
Temperature Aware Scheduling for Embedded Processors

Ramkumar Jayaseelan Tulika Mitra
Department of Computer Science
National University of Singapore
{ramkumar,tulika}@comp.nus.edu.sg

Abstract

Power density has been increasing at an alarming rate
in recent processor generations resulting in high on-chip
temperature. Higher temperature results in poor reliability
and increased leakage current. In this paper, we propose
a temperature aware scheduling technique in the context of
embedded multi-tasking systems. We observe that there is a
high variability in the thermal properties of different embed-
ded applications. We design temperature-aware schedul-
ing (TAS) scheme that exploits this variability to maintain
the system temperature below a desired level while satisfy-
ing a number of requirements such as throughput, fairness
and real time constraints. Moreover, TAS enables explo-
ration of the tradeoffs between throughput and fairness in
temperature-constrained systems. Compared against stan-
dard schedulers with reactive hardware-level thermal man-
agement, TAS provides better throughput with negligible
impact on fairness.

1 Introduction

Decreasing feature sizes and increased complexity have
resulted in very high power density in modern processors.
The power dissipated is converted into heat and the proces-
sors are pushing the limits of packaging and cooling solu-
tions [2]. The problem is prominent in the embedded do-
main where mobility and size constraints do not warrant for
elaborate cooling mechanisms such as fan and heat sink.
Increased operating temperature affects reliability. More-
over, leakage power increases exponentially with operating
temperature. Increasing leakage power can further raise the
temperature resulting in a thermal runaway [14]. Hence,
there is a need to control temperature at all levels of system
design.

Designing the thermal package for the worst-case power
dissipation has become prohibitively expensive. Instead,
packages are designed for worst typical behavior and rely
on Dynamic Thermal Management (DTM) techniques to
control the temperature. Many hardware and software-
based DTM techniques have been proposed recently [3, 6,
7, 12, 13, 15]. Most of them, with the exception of [15],

are reactive in nature. They invoke appropriate mechanism
to cool down the system when the temperature reaches a
threshold. Cooling down typically involves techniques such
as global clock gating or dynamic voltage scaling that de-
grade the system throughput. As such, reactive techniques
do not have control over the system behavior that leads
to the threshold temperature. In contrast, predictive tech-
niques [15] anticipate the future thermal behavior and take
appropriate measures to avoid thermal emergencies.

Recently there has been significant interest in ther-
mal management in embedded systems. Majority of the
thermal management techniques proposed in the context
of embedded systems employ static or design-time ap-
proaches [18, 8]. Recently, there have been a huge prolifer-
ation of multimedia-dominated personal embedded devices,
such as PDAs, cell phones, portable audio/video players etc.
These high-performance devices provide multiple function-
alities, include operating system, and support concurrency
through multi-tasking. For example, it is quite common for
a user to run a audio clip decoder on his/her PDA, while at
the same time browse the web or perform word processing.

In this scenario, where the embedded device runs a mix
of soft real-time applications (e.g., audio decider) and best
effort tasks (e.g., word processing) chosen at runtime by the
user, the static or design-time thermal management tech-
niques are no longer effective. Hence we propose a dy-
namic predictive temperature-aware scheduling (TAS) strat-
egy for embedded multi-tasking systems consisting of a
mix of soft real-time applications and best-effort applica-
tions. Our scheme exploits the variation between the tem-
perature profiles [14, 15] of different applications to main-
tain the temperature below the threshold while maintaining
high throughput. The basic idea of the scheduler is to dif-
ferentiate among the tasks based on their predicted thermal
profiles and penalize the hot tasks if necessary to maintain
high system throughput. Moreover, we show that a sim-
ple parameter can control the tradeoffs between throughput
and fairness of the TAS scheme. We evaluate our schedul-
ing scheme on a ARM cortex A8 like embedded processor
model. We observe that TAS can achieve higher throughput
while maintaining QoS guarantees for soft real-time tasks
with marginal loss in fairness among the best-effort tasks

1

compared to traditional schedulers employed in conjunction
with DTM techniques.

