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Abstract 

Dynamic reconfiguration techniques are widely used for efficient 

system optimization. Dynamic cache reconfiguration is a 

promising approach for reducing energy consumption as well as 

for improving overall system performance. It is a major challenge 

to introduce cache reconfiguration into real-time embedded 

systems since dynamic analysis may adversely affect tasks with 

real-time constraints. This paper presents a novel approach for 

implementing cache reconfiguration in soft real-time systems by 

efficiently leveraging static analysis during execution to both 

minimize energy and maximize performance. To the best of our 

knowledge, this is the first attempt to integrate dynamic cache 

reconfiguration in real-time scheduling techniques. Our 

experimental results using a wide variety of applications have 

demonstrated that our approach can significantly (up to 74%) 

reduce the overall energy consumption of the cache hierarchy in 

soft real-time systems.  

1. Introduction 
Design and optimization of real-time embedded systems have been 

widely studied over the last few decades. These systems require 

unique design considerations due to time constraints placed on the 

tasks. Hard real-time system tasks have deadlines and tasks must 

complete execution by their deadlines in order to ensure correct 

system behavior. Due to these stringent constraints, real-time 

scheduling algorithms must perform task schedulability analysis 

based on task attributes such as priorities, periods, and deadlines 

[4][12]. A task set is considered schedulable if there exists a 

schedule that satisfies all timing constraints. As embedded systems 

become ubiquitous, real-time systems with soft timing constraints 

(missing certain deadlines are acceptable) are gaining widespread 

acceptance. Soft real-time systems can be found everywhere 

including gaming, multimedia, and housekeeping devices. Tasks in 

these systems remain effective even if their deadlines are not 

guaranteed to be met. Minor deadline misses may result in 

temporary service or quality degradation, but will not lead to 

incorrect behavior.  

One of the most important optimizations in real-time embedded 

systems is energy consumption reduction since most of these 

systems are battery-operated devices. Processor idle time (also 

known as slack time) provides a unique opportunity to reduce the 

overall energy consumption by putting the system into sleep mode 

using Dynamic Power Management (DPM) techniques [2]. 

Alternatively, Dynamic Voltage Scaling (DVS) [8] methods can be 

used to reduce the clock frequency such that the tasks execute 

slowly but do not violate their deadlines [10][16].  

In recent years, reconfigurable computing provides the unique 

ability to tune the system during runtime (dynamically reconfigure) 

to meet optimization goals by changing tunable system parameters. 

The primary aspect of reconfigurable computing research 

emphasizes tuning algorithms, which determine how and when to 

dynamically reconfigure tunable parameters to achieve higher 

performance, lower energy consumption, and/or balance overall 

system behavior. One such tunable component is the cache 

hierarchy. An efficient reconfigurable cache framework and tuning 

algorithms are proposed in [7].  

Although reconfigurable caches are highly beneficial in 

desktop and embedded systems, currently, reconfigurable caches 

have not been considered in real-time systems due to several 

fundamental challenges. For example, how to employ and make 

efficient use of reconfigurable caches in real-time systems remains 

unsolved. Determining the appropriate cache configuration 

typically requires some amount of runtime evaluation of different 

candidates. Furthermore, any change in cache configuration on-the-

fly may alter task execution time. In hard real-time systems, the 

benefit of reconfiguration is limited since both of these facts can 

make scheduling decisions difficult and eventually may lead to 

unpredictable system behavior. On the other hand, soft real-time 

systems offer much more flexibility, which can be exploited to 

achieve considerable energy savings at the cost of very minor 

impacts to user experiences. Our proposed research focuses on soft 

real-time systems.  

To the best of our knowledge, this is the first approach in 

exploiting dynamic reconfigurable caches in real-time systems. 

This paper presents a novel methodology for using reconfigurable 

caches in real-time systems with preemptive tasks. Our proposed 

methodology, Scheduling-Aware Cache Reconfiguration (SACR), 

provides an efficient and near optimal cache tuning strategy based 

on static program profiling for both statically and dynamically 

scheduled real-time systems. The goal is to optimize energy 

consumption with performance considerations via reconfigurable 

cache tuning while ensuring that the majority of task deadlines are 

met.  

