
SACR: Scheduling-Aware Cache Reconfiguration for Real-
Time Embedded Systems

 Weixun Wang and Prabhat Mishra Ann Gordon-Ross
Department of Computer and Information Science and Engineering Department of Electrical and Computer Engineering

 University of Florida, Gainesville, FL University of Florida, Gainesville, FL
 wewang@cise.ufl.edu, prabhat@cise.ufl.edu ann@ece.ufl.edu

Abstract

Dynamic reconfiguration techniques are widely used for efficient

system optimization. Dynamic cache reconfiguration is a

promising approach for reducing energy consumption as well as

for improving overall system performance. It is a major challenge

to introduce cache reconfiguration into real-time embedded

systems since dynamic analysis may adversely affect tasks with

real-time constraints. This paper presents a novel approach for

implementing cache reconfiguration in soft real-time systems by

efficiently leveraging static analysis during execution to both

minimize energy and maximize performance. To the best of our

knowledge, this is the first attempt to integrate dynamic cache

reconfiguration in real-time scheduling techniques. Our

experimental results using a wide variety of applications have

demonstrated that our approach can significantly (up to 74%)

reduce the overall energy consumption of the cache hierarchy in

soft real-time systems.

1. Introduction
Design and optimization of real-time embedded systems have been

widely studied over the last few decades. These systems require

unique design considerations due to time constraints placed on the

tasks. Hard real-time system tasks have deadlines and tasks must

complete execution by their deadlines in order to ensure correct

system behavior. Due to these stringent constraints, real-time

scheduling algorithms must perform task schedulability analysis

based on task attributes such as priorities, periods, and deadlines

[4][12]. A task set is considered schedulable if there exists a

schedule that satisfies all timing constraints. As embedded systems

become ubiquitous, real-time systems with soft timing constraints

(missing certain deadlines are acceptable) are gaining widespread

acceptance. Soft real-time systems can be found everywhere

including gaming, multimedia, and housekeeping devices. Tasks in

these systems remain effective even if their deadlines are not

guaranteed to be met. Minor deadline misses may result in

temporary service or quality degradation, but will not lead to

incorrect behavior.

One of the most important optimizations in real-time embedded

systems is energy consumption reduction since most of these

systems are battery-operated devices. Processor idle time (also

known as slack time) provides a unique opportunity to reduce the

overall energy consumption by putting the system into sleep mode

using Dynamic Power Management (DPM) techniques [2].

Alternatively, Dynamic Voltage Scaling (DVS) [8] methods can be

used to reduce the clock frequency such that the tasks execute

slowly but do not violate their deadlines [10][16].

In recent years, reconfigurable computing provides the unique

ability to tune the system during runtime (dynamically reconfigure)

to meet optimization goals by changing tunable system parameters.

The primary aspect of reconfigurable computing research

emphasizes tuning algorithms, which determine how and when to

dynamically reconfigure tunable parameters to achieve higher

performance, lower energy consumption, and/or balance overall

system behavior. One such tunable component is the cache

hierarchy. An efficient reconfigurable cache framework and tuning

algorithms are proposed in [7].

Although reconfigurable caches are highly beneficial in

desktop and embedded systems, currently, reconfigurable caches

have not been considered in real-time systems due to several

fundamental challenges. For example, how to employ and make

efficient use of reconfigurable caches in real-time systems remains

unsolved. Determining the appropriate cache configuration

typically requires some amount of runtime evaluation of different

candidates. Furthermore, any change in cache configuration on-the-

fly may alter task execution time. In hard real-time systems, the

benefit of reconfiguration is limited since both of these facts can

make scheduling decisions difficult and eventually may lead to

unpredictable system behavior. On the other hand, soft real-time

systems offer much more flexibility, which can be exploited to

achieve considerable energy savings at the cost of very minor

impacts to user experiences. Our proposed research focuses on soft

real-time systems.

To the best of our knowledge, this is the first approach in

exploiting dynamic reconfigurable caches in real-time systems.

This paper presents a novel methodology for using reconfigurable

caches in real-time systems with preemptive tasks. Our proposed

methodology, Scheduling-Aware Cache Reconfiguration (SACR),

provides an efficient and near optimal cache tuning strategy based

on static program profiling for both statically and dynamically

scheduled real-time systems. The goal is to optimize energy

consumption with performance considerations via reconfigurable

cache tuning while ensuring that the majority of task deadlines are

met.