2 Related Work

Dynamic Thermal Management (DTM) mechanisms can
be hardware or software-based. In both hardware and soft-
ware based schemes, the temperature sensors on the pro-
cessor are continuously monitored and when this temper-
ature exceeds a predefined threshold, appropriate mecha-
nisms are invoked to reduce the temperature. Different
thermal management schemes differ in the mechanisms that
they employ to maintain the temperature below the thresh-
old. Hardware-based DTM mechanisms include chip wide
mechanisms such as dynamic voltage scaling [14], global
clock gating [6] and ILP-based techniques [3, 15, 7].

Recently there has been widespread interest in software
and system level thermal management schemes. Rohou et
al. [12] propose a software-based technique where hot tasks
are not allocated processing time when the system reaches
a threshold. Kumar et al. [9] propose a similar software-
based technique that examines the interplay between hard-
ware and software thermal management. Reactive thermal
management for hard real time systems has been discussed
in [16]. While the above mentioned schemes are reactive
in nature, predictive schemes for thermal management have
also been proposed. Predictive techniques anticipate the
future thermal behavior and take appropriate measures to
avoid thermal emergencies. A predictive scheme for multi-
media applications has been proposed in [15]. It exploits
the frame-based nature of media applications to predict the
temperature of the next frame based on the offline profiles
of execution of similar frames. It is not immediately clear
how this technique can be extended to predict the tempera-
ture of arbitrary applications.

In this paper we present a temperature aware schedul-
ing strategy in the context of high performance embedded
multi-tasking systems. Unlike previous reactive and pre-
dictive thermal management schemes, our strategy can op-
timize the system performance while maintaining other re-
quirements such as real time constraints and fairness. In the
next section we present our temperature aware scheduling
framework and the temperature model.

3 Temperature Aware Scheduling Frame-
work and Thermal Model

The goal of our thermal management framework is to
maintain the temperature below the threshold while satisfy-
ing a variety of system level scheduling requirements such
as throughput, fairness and real time constraints. Power
consumption and hence the the thermal profiles vary be-
tween different tasks. Given a set of tasks with varying
thermal profiles, the temperature can be controlled by vary-
ing the relative amount of time for which hot tasks and cold

tasks execute. Our thermal aware scheduling framework ex-
ploits this observation in conjunction with voltage scaling
to maintain the processor temperature below the maximum
specified temperature.

The framework consists of a predictive thermal model
and the temperature aware scheduler. The predictive ther-
mal model is used to characterize the thermal properties of
each task and also predict the change in temperature when a
task executes starting from an initial temperature. The tem-
perature aware scheduler uses the thermal properties of the
tasks from the model and the task execution time require-
ments to determine the time for which each task executes.
Our framework consists of both real time and best effort
tasks. The scheduler ensures that real time tasks meet the
deadline and for best effort tasks, the goal is to maximize
the throughput while maintaining a user supplied level of
fairness. For maintaining fairness as well as to maintain
real time constraints, our scheduler exploits dynamic volt-
age and frequency scaling. Next we present our thermal
model and Section 4 presents our temperature aware sched-
uler.
3.1 Thermal Model

In this section, we present a thermal model to predict the
processor temperature at any point during the execution of
a specific application. We use a predictive thermal model
which models the temperature profile of a given application
as an exponential function of the form [18]

T (t) = Ts− (Ts−Tinit)× e−Kt (1)

where Ts is the steady state temperature of the application
which is defined as the temperature the processor would
reach if the application executes indefinitely, T (t) is the
temperature of the processor after the application executes
for t time units, Tinit is the initial temperature, and K is a
processor specific and application independent constant.

The value of the application independent processor spe-
cific constant K can be determined by fitting the observed
temperature profiles for different applications into the expo-
nential function. This process is done offline and the com-
puted value of K is used in the predictive thermal model.
For our processor model1 we compute the value of K =
0.00472.

The steady state temperature of an application can be de-
termined online by observing the temperature change over a
period of time when the application executes and rearrang-
ing Equation 1.

