos-
sible topology for a network is a cascade of gates.

Definition 2 The cost of a reversible network is defined as
the number of its gates.

Note that, as an additional quality criterion for reversible
logic also Quantum Costs [1] are used in literature. How-
ever, in this work we aim to minimize the number of gates
which is done by many other researches as well (see also
introduction).

(a) (b)
Figure 1. Minimal Toffoli networks

Since all quantum circuits are reversible, to realize a non-
reversible function (i.e. an n-input m-output function with
n > m) it must be embedded into a reversible one. There-
fore, it is often necessary to add constant inputs and garbage
outputs [8]. The garbage outputs are by definition don’t
cares and can be left unspecified. Functions with garbage
outputs are called incompletely specified functions in the
following.

3. General Idea
The input of most synthesis approaches is the specifica-

tion of the reversible function f : B
n → B

n to be synthe-
sized as a truth table. In this table each specified output has
a fixed position.

Example 1 Consider the function specification shown in
Table 1. The reversible function maps (c, b, a) to (b, a, ab⊕
c) = (o3, o2, o1). A minimal Toffoli network for this func-
tion is shown in Figure 1(a). The cost of this network is 6.

If the synthesis approach follows the proposed method-
ology the synthesis result for the given reversible specifica-
tion is an equivalent circuit realization whose outputs have
been permuted.

Example 2 In Figure 1(b) a Toffoli network is depicted
which computes the same reversible function than the Tof-
foli network shown in Figure 1(a). But in contrast, the three
output functions have been “reordered” to another posi-
tion in the output vector. More precisely, the Toffoli net-
work shown in Figure 1(b) maps (c, b, a) to (ab⊕ c, b, a) =
(o1, o3, o2). This reduces the overall costs from 6 gates to
a single gate, i.e. 5 gates have been saved. In total, the
result of a synthesis procedure for this example would be
the network shown in Figure 1(b) and the new output vector
(o1, o3, o2).

Motivated by this example, the question considered in
this paper is:

How can we efficiently compute good permuta-
tions of outputs for a given reversible function to
be synthesized such that smaller Toffoli networks
result?

This leads to an extension of common synthesis algo-
rithms we call Synthesis with Output Permutation (SWOP)
in the rest of this paper. As shown in the following,
SWOP may lead to significantly smaller circuits regardless
of whether exact or heuristics approaches are used. Since
the consideration of all permutations can be expensive with
respect to runtime, we propose different strategies which
handle the increasing complexity.

Figure 2. Realization of a permutation
4. Theoretical Consideration

In this section we show the best case benefit that can be
achieved by applying SWOP. Therefore, we compare com-
mon synthesis to SWOP and determine the maximal num-
ber of gates that can be saved if we allow output permutation
for an arbitrary reversible function specification. Further-
more, we discuss the worst case complexity to determine
the best permutation and show how this can be reduced for
incompletely specified functions by exploiting the informa-
tion on garbage outputs.

4.1. Best Case Benefit
Figure 2 depicts the gates needed to permute two signals

in a reversible circuit with multiple control Toffoli gates (in
total three gates are required). Since the best position of
the outputs is unknown at the beginning of the synthesis
process, outputs may be placed arbitrarily in the function
specification. Then, the three gates of Figure 2 are needed
to permute the value of a signal to the position given by the
specification. If in contrast output permutation is consid-
ered during the synthesis, the number of gates of the result-
ing network may be significantly smaller as the following
proposition shows.

Proposition 1 The number of gates in a reversible circuit
obtained by common synthesis approaches may be up to
3 · (n − 1) higher than the number of gates in a circuit
where synthesis with output permutation is applied (with n
is the number of variables).

Proof: Let c be the minimal costs of a circuit obtained by
enabling output permutation during synthesis. To move one
output line to the position given by the specification three
Toffoli gates are required (see Figure 2). At most n−1 lines
need to be moved. It follows that the cost of the minimal
circuit, where no output permutation is allowed, is less than
or equal to c + 3(n − 1). �

4.2. Complexity
Finding the best output permutation causes a significant

increase in complexity for synthesis. In general, all possible
permutations have to be checked, which results in n! differ-
ent networks in total.

However, it is well known that many practical logic func-
tions contain garbage outputs (see Section 2). The garbage
outputs are by definition don’t cares and can be left unspeci-
fied. Thus, permutations of the garbage outputs need not be
considered. This reduces the complexity for SWOP. Instead
of n! only n!

g! different permutations are checked (while n is
number of variables and g the number of garbage outputs of
the reversible function f).