The rest of the paper is organized as follows. Section 2 surveys

the background literature addressing both dynamic cache

reconfiguration and real-time scheduling techniques. Section 3

describes our proposed research on scheduling-aware cache

reconfiguration in soft real-time systems. Section 4 presents our

experimental results. Finally, Section 5 concludes the paper.

2. Related Work
There are no prior works in the area of dynamic cache

reconfiguration in real-time systems. Our proposed research is the

first attempt in this direction. This section surveys the background

literature in the following three related domains.

2.1 Real-Time Scheduling Techniques
Based on task properties and associated systems, scheduling

algorithms can be classified into various types [12]. Earliest

Deadline First (EDF) scheduling [4] and Rate Monotonic (RM)

scheduling [12] are the most frequently referenced fundamental

scheduling algorithms in the real-time systems community.

Periodic tasks, which usually have known worst case execution

time (WCET), period, and deadline are scheduled using such

methods. Sporadic tasks are accepted into the system only if the

task passes an acceptance test when it arrives. Since sporadic tasks

normally have hard time constraints, all accepted tasks are

guaranteed to meet their deadlines, and are thus treated as periodic

tasks. Aperiodic tasks are scheduled whenever enough slack time is

available. Hence, aperiodic tasks normally have soft deadlines and

can only be scheduled as soon as possible. In reality, these three

kinds of tasks may exist simultaneously. In this work, we use EDF

as the scheduling algorithm for tasks with only soft real-time

constraints. However, RM is also applicable with minor changes in

our approach.

2.2 Caches in Real-Time Systems
Incorporating caches into real-time embedded systems faces certain

difficulties due to the unpredictability imposed on the system.

Scheduling algorithms have difficultly calculating WCET for tasks

since data access time cannot be predetermined in the presence of

caches. A great deal of research efforts are directed at employing

caches in real-time systems either by proving schedulability

through WCET analysis and/or avoiding hazardous compulsory

miss uncertainty altogether. WCET analysis is a static, design time

analysis of tasks in the presence of caches to predict cache impact

on task execution times [14]. Cache locking [15] is a technique in

which useful cache lines are “locked” in the cache when a task is

preempted so that these blocks will not be evicted to accommodate

the new incoming task. Through cache line locking, the WCET and

cache behavior becomes more predictable since the major delay

from data replacement and access is avoided. Cache partitioning

[19] is a similar but more aggressive approach where the cache is

partitioned into reserved regions, each of which can only cache

data associated with a dedicated task. However, a potential

drawback to both cache locking and cache partitioning is per-task

reduction of cache resources. To alleviate this limitation, cache-

related preemption delay analysis [18] features tight delay

estimation so that prediction accuracy is higher than in traditional

WCET analysis. This improved accuracy can in turn result in a

durable task schedule. Our approach is applicable to real-time

systems that employ caches.

2.3 Reconfigurable Cache Architectures
In power constrained embedded systems, nearly half of the overall

power consumption is attributed to the cache subsystem [13].

Fortunately, since applications require vastly different cache

requirements in terms of cache size, line size, and associativity,

research shows that specializing the cache to an application’s needs

can reduce energy consumption by 62% on average [6].

There exists much work in dynamic cache reconfiguration [1]

[7]. The reconfigurable cache architecture proposed by Zhang et al.

[20] imposes no overhead to the critical path, thus cache access

time does not increase. Furthermore, the cache tuner consists of

small custom hardware or a lightweight process running on a co-

processor, which can alter the cache configuration via hardware or

software configuration registers. The underlying cache architecture

consists of four separate banks, each of which acts as a separate

way. Way concatenation, which logically concatenates ways

together, enables configurable associativity. Way shutdown

effectively shuts down ways to vary cache size. Configurable line

size, or block size, is achieved by setting a unit-length base line

size and then fetching subsequent lines if the line size increases.