Ts =
Tc−Tinit × e−Kc

(1− e−Kc)
(2)

where Ts is the steady state temperature of the application,
Tc is the temperature after the application executes for c

1The details of the processor model is presented in the experimental
section

2

Frame Exec
Time Prediction

Soft Real Time
Scheduler

Execution
Time

Temperature
Adjustment

Schedule

Stochastic Scheduler

Best Effort
Scheduler

T r
eq
,s
la
ck

Temperature Aware Scheduler

Figure 1. Temperature Aware Scheduling Policy

time units, Tinit is the initial temperature before the applica-
tion starts execution, and K is the application independent
processor specific constant that is computed offline.

Once the steady state temperature of the application is
known, Equation 1 can be used to predict the change in tem-
perature when this application executes starting from any
initial temperature.

Accuracy of the Prediction Model In order to check the
accuracy of the predictive thermal model, we run a set of
embedded benchmarks on a ARM Cortex A8 [1] like em-
bedded processor model and observe the temperature pro-
files of the processor. We compare the observed temperature
from these runs with the temperatures predicted from the
model. For each application, we obtained the temperature
curve from HotSpot with a sampling frequency of 1 milli-
second. We also applied our model to predict the temper-
ature variations and compared the temperature curves from
the model and from HotSpot. For each benchmark, we mea-
sured the peak error that this the temperature difference at
the point at which the predicted and the observed curves
diverge the most. The maximum peak error is 0.6oC and
the average peak error is 0.14oC across all the benchmarks.
Hence our model provides sufficient accuracy for software
based thermal management. In the next section we present
our temperature aware scheduler.

4 Temperature Aware Scheduling

An overview of our thermal aware scheduler is shown in
Figure 1. Our system consists of soft real-time (multimedia)
and best-effort tasks. Our soft real time tasks comprise of
periodic multimedia tasks that release a job per period, e.g.,
decoding a video frame every 30 ms. We employ a hier-
archical scheduling structure typically used in multi-media
systems [5, 10, 11].

The thermal aware scheduler consists of two sub-
schedulers to handle soft real time tasks and best effort
tasks. The execution requirements for the next frame is pre-
dicted using a frame execution time predictor. We employ
the histogram based method for execution time rediction
proposed in [17] for its accuracy and ease of implementa-
tion. The predicted frame execution times are given as input
to the soft real time scheduler which schedules the soft real

time tasks. We employ a simple static priority soft real time
scheduler in our scheme where the audio decoding task has
a higher priority than the video decoding task.

Our thermal aware scheduler has an additional thermal
adjustment phase. This phase takes the soft real time sched-
ule and the predicted frame execution time requirements as
input and has two main parts (i) Ensure that the soft real
time task remains below the threshold frequency/voltage
scaling the soft real time tasks if necessary (ii) Compute
the starting temperature (Treq) for the next period so that
the temperature of the soft real time tasks remain below the
threshold. The slack and the required temperature (Treq) is
provided as input to the best effort task scheduler. We em-
ploy a modified version of a round robin scheduler as our
best effort scheduler. Our best effort scheduler classifies
tasks into hot and cold tasks and controls temperature by
changing the execution time provided to the hot and cold
tasks. Next we present the thermal adjustment phase em-
ployed in conjunction with the soft real time scheduler.

4.1 Thermal Adjustment Phase

The thermal adjustment phase takes the frame execution
time prediction and soft real time schedule as input and
performs the following tasks (i) Compute Treq the starting
temperature for the next set of soft real time task such that
temperature during the next invocation remains below the
threshold (ii) Ensure that current set of soft real time tasks
maintain the temperature below the threshold , voltage scal-
ing/ dropping frames if necessary. We explain a case with
two real time tasks R1 and R2 in the remainder of this dis-
cussion but the scheme can be extended to multiple soft real
time tasks

4.1.1 Computing Treq

Treq is defined as the maximum initial temperature such that
the execution of the next real-time task(s) is guaranteed not
to exceed Tmax. As the execution time and period of real-
time tasks are known, it is easy to compute Treq. For ex-
ample, suppose the system will execute two soft real-time
tasks for t1 and t2 time units in the near future with steady
state temperatures Ts1 and Ts2. Then Treq can be determined
by using Equation 1 as

Treq = Ts1− (Ts1−Ts2)eKt1 +(Ts2−Tmax)eK(t1+t2) (3)

This can be easily extended to multiple soft real-time tasks.