Example 3 Figure 3 shows all n! possible permutations for
an incompletely specified function with n = 3 variables and
g = 2 garbage outputs (denoted by g1 and g2). Since the
garbage outputs are left unspecified, the permutations that

Figure 3. Permutations with garbage outputs
only swap garbage outputs can be skipped (i.e. the last three
permutations of Figure 3). Thus, only 3!

2! = 3 permutations
instead of all 3! = 6 permutations are considered.

5. Applying Output Permutation
In a naive way, synthesis with output permutation can be

easily applied to existing approaches just by encoding all
permutations, synthesize each in one turn, and keep the best
one. This results in an increase of factor n!

g! . In this section
we introduce the application of output permutation to exact
as well as heuristic approaches using dedicated strategies.
Empirical tests show that the increase of the runtime by the
proposed approaches is less than the theoretical complexity
increase. This is due to the learning technique exploited
in the exact approach and due to the heuristic selection of
permutations in the heuristic approach.

5.1. Exact Approach
Exact synthesis algorithms determine a minimal realiza-

tion for a given function, i.e. a network with the minimal
number of gates. Ensuring minimality is obviously more
expensive, but helps e.g. to synthesize smaller networks (or
compositions of networks) and to define lower bounds for
heuristic approaches. Thus, research in this area is essential.

Recently exact algorithms for synthesis of multiple con-
trol Toffoli gates using Boolean satisfiability (SAT) have
been introduced [3, 20]. The basic idea is to check if there
exists a Toffoli network representation for a reversible func-
tion with c gates (starting with c = 1), where c is in-
creased in each iteration if no realization is found. The
respective checks are performed by representing the prob-
lem as an instance of SAT. This instance is solved by a
common SAT solver [3] or by the specialized solve-engine
SWORD, which additionally uses problem specific knowl-
edge [19,20]. Due to page limitation we refer to the respec-
tive publications for a detailed description of the encodings.
In this paper the concrete SAT encoding is simplified as fol-
lows:

Definition 3 Let f : B
n → B

n be a reversible function
to be synthesized. Then, the SAT instance of the respective
synthesis problem is given as

Φ ∧
2n−1∧

i=0

([
−→
inpi]2 = i ∧ [

−→
outi]2 = f(i)),

where

• −→
inpi is a Boolean vector representing the inputs of the
network to be synthesized for truth table line i,

• −→
outi is a Boolean vector representing the outputs of the
network to be synthesized for truth table line i and,

• Φ is a set of constraints representing the synthesis
problem according to [3, 20].

(a) original (b) with SWOP extension
Figure 4. Encoding for exact synthesis

As an example Figure 4(a) shows the abstracted repre-
sentation of the synthesis problem for the function specified
in Table 1 (the values of the truth table are given as inte-
gers).

To apply SWOP to the exact approach and still ensuring
minimality, all permutations are considered. This can be
done – as mentioned above – by n!

g! separate synthesis calls.
However, exploiting the advanced techniques of the used
SAT solvers leads to a faster synthesis. Therefore, just one
additional Boolean vector is needed.

Definition 4 Let f : B
n → B

n be a reversible function
to be synthesized. Then, −→p = (p�log2

n!
g! �, . . . , p1) is a

Boolean vector representing the binary encoding of a nat-
ural number p ∈ {1, . . . , n!

g! } which indicates the chosen
output permutation of the network.

Using this vector, the SAT encoding is slightly extended:
According to the assignments to −→p (set by the SAT solver)
a value for p is determined, which selects the current output
permutation. Depending on this permutation the respective
output order is set during the search. More formally, the
encoding of Definition 3 is extended as follows:

Φ ∧
2n−1∧

i=0

([
−→
inpi]2 = i ∧ [

−→
outi]2 = π−→p (f(i)))

The extended encoding of the synthesis problem for the
function specified in Table 1 is shown in Figure 4(b).

If the solver finds a satisfying assignment for the SWOP
instance, one can obtain the network from the result as de-
scribed in [3, 20] and the best permutation is provided by
the assignment to −→p .

Overall, this extension allows exact SWOP with only one
synthesis call in contrast to n!

g! separate ones. Furthermore,
since the variables of −→p are an integral part of the search
space, the permutations are checked much more efficiently.
Because of modern SAT techniques (in particular conflict
analysis [7]), during the search process reasons for conflicts
are learned. This learned information prevents the solver
from reentering non-solution search space, i.e. large parts
of the search space are pruned. In contrast, this information
is not available when each permutation is checked by sep-
arate calls of the solver. Thus, exact synthesis with output
permutation is possible in feasible runtime when learning is
exploited. Experimental results for exact SWOP are given
in Section 6.