Given a runtime reconfigurable cache, determining the best

cache configuration is a difficult process. Dynamic and static

analyses are two possible techniques. With dynamic analysis,

cache configurations are evaluated in system during runtime to

determine the best configuration. However, it is inappropriate for

real-time systems as it either imposes unpredictable performance or

significant energy overhead, both due to the exploration of

suboptimal cache configurations. During static analysis, various

cache alternatives are explored and the best cache configuration is

selected for each application in its entirety (application-based

tuning) [7] or for each phase of execution within an application

(phase-based tuning) [17]. Regardless of the tuning method, the

predetermined best cache configuration (based on design

requirements) may be stored in a look-up table or encoded into

specialized instructions. The static analysis approach is most

appropriate for real-time systems due to its non-intrusive nature.

However, previous methods focus solely on energy savings or

Pareto-optimal points trading off energy consumption and

performance. However, none of these methods consider task

deadlines, which are imperative in real-time systems.

3. Scheduling-Aware Cache Reconfiguration
A major challenge for cache reconfiguration in real-time systems is

that tasks are constrained by their deadlines. Even in soft real-time

systems, task execution time cannot be unpredictable or prolonged

arbitrarily. Our goal is to realize maximum energy savings while

ensuring the system only faces an innocuous amount of deadline

violations (if any). Our proposed methodology, Scheduling-Aware

Cache Reconfiguration (SACR), provides an efficient and near

optimal strategy for cache tuning based on static program profiling

for both statically and dynamically scheduled real-time systems.

Our approach statically executes, profiles, and analyzes each task

intended to run in the system. The information obtained in the

profiling process is fully utilized to make reconfiguration decisions

dynamically. The remainder of this section is organized as follows.

First, we present an overview of our approach using simple

illustrative examples. Next, we present our static analysis

technique for optimal cache configuration selection. Finally, we

describe how the static analysis results are used during runtime for

statically- and dynamically-scheduled real-time systems.

3.1 Overview
This section presents a simple demonstrative example to show how

reconfigurable caches benefit real-time embedded systems. This

example assumes a system with two tasks, T1 and T2. Traditionally

if a reconfigurable cache technique is not applied, the system will

use a base cache 1 configuration Cachebase throughout all task

executions. In the presence of a reconfigurable cache, as shown in

Figure 1, different optimal cache configurations are determined for

every phase of each task. For ease of illustration, we divide each

task into two phases. Phase1 starts from the beginning to the end,

and phase2 starts from the half position of the dynamic instruction

flow (midpoint) to the end. The terms CacheT1
1 , CacheT1

2 , CacheT2
1 ,

and CacheT2
2 represent the optimal cache configurations for phase1

and phase2 of task T1 and task T2, respectively. These

1 In this paper, we use the term “base cache” to refer to the cache used in

typical real-time systems. Caches in such systems, as discussed in

Section 2.2, are chosen to ensure durable task schedules.

CacheT1
1 CacheT2

1

CacheT1
2

T1 T2

CacheT2
2

Figure 1: Cache configurations selected based on phases

configurations are chosen statically to be more energy efficient

(with same or better performance), in their specific phases, than the

global base cache, Cachebase .
 Figure 2 illustrates how energy consumption can be reduced

by using our approach in real-time systems. Figure 2(a) depicts a

traditional system and Figure 2(b) depicts a system with a

reconfigurable cache (our approach). In this example, T2 arrives (at

time P1) and preempts T1. In a traditional approach, the system

executes using Cachebase exclusively. With a reconfigurable cache,

the first part of T1 executes using CacheT1
1 . Similarly, CacheT2

1 is

used for execution of T2. Note that the actual preemption point of

T1 is not exactly at the same place where we pre-computed the

optimal cache configuration (midpoint). When T1 resumes at time

point P2, the cache is tuned to CacheT1
2 since the actual preemption

point is closer to the midpoint compared to the starting point.

The overall energy consumed using a reconfigurable cache

results from the energy savings due to use of different energy

optimal caches for each phase of task execution compared to using

one global base cache in the traditional system. Our experimental

results suggest that the proposed approach can reduce energy

consumption up to 74% without introducing any performance

penalty.