4.1.2 Voltage Scaling Soft Real Time Tasks

This phase also checks if the execution of the soft real time
tasks maintains the temperature below the threshold using
the model. For instance if the present temperature of the
system is Tinit and there are two soft real-time tasks for t1

3

N units

Pc Ph

(1-β) ×N β×N

Tinit

Tmid

Tfin

N units

Tinit

Tmid

Tfin

(a)
Tcurr>Tsc

(b)
Tcurr<=Tsc

PcPh

(1-β) ×Nβ×N

Figure 2. CPU Share between Hot and Cold Tasks

and t2 time units in the near future with steady state tem-
peratures Ts1 and Ts2. The temperature at the end of Task 1
and Task 2 are given by

T1 = Ts1− (Ts1−Tinit)e−Kt1 (4)
T2 = Ts2− (Ts2−T1)e−Kt2 (5)

If T1 < Tmax and T2 < Tmax then the phase computes the
slack and presents the slack and Treq to the best effort sched-
uler. If either one of tasks exceed the threshold then the
then the corresponding tasks’s frequency is lowered to the
next lower frequency level. After lowering the frequency
the temperature and deadline constraints are verified.If ei-
ther constraints are not met then the frame is dropped. At
the end of the temperature adjustment phase, a feasible soft
real time schedule with frequency levels for each task as
well as the corresponding slack and Treq values are com-
puted. The slack and Treq values are sent to the best effort
scheduler which uses it for scheduling the best effort tasks.
Next we present our best effort scheduler.

4.2 Best Effort Scheduler

We first categorize the best-effort tasks into hot tasks
and cold tasks. Pc is a cold task if its steady state tempera-
ture is below Treq as it would cool down the system. Simi-
larly, Ph is a hot task if its steady state temperature is above
Treq as it may heat up the system beyond Treq.

We observe that a schedule alternating between hot and
cold tasks provides a good solution. The scheduler consid-
ers a pair of tasks (one hot and one cold) at a time. The
problem now boils down to dividing up CPU share between
these two tasks so as to keep the temperature below Tmax
and the temperature at the end of the schedule is below Treq.
If the set of best effort tasks consists of only hot tasks then
our best effort scheduler uses a voltage scaled version of the
hot task as the cold task.

4.3 CPU Share between a Hot and Cold Task

Given (1) current temperature Tcurr, (2) a hot task (Ph)
with steady state temperature Tsh, and (3) a cold task (Pc)
with steady state temperature Tsc, the goal of the scheduler
is to allocate N time units between Ph and Pc so as to main-
tain the system temperature below Tmax and the temperature

at the end of the schedule is Treq. In particular, we deter-
mine the maximum share 0≤ β≤ 1 that can be allocated to
the hot task (i.e., it executes for βN) while maintaining the
system temperature below Tmax and temperature at the end
of the schedule is less than Treq.

Case 1: Tcurr ≥ Tsc In this case, the cold task should be
scheduled first to cool down the system and maximize the
share for the hot task. Figure 2(a) shows the temperature
curve over N time units. Tmid is the temperature after exe-
cuting the cold task and Tf in is the final temperature.

Tf in = Tsh− (Tsh−Tmid)× e−KβN (6)

Tmid = Tsc− (Tsc−Tcurr)× e−K(1−β)N (7)

Clearly, the temperature constraints are satisfied if Tf in <
Treq. Hence, the maximum value of β can be obtained by
substituting Tf in = Treq and solving for β

β =
ln(C2

C1+C3×e−KN)

K×N
(8)

where C1 = Tsh−Treq; C2 = Tsh−Tsc; C3 = Tcurr−Tsc

Case 2: Tcurr < Tsc In this case the maximum share for the
hot task is obtained when it is scheduled first. This scenario
is shown in Figure 2(b). Here the temperature is guaranteed
to be below Tmax if Tmid <= Tmax and the final temperature
constraint is satisfied if Tf in <= Treq. So the value of β can
be obtained from