5.2. Heuristic Approach
To apply SWOP in a heuristic approach, the algorithm

presented in [9] is considered. We avoid the construction
of all possible permutations which would lead to a com-
plexity increasing of n! since in [9] garbage outputs are not

(1) HeuristicSWOP(f : Bn → Bn)
(2) /* f is given as truth-table */
(3) perm = {1 , 2 , . . . ,n};
(4) cbest = synthesize(perm);
(5) best perm = perm;
(6) for i = 0 to n − 2 do
(7) for j = i + 1 to n − 1 do
(8) tmp perm = swap(perm, i, j);
(9) ctmp = synthesize(tmp perm);

(10) if (ctmp < cbest)
(11) best perm = tmp perm;
(12) end–if
(13) end–for
(14) perm = best perm;
(15) end–for

Figure 5. Heuristic SWOP
supported. We propose a SWOP-based synthesis heuristic
using a sifting algorithm inspired by [14] and hence reduce
the above complexity to n2. Because of the heuristic behav-
ior of sifting maybe not the best permutation is determined.
However, as the experiments in Section 6 show, significant
improvements can be achieved in feasible runtimes.

The pseudo-code for the sifting algorithm is given in Fig-
ure 5. First, an initial permutation is chosen and the realiza-
tion for this specification is synthesized (lines 3 and 4). As
initial permutation we used the one given by the specifica-
tion of the function. The gate count of this first realization
is stored. After this, for each output the best position within
the current permutation is searched. This is done by swap-
ping the position of the current output with each of the other
positions leading to new permutations (line 8). For each
of this new permutations the respective realization is syn-
thesized (line 9). If the gate count of such a realization is
smaller than the current best known gate count (line 10), the
current permutation is stored as being the best one (line 11).
When each position for one output have been checked, the
best permutation of these checks is used for the remaining
outputs (line 14).

In summary, for each of the first n− 1 outputs, the algo-
rithm will find a new position, that will result in a realization
with the fewest gates – when synthesized with the heuristic
algorithm from [9]. Therewith the complexity of SWOP can
be reduced while still improving the obtained results as the
next section will show.

6. Experimental Results
This section provides experimental results for SWOP. In

total four different aspects are studied: (1) the reduction of
the complexity of SWOP when garbage outputs are consid-
ered, (2) the results of exact SWOP in comparison to previ-
ous exact approaches, (3) the results of heuristic SWOP in
comparison to the common heuristic approach, and (4) the
quality (with respect to the number of gates) of the circuits
synthesized by SWOP in comparison to the currently best
known realizations.

For exact synthesis we used the algorithm introduced
in [20] (the SWOP extension was implemented on the top of
this approach). As heuristic approach the template match-
ing algorithm described in [9] has been used. The respective
benchmark functions have been taken from [21]. All experi-
ments have been carried out on an AMD Athlon 3500+ with

Table 2. SWOP considering garbage outputs
SWOP OPT. SWOP

BENCH. n g c n! TIME (S) n!
g! TIME (S) IMPR

4mod5 5 4 5 120 233.18 5 7.37 31.6
decod24 4 0 5 24 0.10 24 0.10 1.0

gt4 4 3 3 24 <0.01 4 <0.01 1.0
gt5 4 3 1 24 0.01 4 <0.01 >1.0

low-high 4 3 4 24 3.71 4 0.39 9.51
0-1-2 4 1 4 24 0.03 24 0.02 1.5

maj4 1 5 4 6 120 3500.90 5 2125.62 1.6
maj4 2 5 4 5 120 191.92 5 4.19 45.8

alu 5 4 6 120 2013.72 5 61.24 32.9
mini alu 1 4 2 5 24 0.28 12 0.19 1.5
mini alu 2 5 3 7 120 930.60 20 474.42 1.9
mini alu 3 5 3 5 120 9.60 20 2.07 4.6

1 GB of main memory. All runtimes are given in CPU sec-
onds. The timeout was set to 3600 CPU seconds (denoted
by TO in the following).