3.2 Phase-based Optimal Cache Selection
This section describes our static analysis approach to determine the

optimal cache configurations for various task phases. In a

preemptive system, tasks may be interrupted and resumed at any

point in time. Each time a task resumes, cache performance for the

remainder of task execution will differ from the cache performance

for the entire application due to its own distinguishing behaviors as

well as cold-start compulsory cache misses. Thus, the optimal

cache configuration for the remainder of the task execution may be

different. Figure 3 depicts the general case where a task is divided

by n potential preemption points (0, P1, P2 … Pn-1). We define a

static profiled phase as the period of time between a predefined

potential preemption point (also called partition points) and task

completion. Here, C1, C2 … Cn represent the optimal cache

configuration (either energy or performance) for each phase,

respectively. Again, the potential preemption points, which define

phases, are decided during the static profiling stage and are not

necessarily the same as actual preemption points observed during

system execution.

During static profiling, a partition factor is chosen that

determines the number of potential preemption points and resulting

phases. Partition granularity is defined as the number of dynamic

instructions between partition points. The partition granularity is

determined by dividing the total number of dynamically executed

instructions by the partition factor. Smaller granularities result in

finer grained configuration, and potentially greater energy savings.

However, making granularity too fine would result in a

prohibitively large look-up table which would not be feasible due

to area constraints. Thus, a trade-off should be made to determine a

reasonable partition factor based on energy-savings potential and

acceptable overheads.

An important question is whether a larger partition factor (finer

granularity) reveals more energy savings. Our experimental results

show that once the partition factor is larger than a certain threshold

for a task, more and more neighboring partitions share the same

optimal cache configuration. This is evident due to the well-

established 90/10 rule of execution – 90% of the execution time is

spent in only 10% of the code – in which the 90% of the time is

typically spent executing small loops. For each loop iteration,

except the first and last, execution behavior is typically similar,

thus resulting in the same optimal cache configuration for all

iterations. For a loop with N iterations, the partition factor need

only be large enough to capture all dynamic instructions of

iterations 2 through N – 1, as any smaller granularity would

capture a subset of iterations, each of which have the same optimal

configuration. Clearly, if there is no variation, no energy savings is

possible. Even if variations can be observed, according to our

experiments, they only happen with very limited ranges, which

means a minor energy saving is possible only when

preemption/resumption takes place in these ranges (8% of the

dynamic instruction flow on average). Thus, the goal of a system

designer is to find a partition factor which leads to maximized

energy reduction and minimizes the number of partition points that

need to be stored. Based on our experience, a partition factor

ranging from four to seven is sufficient to generate a static profile

table that SACR can utilize efficiently.

The profile table is the output of static analysis that stores the

potential preemption points and the corresponding optimal cache

configurations for each task. Section 3.3 and 3.4 describe how this

profile table is used during runtime of statically- as well as

dynamically-scheduled systems.

3.3 Statically Scheduled Systems
With static scheduling, arrival times, execution times, and

deadlines are known a priori for each task and this information

serves as scheduler input. The scheduler then provides a schedule

detailing all actions taken during system execution. According to

this schedule, we can statically execute and record the energy-

optimal cache configurations that do not violate any task’s deadline

(in hard real-time systems) for every execution phase of each task.

For soft real-time systems, global (system-wide) energy-optimal

Figure 3: Task partitioning at n potential preemption points (Pi)

resulting in n phases. Each phase comprises execution from the

invocation/resumption point to task completion. Ci denotes the

cache configuration used in each phase

……

0 P1 P2 Pn-1

Task Execution Time

phase 1 (0/n)

C1

C2

phase 2 (1/n)

phase 3 (2/n)

C3

Cn

phase n (n-1/n)

Cachebase Cachebase

Cachebase

CacheT1
1 CacheT2

1

CacheT1
2

(a) Traditional system

(b) Our approach

Figure 2: Dynamic cache reconfigurations for tasks T1 and T2.

P2

P1 P2

T2 T1

P1

configurations can be selected as long as the configuration

performance does not severely affect system behavior. After this

profiling step, the profile table is integrated with the scheduler so

that the cache reconfiguration hardware can tune the cache

accordingly for each scheduling decision.

3.4 Dynamically Scheduled Systems
With dynamic scheduling (online scheduling), scheduling decisions

are made during runtime. In this scenario, task preemption points

are unknown since new tasks may enter the system at any time

with any feasible time constraint. In this section, we present two

versions of our technique based on the nature of the target system.