Tmid = Tsh− (Tsh−Tcurr)× e−KβN (9)

Tf in = Tsc− (Tsc−Tmid)× e−K(1−β)N (10)

Substituting Tmid = Tmax and solving for β

β1 =
ln(Tsh−Tcurr

Tsh−Tmax
)

kN
(11)

Using Tf in = Treq we get

β2 =
ln((Treq−Tsc)+(Tsh−Tcurr)

Tsh−Tsc
)

kN
(12)

β = min(β1,β2) (13)

Best Effort Scheduling Policy The run queue consisting
of the ready tasks is split into two queues corresponding
to the hot and cold tasks, respectively. The scheduler also
keeps track of the CPU share given to each task so far.
Whenever the scheduler is invoked, it selects the task with
least share in the hot queue (Ph) and the task with the least
share in the cold queue (Pc). Let N be the scheduling unit.
The maximum share, β, that can be allocated to Ph in the
next 2N time units is determined using Eqn 8 or Eqn 13.
Our best effort scheduler examines the CPU share allocated
to both the tasks and tries to maintain fairness while ensur-
ing that the hot task gets no more than β×2N time units.

4

Enforcing Fairness The scheduling scheme discussed
earlier cannot ensure fairness as it gives higher preference
to cold tasks in trying to keep the system temperature be-
low Tmax. To obtain a tradeoff between throughput and fair-
ness, we employ selective voltage scaling for the hot tasks in
conjunction with our thermal-aware scheduler. We assume
that the processor supports two voltage levels Vmin and Vmax
with corresponding frequencies fmin and fmax. To ensure
fairness, we define minimum share smin for any task. If
the current share of a hot task is below smin, then its volt-
age scaled version is transferred to the cold queue. The
parameter smin represents the tradeoff between fairness and
throughput. Given an aggressive value of smin, the system
spends most of its time in voltage scaled mode thus reduc-
ing throughput. A smaller value of smin, in contrast, may
lead to unfairness towards the hot tasks.

5 Experimental Evaluation

Setup We use SimpleScalar 3.0 architectural simulator
with configurations similar to a ARM Cortex A8 Embedded
Processor [1]. The processor model is a in-order dual is-
sue processor with 32 KB instruction/data caches, 512 entry
branch miss-prediction buffer and a 13 entry branch miss-
prediction pipeline. The temperature values are obtained us-
ing HotSpot-3.0 [14], an architecture-level thermal simula-
tor working in conjunction with Wattch [4], an architecture-
level power simulator. We use Wattch’s linear scaling to
obtain the power consumption at 1.2 V and 1.5 Ghz [1] and
for voltage scaling we use a lower operating frequency of
800 Mhz which we find sufficient to remove all temperature
violations [13]. We use a thermal resistance of 1.83oC/W
and a thermal capacitance of 112.4mJ/oC and an ambi-
ent temperature of 40oC. We assume that the temperature
should not exceed 80oC based on the cooling solution [9].
The benchmarks selected from MiBench, MediaBench and
EEMBC benchmark suites have steady state temperatures
in the range 63.65oC− 88.5oC. We have tasks with low
(patricia, gs, apcm), medium (jpeg, mpeg, mp3,
blowfish,crc,) and high (rijndael, sha, susan)
thermal profile. We create eight task sets using different
combinations of these benchmarks as shown in Table 1.
Each task set contains applications with varying thermal
characteristics. Four of these task sets have soft real-time
applications (mpeg and mp3) while the other four have
only best-effort applications. We assume a frame rate of
30 ms for mpeg and 26 ms for mp3. Tasks sets contain-
ing real-time applications are simulated till 450 video or au-
dio frames complete decoding. Tasks sets containing only
best effort applications are simulated for a total of 500 time
slices (each time slice = 20ms). Of these task sets, S8 con-
sists of only hot applications and hence in this case our
scheduler performs scheduling by using a voltage scaled
version of available hot tasks as cold tasks.