6.1. SWOP with Garbage Outputs
In a first series of experiments we compare the different

complexities which may occur when Toffoli networks for
functions containing garbage outputs are synthesized. Here
– as described in Section 4.2 – instead of n! permutations
only n!

g! are considered.
Table 2 shows a comparison of the exact SWOP ap-

proach with both numbers of permutations for each incom-
pletely specified function. The first three columns provide
the name of the function, the number n of variables and
the number g of garbage outputs, respectively. The min-
imal costs c (i.e. the minimal number of gates) of a Tof-
foli network representation is given in column c. Then,
the runtimes of SWOP with n! and with n!

g! permutations
are given (denoted by TIME). Furthermore, the improve-
ment of the optimized SWOP (i.e. the synthesis with only
n!
g! permutations) over SWOP with all n! permutation is pro-
vided (i.e. runtime of SWOP divided by runtime of OPT.
SWOP).

As expected the reduction of permutations leads to better
runtimes for all benchmarks. Improvements up to a factor
of 45 can be achieved in the best case.

6.2. Exact SWOP
In this section we compare exact SWOP with the pre-

vious exact algorithm from [20]. The results are shown in
Table 3.

Here again, the first column provides the name of the
function, n and g denote the number of variables and the
number of garbage outputs, respectively. The next columns
give the minimal costs c determined by the two approaches
and the corresponding runtimes. The last column shows in-
formation relating the complexity, i.e. the runtime overhead
when output permutation is considered (SWOP-Time

Syn-Time) com-
pared to the factor (n!

g!) resulting from the complexity anal-
ysis.

It can be seen that for many functions SWOP found
smaller networks than the ones generated by the previous
exact synthesis approach. Thus, removing the restriction
for the output ordering leads to smaller networks for many
of well known benchmark functions.

As expected the runtime for SWOP is higher in com-
parison to the runtime of pure exact synthesis. The rea-

Table 3. Exact synthesis vs. exact SWOP
EXACT EXACT

SYNTHESIS SWOP SWOP-TIME
SYN-TIME

BENCH. n g c TIME (S) c TIME (S) VS. n!
g!

4mod5 5 4 5 0.9 5 7.4 8.4 > 5
decod24 4 0 6 0.1 5 0.1 1.7 < 24

gt4 4 3 4 <0.1 3 <0.1 1.0 < 4
gt5 4 3 3 <0.1 1 <0.1 1.0 < 4

low-high 4 3 5 0.2 4 0.4 2.2 < 4
0-1-2 4 1 5 <0.1 4 <0.1 0.5 < 24

maj4 1 5 4 6 438.0 6 2125.6 4.8 < 5
maj4 2 5 4 6 13.6 5 4.2 0.3 < 5

alu 5 4 7 423.3 6 61.2 0.1 < 5
mini alu 1 4 2 5 <0.1 5 0.2 6.3 < 12
mini alu 2 5 3 8 2460.0 7 474.4 0.2 < 20
mini alu 3 5 3 5 0.2 5 2.1 12.2 < 20

3 17 3 0 6 <0.1 5 <0.1 9 > 6
graycode6 6 0 5 <0.1 5 13.5 224.7 < 720

mod5d1 5 0 7 11.8 7 184.1 15.6 < 120
mod5d2 5 0 8 9.9 8 1097.6 109.9 < 120

mod5mils 5 0 5 0.1 5 1.7 21.0 < 120
rand0 4 0 8 15.3 7 26.4 1.7 < 24
rand1 4 0 8 5.8 7 28.3 4.9 < 24
rand2 4 0 9 154.5 8 150.3 1.0 < 24
rand3 4 0 9 231.5 9 1895.6 8.2 < 24
rand4 4 0 9 151.1 9 569.9 3.8 < 24

son is that the search space is obviously larger due to the
number of output permutations that can be chosen. How-
ever, the increase is not as high as the number n!

g! . This
can be seen in the last column of Table 3. For all bench-
marks (except 4mod5 and 3 17) the runtime of SWOP di-
vided by the runtime of the previous synthesis approach is
significantly smaller than the worst case complexity (n!

g!).
As explained this is due to search space pruning, possible
when the encoding is extended such that all permutations
can be checked at once. Moreover, for some benchmarks
(e.g. maj4 2 or alu) the runtime of SWOP is even smaller
than for a single exact solution. This reduction is caused
by the fact, that smaller networks are found and thus the
synthesis terminates earlier.

6.3. Heuristic SWOP
In this section we compare the results of heuristic synthe-

sis with output permutation. In fact, the results obtained by
common heuristic synthesis (according to [9] in its newest
version) are compared with SWOP when all permutations
are considered (ALL PERMS) and with SWOP when the sift-
ing algorithm introduced in Section 5.2 is used (SIFTING).