3.4.1 SACR - Conservative Approach
In some soft real-time systems where time constraints are pressing,

only an extremely small number of violations are tolerable. The

SACR conservative approach could ensure that given a carefully

chosen partition factor, almost every task could meet their

deadlines with only few exceptions. To ensure the largest task

schedulability, any reconfiguration decision will only change the

cache into a lowest energy configuration whose execution time is

not longer than that of the base cache. In other words, to maintain a

high quality of service, only cache configurations with equal or

higher performance than the base cache are chosen for each task

phase. Note that the chosen energy-optimal configuration may not

be the global lowest energy configuration but is the one with

lowest energy consumption given the time constraint. We denote

them as deadline-aware energy-optimal cache configurations.
The scheduler chooses the appropriate cache configuration

from the generated profile table that contains the deadline-aware

energy-optimal cache configurations for each task phase. Table 1

(a) shows the profile table for task i with a partition factor p.

EOi(n/p) represents the deadline-aware energy-optimal cache

configuration for partition phase n/p (which means the execution of

this phase is from the partition point of n/p until the end of the

task) in task i. Here, n/p represents the n’th phase in the set of p

phases. The total dynamic instruction count (TIN) refers to the

number of dynamic instructions executed in a single run of that

task.
During system execution, the scheduler maintains a task list

keeping track of all existing tasks as shown in Table 1(b). In

addition to the static profile table records from Table 1(a), runtime

information such as arrival time (Ai), deadline (Di), and remaining

number of dynamic instructions (RIN) is recorded. This

information is stored not only for the scheduler, but also for the

cache tuner. When a newly arrived task begins execution, the

deadline-aware energy-optimal cache configuration (EOi(0/p)) is

obtained from the task list entry, and the cache tuner adjusts the

cache appropriately.
As indicated in Section 3.2.1, potential preemption points are

pre-decided during the profile table generation process. However,

it is highly unlikely that the actual preemptions will occur precisely

on these potential preemption points. Hence, a nearest-neighbor

technique is used to determine which cache configuration should

be used. Essentially, if the preemption point falls between partition

points n/p and (n+1)/p, the nearest point will be selected as the

current cache configuration. As our experimental result shows,

conservative SACR obtains significant energy savings with little or

no impact on quality of service.

3.4.2 SACR - Aggressive Approach
In a soft real-time system with less pressing time constraints, a

more aggressive version of SACR can reveal additional energy

savings at the cost of possibly violating several low priority future

task deadlines, while remaining in an acceptable range.
Similar to the conservative approach, a profile table is

associated with every task in the system; however this profile table

contains the performance-optimal cache configuration (whose

execution time is the shortest) in addition to the energy-optimal

configuration (the one with lowest energy consumption among all

candidates) cache for every task phase. In order to assist dynamic

scheduling, the profile table also includes the corresponding

phase’s approximate execution time (in cycles) for each

configuration. Table 2(a) shows the profile table for task i with a

partition factor of p. The terms EO, EOT, PO, and POT stand for

the energy-optimal cache configuration, the energy-optimal cache

configuration’s execution time, the performance-optimal cache

configuration, and the performance-optimal cache configuration’s

execution time, respectively.
Table 2(b) shows the task list entry for the aggressive

Table 1: (a) Static profile table and (b) Task list entry

for task i for the conservative approach.

Table 2: (a) Static profile table and (b) task list entry for

task i in the aggressive approach.

Task ID: i Partition Factor: p

Total Instruction Number (TIN)

EOi(0/p) EOTi(0/p) POi(0/p) POTi(0/p)

EOi(1/p) EOTi(1/p) POi(1/p) POTi(1/p)

EOi(2/p) EOTi(2/p) POi(2/p) POTi(2/p)

……

EOi(p-1/p) EOTi(p-1/p) POi(p-1/p) POTi(p-1/p)

Task ID: i Partition Factor: p

Arrival time (Ai) Deadlinei (Di)

Total Instruction Number

(TIN)

Remaining Instruction

Number (RIN)

Current Phase (CP)

EOi(0/p) EOTi(0/p) POi(0/p) POTi(0/p)

EOi(1/p) EOTi(1/p) POi(1/p) POTi(1/p)

EOi(2/p) EOTi(2/p) POi(2/p) POTi(2/p)

……

EOi(p-1/p) EOTi(p-1/p) POi(p-1/p) POTi(p-1/p)

(a)

(b)

Task ID: i Partition Factor: p

Arrival time (Ai) Deadline (Di)

Total Instruction Number

(TIN)