Soft Real-Time Best Effort
S1 mpeg, mp3 sha, jpeg, adpcm, crc
S2 mpeg, mp3 rijndael, susan, patricia, gs
S3 mpeg, mp3 susan, jpeg, blowfish, gs
S4 mpeg, mp3 rijndael, sha, adpcm, patricia
S5 jpeg, susan, crc, gs
S6 sha, rijndael, crc, gs
S7 sha, susan, jpeg, patricia
S8 susan, rijndael, jpeg, blowfish

Table 1. Composition of Task Sets

78.5

79

79.5

80

80.5

81

81.5

0 200 400 600 800 1000 1200 1400
Time (milli second)

Te
m

pe
ra

tu
re

 (o
C

)

TAS Unconstrained

Figure 3. Temperature Profile for TAS
Traditional Thermal Management: Our temperature-

aware scheduler (TAS) maintains the temperature below the
threshold by appropriately scheduling the best-effort tasks.
We compare it against a standard round robin (RR) sched-
uler for the best-effort tasks with a time slice of 20ms. The
RR scheduler cannot guarantee that the temperature will
not exceed the threshold and hence dynamic thermal man-
agement (DTM) techniques need to be engaged. We em-
ploy two popular DTM techniques in conjunction with RR
scheduler: dynamic voltage scaling (DVS) and global clock
gating (CG). DVS lowers the voltage/frequency of the pro-
cessor whenever the system hits the threshold temperature.
In case of CG, the processor global clock is gated (i.e., the
processor remains idle). Once a DTM mechanism is en-
gaged, the system begins to cool down. The normal operat-
ing voltage and frequency are resumed once the system tem-
perature goes sufficiently below the maximum temperature.
We implement a binary DVS scheme [13] that is shown to
be performing as well as multi-level DVS schemes.

Maintaining Temperature : Figure 3 shows the temper-
ature profiles for our thermal aware scheduling scheme as
well as the temperature profile if no DTM scheme is present.
We observe that TAS is able to keep the temperature below
Tmax for all the task sets by changing either the share of pro-
cessing time given to hot and cold tasks or by appropriately
scaling the operating frequency.

Throughput: Let tmin and tmax be the time the system
spends in lower (800 MHz) and higher frequency (1.5GHz)
for DVS and TAS. Note that TAS does not use low voltage
as a consequence of hitting the threshold temperature. In-
stead, it selectively lowers the voltage of hot tasks to ensure
fairness. For both cases, the throughput is defined as

T hroughput =
tmax +0.53× tmin

tmax + tmin
(14)

5

Task Throughput Fairness
Set TAS(0) TAS(0.2) DVS CG TAS(0) TAS(0.2) DVS CG
S1 1.0 0.96 0.91 0.82 0.94 0.97 0.98 0.94
S2 1.0 0.92 0.89 0.84 0.89 0.96 0.98 0.92
S3 1.0 0.89 0.86 0.82 0.84 0.94 0.98 0.94
S4 1.0 0.98 0.94 0.88 0.91 0.96 0.97 0.90
S5 1.0 1.0 0.95 0.87 0.97 0.97 0.98 0.91
S6 1.0 0.93 0.92 0.89 0.88 0.96 0.98 0.96
S7 1.0 0.96 0.90 0.81 0.89 0.92 0.98 0.90
S8 0.82 0.82 0.84 0.73 0.99 0.99 0.99 0.96

Table 2. Throughput and Fairness of Thermal-aware Scheduler (TAS) with smin = 0, smin = 0.2 and DTM Schemes

Let tidle be the idle time under global clock gating. Then

T hroughputCG =
tmax

tmax + tidle
(15)

Table 2 shows the throughput for TAS, DVS and CG. We use
two versions of TAS scheme with different values of smin
that controls fairness (see Section 4.3). The first version
(smin = 0) maximizes the throughput while ignoring fair-
ness. The second version (smin = 0.2) introduces a voltage-
scaled version of a hot task when its share drops below 0.2.

The results shows that TAS performs better than clock
gating in all cases. It performs better than DVS in cases
where there is at least one cold task (S1-S7). In the case
where only hot tasks are available (S8), TAS gives almost
the same throughput as DVS. As expected, the throughput
of TAS drops as the minimum expected share (smin) is in-
creased from 0 to 0.2.