The results are given in Table 4 showing the gate counts
of the resulting realizations as well as the time needed for
their synthesis.

As can be clearly seen, the effect of output permutation
is significant for most of the functions. For example, for
the function aj-e13 the realization is reduced by 30 percent
from 40 gates to 28 gates. The best absolute reduction of
gates can be observed for function hwb8. Here, 35 gates are
saved in total when output permutation is applied.

But not only the improvements are of interest. Even a
comparison of the best and the worst permutation (shown
in column c for ALL PERMS) give some interesting insight.
For example, consider the function hwb5. One output per-
mutation results in a circuit with 38 gates, while another
permutation results in 62 gates. Since a heuristic minimiza-
tion procedure is used, the results will most likely not be
optimal. In fact, according to Proposition 1 the difference
between the best and the worst permutation for hwb5 can
not be greater than 12 for minimal realizations – yet it is 24.

Table 4. Heur. synthesis vs. heur. SWOP
HEURISTIC HEURISTIC SWOP
SYNTHESIS ALL PERMS SIFTING

BENCH. n c TIME (S) c TIME (S) c TIME (S)
3 17 3 6 0.03 6-7 0.32 6 0.25
4 49 4 17 0.40 14-22 4.09 16 1.09

4mod5 5 9 0.03 9-21 10.02 9 0.75
5mod5 6 18 0.13 14-37 254.14 18 3.59
aj-e10 5 33 0.63 22-51 107.03 30 8.21
aj-e11 4 12 0.09 11-22 2.46 11 0.55
aj-e12 5 26 0.35 25-57 103.37 25 8.11
aj-e13 5 40 0.97 28-51 112.70 34 12.31

ex1 3 4 <0.1 4-8 0.08 4 0.06
graycode3 3 2 <0.1 2-5 0.01 2 0.01
graycode4 4 3 0.01 3-9 0.32 3 0.07
graycode5 5 4 0.03 4-13 4.72 4 0.31
graycode6 6 5 0.08 5-18 67.25 5 1.08

hwb3 3 7 0.06 6-11 0.32 7 0.29
hwb4 4 15 0.35 10-21 3.70 10 0.69
hwb5 5 55 1.66 38-62 153.71 44 16.49

prime5 6 15 0.20 13-40 227.05 13 3.09
prime5a 6 16 0.10 14-41 291.58 14 3.92

ham3 3 5 0.01 3-5 0.02 4 0.03
hwb6 6 125 7.08 – TO 91 89.20
hwb7 7 283 33.26 – TO 259 656.82
hwb8 8 676 152.13 – TO 641 4525.22
ham7 7 23 0.34 – TO 23 49.47
rd53 7 16 0.26 – TO 13 10.04

Finally it is shown, that sifting provides good results in
a fraction of the CPU time. For most functions with more
than six variables it is not feasible to minimize the function
considering all permutations. However, sifting offers sig-
nificant improvements for most of these functions (see the
bottom rows of Table 4).

6.4. Reductions Achieved by SWOP
Finally, the quality (with respect to the number of gates)

of some circuits synthesized by SWOP is compared to the
currently best known realizations obtained by common syn-
thesis approaches. Table 5 shows a selection of functions
with the gate count of the currently best known realization
(BEST KNOWN c). The source of this realization is given
in column SRC. The gate count when output permutation is
considered is given in column SWOP c.

Synthesis with output permutation enables the realiza-
tion of smaller networks than the currently best known re-
alizations. As an interesting example the realizations of the
hwb4 function is observed in more detail. For the initial
function specification a minimal realization with 11 gates
have been synthesized by the exact approach described
in [3]. Now, using output permutation we are able to synthe-
size a smaller realization with only 10 gates using a heuris-
tic approach.

7. Conclusions and Future Work
In this paper we introduced synthesis with output permu-

tation (SWOP). We discussed the best case benefit and in-
troduced different strategies facing the increasing complex-
ity of our new synthesis paradigm. Output permutation have
been applied to a representative of exact as well as heuristic
synthesis, respectively. On our set of functions we showed
that significant reductions (with respect to the number of
gates) can be achieved, i.e. considering output permutation
is beneficial. For some cases we synthesized multiple con-
trol Toffoli networks which are smaller than the currently
best known realizations – even smaller than the ones today
known as minimal.