Remaining Instruction

Number (RIN)

EOi(0/p)

EOi(1/p)

EOi(2/p)

……

EOi(p-1/p)

Task ID: i Partition Factor: p

Total Instruction Number (TIN)

EOi(0/p)

EOi(1/p)

EOi(2/p)

……

EOi(p-1/p)

 (a)

(b)

approach. The difference from the conservative approach (shown

in Table 1(b)) is that every task list entry also holds a Current

Phase (CPi) identifier. CPi denotes the partition point that this

task’s execution just passed and is useful for cache reconfiguration

upon task resumption. In addition to the task list, the scheduler also

maintains another runtime data structure called the ready task list

(RTL), which contains an identifier representing each task currently

ready to execute in the system.

To explain the SACR aggressive approach, we use an

illustrative example in which there are three tasks, T1, T2, and T3,

with deadlines DT1, DT2, and DT3, where DT2 < DT1 < DT3.

According to EDF, the priority sequence is simply the opposite of

the deadlines, which is Pri2 > Pri1 > Pri3. Figure 4 shows a

schedule for these tasks. Note that P0, P1, P2, and P3 represent the

time instances when any event (arrival, completion, etc.) occurs. At

time point P0, T1 arrives and the scheduler generates the task list

entry for T1 and adds T1 to the RTL. Since T1 is currently the only

task in the system, the scheduler instructs the cache tuner to

configure the cache to EOT1(0/p) if and only if P0 + EOTT1(0/p) <

DT1, otherwise the cache will be tuned to POT1(0/p), which ensures

that T1’s deadline will be met. At time point P1, T2 arrives with

priority higher than the currently active task T1. The scheduler

calculates T1’s current phase CPT1 and updates T1’s task list entry.

Note that T1’s deadline may be violated if the following inequality

holds:

 P1 + POTT1((CPT1+1)/p) + POTT2(0/p) > DT1 (1)

This is obviously an underestimation of the execution time that T2

and the remaining portion of T1 will take, thus more aggressive,

but it favors tasks with higher priority. However, if we use

POTT1(CPT1/p) in Equation 1, T2 may have a lower chance of

being accepted, but T1 would likely meet its deadline.

If Equation 1 does not hold, the scheduler determines T2’s

cache configuration CT2 as follows (assuming POTi(0/p) < Di for

all tasks i otherwise task i is not schedulable in any situation):

if (P1 + EOTT2(0/p) > DT2)

 then CT2 = POT2(0/p)

else if (P1 + EOTT2(0/p) + POTT1((CPT1 + 1)/p) < DT1)

 then CT2 = EOT2(0/p)

else if (P1 + EOTT2(0/p) + POTT1((CPT1 + 1)/p) > DT1)

 then CT2 = POT2(0/p)

At time point P2, T2 completes and T1 resumes since it is the

only ready task. The scheduler utilizes CPTI to determine the

appropriate partition to choose a cache configuration. This

technique is similar in principle to the nearest neighbor approach

used in Section 3.4.1, except that a decision should be made

whether to use the energy-optimal or performance-optimal

configuration based on the remaining time budget. At some point

during T1’s execution, T3 arrives but since T3 has a lower priority

than T1, T3 begins execution after T1 completes execution. By this

time, T3 is the only task and its cache configuration decision is

made using the same method as task T1 at time P0.

4. Experiments
4.1 Experimental Setup

To quantify energy savings using SACR, we examined selected

benchmarks from the MediaBench [11] and EEMBC Automotive

[5] benchmark suites, representing typical tasks that might be

present in a real-time system. All applications were executed with

the default input sets provided with the benchmarks suites.
We utilized the configurable cache architecture developed by

Zhang et al [20] with a four-bank cache of base size 4 KB, which

offers sizes of 1 KB, 2 KB, and 4 KB, line sizes ranging from 16

bytes to 64 bytes, and associativity of 1-way, 2-way, and 4-way.

For comparison purposes, we define the base cache configuration

to be a 4 KB, 2-way set associative cache with a 32-byte line size,

a reasonably common configuration that meets the needs of the

benchmarks studied.
To obtain cache hit and miss statistics, we used the

SimpleScalar toolset [3] to simulate the applications. Our energy

model, adopted from the one used in [20], calculates both dynamic

and static energy consumption, memory latency, CPU stall energy,

and main memory fetch energy. We updated the dynamic energy

consumption for each cache configuration using CACTI 4.2 [9].