Fairness: The share of a best effort task Pi is given by

s(i) =
tmax(i)+0.53× tmin(i)

Σ
Q
i=1tmax(i)+0.53×Σ

Q
i=1tmin(i)

(16)

sCG(i) =
tmax(i)

Σ
Q
i=1tmax(i)

(17)

where tmax(i) and tmin(i) are the amount of time task Pi
spends at maximum and minimum voltage and Q is the
number of best-effort tasks. Based on the share given to
each best effort application, our metric for fairness is

F = 1−
Σ

Q
i=1|s f air− s(i)|

Q
(18)

where s f air is the expected fair share.
Table 2 shows the fairness metric for TAS, CG, and

DVS. TAS with smin = 0 maximizes the throughput with
lower fairness than DVS. However, if we use smin = 0.2,
then the fairness improves and becomes comparable to DVS
with higher throughput than DVS . As the scheduler tries
to be more fair (higher smin), the throughput drops. Thus
our predictive scheme can provide a tradeoff between sys-
tem throughput and fairness when operating under thermal
constraint. A reactive DVS scheme, on the other hand, only
operates at one of these points.
6 Conclusion

In this paper, we have proposed a simple thermal model
to predict the temperature when an arbitrary application

starts execution from an initial temperature. Based on our
model, we have designed and experimentally evaluated a
thermal-aware scheduling strategy for multi-tasking embed-
ded systems. Our thermal-aware scheduler can provide bet-
ter throughput in comparison to DTM employed in conjunc-
tion with conventional schedulers.

7 Acknowledgements
This work is partially supported by NUS research project

R-252- 000-292-112.
References

[1] ARM Cortex A8 Processor. http://www.arm.com/products/CPUs/
ARM_Cortex-A8.html.

[2] S. Borkar. Design Challenges of Technology Scaling. IEEE Micro, 19(4), 1999.

[3] D. Brooks and M. Martonosi. Dynamic Thermal Management for High-
Performance Microprocessors. In HPCA, 2001.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for
Architectural-level Power Analysis and Optimizations. In ISCA, 2000.

[5] P. Goyal, X. Guo, and H. M. Vin. A Hierarchical CPU Scheduler for Multime-
dia Operating Systems. In OSDI, 1996.

[6] S. Gunther et al. Managing the Impact of Increasing Microprocessor Power
Consumption. Intel Technology Journal, 2001.

[7] S. Heo, K. Barr, and K. Asanovic. Reducing Power Density through Activity
Migration. In ISLPED, 2003.

[8] W-L. Hung et al. Thermal-aware task allocation and scheduling for embedded
systems. In DATE, 2005.

[9] A. Kumar et al. HybDTM: A Coordinated Hardware-Software Approach for
Dynamic Thermal Management. In DAC, 2006.

[10] J. Nieh and M. S. Lam. A smart scheduler for multimedia applications. ACM
Trans. Comput. Syst., 2003.

[11] J. Regehr and J. A. Stankovic. Hls: A framework for composing soft real-time
schedulers. In RTSS, 2001.

[12] E. Rohou and M. Smith. Dynamically Managing Processor Temperature and
Power. In Workshop on Feedback-Directed Optimization, 1999.

[13] K. Skadron. Hybrid Architectural Dynamic Thermal Management. In DATE,
2004.

[14] K. Skadron et al. Temperature-aware Microarchitecture: Modeling and Imple-
mentation. ACM TACO, 1(1), 2004.

[15] J. Srinivasan and S. V. Adve. Predictive Dynamic Thermal Management for
Multimedia Applications. In ICS, 2003.

[16] S. Wang and R. Bettati. Reactive Speed Control in Temperature-Constrained
Real-Time Systems. In ECRTS, 2006.

[17] W. Yuan and K. Nahrstedt. Energy-Efficient Soft Real-Time CPU Scheduling
for Mobile Multimedia Systems. In SOSP, 2003.

[18] S. Zhang and K. S. Chatha. Approximation algorithm for the temperature-aware
scheduling problem. In ICCAD, 2007.

6