Table 5. Best results obtained by SWOP
BEST KNOWN SWOP

BENCH. c SCR. c Δc

decod24 6 [20] 5 1
alu 7 [20] 6 1
gt5 3 – 1 2
3 17 6 [20] 5 1
4 49 16 [21] 14 2
aj-e13 40 – 28 12
hwb4 11 [3] 10 1

For future work we plan to integrate the proposed
methodology in approaches that also consider other cost
metrics during synthesis (like e.g. [22, 23]).

8. Acknowledgements
This work was supported by the German Academic Ex-

change Service (DAAD).

References
[1] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVinchenzo, N. Margolus, P. Shor,

T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates for quantum
computation. The American Physical Society, 52:3457–3467, 1995.

[2] E. F. Fredkin and T. Toffoli. Conservative logic. International Journal of The-
oretical Physics, 21(3/4):219–253, 1982.

[3] D. Große, X. Chen, G. W. Dueck, and R. Drechsler. Exact SAT-based Toffoli
network synthesis. In ACM Great Lakes Symposium on VLSI, pages 96–101,
2007.

[4] D. Große, R. Wille, G. W. Dueck, and R. Drechsler. Exact synthesis of ele-
mentary quantum gate circuits for reversible functions with don’t cares. In Int’l
Symp. on Multi-Valued Logic, pages 220–225, 2008.

[5] P. Gupta, A. Agrawal, and N. Jha. An algorithm for synthesis of reversible logic
circuits. IEEE Trans. on CAD, 25(11):2317–2330, 2006.

[6] W. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski. Optimal synthesis
of multiple output Boolean functions using a set of quantum gates by symbolic
reachability analysis. IEEE Trans. on CAD, 25(9):1652–1663, 2006.

[7] J. Marques-Silva and K. Sakallah. GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Trans. on Comp., 48(5):506–521, 1999.

[8] D. Maslov and G. W. Dueck. Reversible cascades with minimal garbage. IEEE
Trans. on CAD, 23(11):1497–1509, 2004.

[9] D. Maslov, G. W. Dueck, and D. M. Miller. Toffoli network synthesis with
templates. IEEE Trans. on CAD, 24(6):807–817, 2005.

[10] D. M. Miller and G. W. Dueck. Spectral techniques for reversible logic synthe-
sis. In 6th International Symposium on Representations and Methodology of
Future Computing Technology, pages 56–62, 2003.

[11] D. M. Miller, D. Maslov, and G. W. Dueck. A transformation based algorithm
for reversible logic synthesis. In Design Automation Conf., pages 318–323,
2003.

[12] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information.
Cambridge Univ. Press, 2000.

[13] A. Peres. Reversible logic and quantum computers. Phys. Rev. A, (32):3266–
3276, 1985.

[14] R.Rudell. Dynamic variable ordering for ordered binary decision diagrams. In
Int’l Workshop on Logic Synth., pages 3a–1–3a–12, 1993.

[15] M. Saeedi, M. Sedighi, and M. S. Zamani. A novel synthesis algorithm for
reversible circuits. In Int’l Conf. on CAD, pages 65–68, 2007.

[16] V. Shende, A. Prasad, I. Markov, and J. Hayes. Reversible logic circuit synthe-
sis. In Int’l Conf. on CAD, pages 353–360, 2002.

[17] L. Storme, A. D. Vos, and G. Jacobs. Group theoretical aspects of reversible
logic gates. Journal of Universal Computer Science, 5:307–321, 1999.

[18] T. Toffoli. Reversible computing. In W. de Bakker and J. van Leeuwen, editors,
Automata, Languages and Programming, page 632. Springer, 1980. Technical
Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

[19] R. Wille, G. Fey, D. Große, S. Eggersglüß, and R. Drechsler. Sword: A SAT
like prover using word level information. In VLSI of System-on-Chip, pages
88–93, 2007.

[20] R. Wille and D. Große. Fast exact Toffoli network synthesis of reversible logic.
In Int’l Conf. on CAD, pages 60–64, 2007.

[21] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib:
an online resource for reversible functions and reversible circuits. In Int’l
Symp. on Multi-Valued Logic, pages 214–219, 2008. RevLib is available at
http://www.revlib.org.

[22] R. Wille, H. M. Le, G. W. Dueck, and D. Große. Quantified synthesis of re-
versible logic. In Design, Automation and Test in Europe, pages 1015–1020,
2008.

[23] G. Yang, X. Song, W. N. N. Hung, and M. A. Perkowski. Fast synthesis of
exact minimal reversible circuits using group theory. In ASP Design Automation
Conf., pages 1002–1005, 2005.