To populate the static profile tables for each benchmark, we

utilize SimpleScalar’s external I/O trace files (eio file),

checkpointing, and fastforwarding capabilities. This method allows

for every benchmark phase to be individually profiled via

fastforwarding execution to each potential preemption point. In our

experiments, we examined partition factors ranging from two to

seven potential preemption points. Driven by Perl scripts, the

design space of 18 cache configurations is exhaustively explored

during static analysis to determine the energy-, performance-, and

deadline-aware energy-optimal cache configurations for each phase

of each benchmark.

4.2 Results
To model sample real-time embedded systems with multiple

executing tasks, we created four different task sets as shown in

Table 3. In each task set, the three selected benchmarks have

comparable dynamic instruction counts in order to avoid

behavioral domination by one relatively large task. For system

simulation, task deadlines and priorities are as described in Section

3.4.2. We examine a varying set of preempting points and average

these values so that our results represent a generic degree of

scheduling decisions since task T2 may preempt task T1 at any

point in time.

We compare the energy consumption for each task set using

different schemes: a fixed base cache configuration, the SACR

conservative approach, and the SACR aggressive approach. Energy

consumption is normalized to the fixed base cache configuration

such that value of 1 represents our baseline. Figure 5 and Figure 6

present energy savings for the instruction and data cache

subsystems, respectively. Energy savings in the instruction cache

subsystem ranges from 22% to 36% for the SACR conservative

approach, while it reaches as high as 74% for the SACR aggressive

approach. Energy savings average 28% and 51% for the SACR

conservative and aggressive approaches, respectively. In the data

cache subsystem, energy saving is generally less than that of the

Table 3: Benchmark task sets.

Figure 4: Task set and sample scheduling.

 Task 1 Task 2 Task 3

Task Set 1 epic* pegwit* rawcaudio*

Task Set 2 cjpeg* toast* mpeg2*

Task Set 3 A2TIME01** AIFFTR01** AIFIRF01**

Task Set 4 BITMNP01** IDCTRN01** RSPEED01**

 * MediaBench **EEMBC

T1

P0 P1 P2 P3

T2 T1 T3

T1 arrives T2 arrives,

preempts T1
T2 completes,

T1 resumes
T3 arrives T1 completes,

T3 begins

instruction cache subsystem due to less variation in cache

configuration requirements. In the data cache subsystem, energy

savings range from 15% to 47% for the SACR conservative

approach, while it reaches as high as 64% for the SACR aggressive

approach, and average 17% and 22% for the SACR conservative

and aggressive approaches, respectively.

The remainder of this section describes the overhead of

implementing the profile table in hardware. The profile table is

stored in SRAM and accessed by the cache tuner to fetch the cache

configuration information. The size of the table depends on the

number of tasks in the system and the partition factor used. The

table entry consists of five bits since the configurable cache

architecture used in this study offers 18 possible cache

configurations. We have implemented the profile table using

Verilog HDL and synthesized using Synopsis Design Compiler

with TSMC 0.18 cell library. Table 4 illustrates our results. Each

row in the table indicates the area, dynamic power, leakage power,

and critical path length for profile table with different sizes. We

assume a table lookup frequency of one million nanoseconds

during dynamic power computation, which means there is a table

lookup every five hundred thousand cycles (a reasonably frequency

based on normal task sizes) using a 500MHz CPU. We observed

that on average for each task set, the energy overhead of our

approach only account for less than 0.02% (450 nJ comparing to

2825563 nJ) of the total energy savings. Therefore, the energy

overhead of implementing the profile table is negligible compared

to the energy savings produced by our approach.

Table 4: Overhead of different lookup tables
Table

size (# of

entries)

Area

(µm2)

Dynamic

Power

(nW)

Leakage

Power

(nW)

Critical

Path Length

(ns)

64 61416 134.40 114.37 0.91

128 121200 266.22 224.90 0.91

256 244520 544.73 461.30 1.08

512 483416 994.20 904.70 1.20

5. Conclusions
Dynamic reconfiguration techniques are widely used in designing

efficient embedded systems. Dynamic cache reconfiguration is a

promising approach to improve both energy consumption and

overall performance. The contribution of this paper is a novel

scheduling aware dynamic cache reconfiguration technique for soft

real-time embedded systems. To the best of our knowledge, this is

the first approach integrating dynamic cache reconfigurations into

real-time embedded systems. Our methodology employs an ideal

combination of static analysis and dynamic tuning of cache

parameters with minor or no impact on timing constraints. Our

experiments demonstrated a 50% reduction on average in the

overall energy consumption of the cache subsystem in soft real-

time embedded systems.

References
[1] D. H. Albonesi, “Selective cache ways: on demand cache resource

allocation”, Journal of Instruction Level Parallelism, May 2002.

[2] L. Benini, G. De Micheli, “A survey of design techniques for system-
level dynamic power management”, TVLSI, 8(3):299-316, June 2000.

[3] D. Burger, T. Austin, S. Bennet, “Evaluating future microprocessors:
the simplescalar toolset”, CS-TR-1308, University of Wisconsin, 2000.

[4] G. Buttazzo, Hard Real-Time Computing Systems. Kluwer 1995.

[5] EEMBC, http://www.eembc.org.

[6] A. Gordon-Ross, F. Vahid, N. Dutt, “Automatic Tuning of Two-Level
Caches to Embedded Applications”, DATE, page 10208, 2004.

[7] A. Gordon-Ross, F. Vahid, N. Dutt, “Fast configurable-cache tuning
with a unified second level cache, ISLPED, pages 323-326, 2005.

[8] I. Hong et al., “Power optimization of variable voltage core-based
systems”, IEEE TCAD, 18(12):1702-1714, December 1998.

[9] HP Labs, CACTI 4.2, http://www.hpl.hp.com/

[10] R. Jejurikar, R. Gupta, “Energy-Aware Task Scheduling With Task

Synchronization for Embedded Real-Time Systems”, IEEE TCAD,
25(6):1024-103, June 2006.

[11] C. Lee et al. “Mediabench: A tool for evaluating and synthesizing

multimedia and communication systems”, MICRO, 1997.

[12] J. Liu, Real-Time Systems. Upper Saddle River, Prentice-Hall 2000.

[13] A. Malik et al., “A low power unified cache architecture providing
power and performance flexibility”, ISLPED, pages 241-243, 2000.

[14] I. Puant, “Cache analysis vs static cache locking for schedulability
analysis in multitasking real-time systems”, ECRTS, 2002.

[15] I. Puant et al., “Low-Complexity Algorithms for Static Cache Locking
in Multitasking Hard Real-Time Systems”, RTSS, 114-125, 2002.

[16] G. Quan, X. S. Hu, “Energy Efficient DVS Schedule for Fixed-

Priority Real-Time Systems”, ACM TECS,6(4),article 29, 2007.

[17] T. Sherwood et al., “Discovering and exploiting program phases”,

IEEE Micro, December 2003.

[18] Y. Tan, V. Mooney, “Timing Analysis for Preemptive Multitasking

Real-Time Systems with Caches”, ACM TECS, (6)1, article 7, 2007.

[19] A. Wolfe, “Software-Based Cache Partitioning for Real-time

Applications”, IWRCS, 1993.

[20] C. Zhang, F. Vahid, W. Najjar, “A Highly Configurable Cache for

Low Energy Embedded Systems”, ACM TECS, 6(4):362-387, 2005.

Figure 5: Instruction cache subsystem energy consumption

normalized to the base cache configuration for each task set

Figure 6: Data cache subsystem energy consumption

normalized to the base cache configuration for each task set

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set 1 Set 2 Set 3 Set 4 Average

E
n

e
r
g

y
 c

o
n

s
u

m
p

ti
o
n

 n
o
r
m

a
li
z
e
d

 t
o

th
e
 b

a
s
e
 c

a
c
h

e
 c

o
n

fi
g

u
r
a
ti

o
n

Base Cache SACR Conservative SACR Aggressive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set 1 Set 2 Set 3 Set 4 Average

E
n

e
r
g

y
 c

o
n

s
u

m
p

ti
o

n
 n

o
r
m

a
li
z
e
d

 t
o

th
e
 b

a
s
e
 c

a
c
h

e
 c

o
n

fi
g

u
r
a
ti

o
n

Base Cache SACR Conservative SACR Aggressive