The rest of the paper is organized as follows. Section 2 surveys 

the background literature addressing both dynamic cache 

reconfiguration and real-time scheduling techniques. Section 3 

describes our proposed research on scheduling-aware cache 

reconfiguration in soft real-time systems.  Section 4 presents our 

experimental results. Finally, Section 5 concludes the paper.  

2. Related Work 
There are no prior works in the area of dynamic cache 

reconfiguration in real-time systems. Our proposed research is the 

first attempt in this direction. This section surveys the background 

literature in the following three related domains.  

2.1 Real-Time Scheduling Techniques 
Based on task properties and associated systems, scheduling 

algorithms can be classified into various types [12]. Earliest 

Deadline First (EDF) scheduling [4] and Rate Monotonic (RM) 

scheduling [12] are the most frequently referenced fundamental 

scheduling algorithms in the real-time systems community. 

Periodic tasks, which usually have known worst case execution 

time (WCET), period, and deadline are scheduled using such 



methods. Sporadic tasks are accepted into the system only if the 

task passes an acceptance test when it arrives. Since sporadic tasks 

normally have hard time constraints, all accepted tasks are 

guaranteed to meet their deadlines, and are thus treated as periodic 

tasks. Aperiodic tasks are scheduled whenever enough slack time is 

available. Hence, aperiodic tasks normally have soft deadlines and 

can only be scheduled as soon as possible. In reality, these three 

kinds of tasks may exist simultaneously. In this work, we use EDF 

as the scheduling algorithm for tasks with only soft real-time 

constraints. However, RM is also applicable with minor changes in 

our approach.  

2.2 Caches in Real-Time Systems 
Incorporating caches into real-time embedded systems faces certain 

difficulties due to the unpredictability imposed on the system. 

Scheduling algorithms have difficultly calculating WCET for tasks 

since data access time cannot be predetermined in the presence of 

caches. A great deal of research efforts are directed at employing 

caches in real-time systems either by proving schedulability 

through WCET analysis and/or avoiding hazardous compulsory 

miss uncertainty altogether. WCET analysis is a static, design time 

analysis of tasks in the presence of caches to predict cache impact 

on task execution times [14]. Cache locking [15] is a technique in 

which useful cache lines are “locked” in the cache when a task is 

preempted so that these blocks will not be evicted to accommodate 

the new incoming task. Through cache line locking, the WCET and 

cache behavior becomes more predictable since the major delay 

from data replacement and access is avoided. Cache partitioning 

[19] is a similar but more aggressive approach where the cache is 

partitioned into reserved regions, each of which can only cache 

data associated with a dedicated task. However, a potential 

drawback to both cache locking and cache partitioning is per-task 

reduction of cache resources. To alleviate this limitation, cache-

related preemption delay analysis [18] features tight delay 

estimation so that prediction accuracy is higher than in traditional 

WCET analysis. This improved accuracy can in turn result in a 

durable task schedule. Our approach is applicable to real-time 

systems that employ caches.  

2.3 Reconfigurable Cache Architectures 
In power constrained embedded systems, nearly half of the overall 

power consumption is attributed to the cache subsystem [13]. 

Fortunately, since applications require vastly different cache 

requirements in terms of cache size, line size, and associativity, 

research shows that specializing the cache to an application’s needs 

can reduce energy consumption by 62% on average [6].  

There exists much work in dynamic cache reconfiguration [1] 

[7]. The reconfigurable cache architecture proposed by Zhang et al. 

[20] imposes no overhead to the critical path, thus cache access 

time does not increase. Furthermore, the cache tuner consists of 

small custom hardware or a lightweight process running on a co-

processor, which can alter the cache configuration via hardware or 

software configuration registers. The underlying cache architecture 

consists of four separate banks, each of which acts as a separate 

way. Way concatenation, which logically concatenates ways 

together, enables configurable associativity. Way shutdown 

effectively shuts down ways to vary cache size. Configurable line 

size, or block size, is achieved by setting a unit-length base line 

size and then fetching subsequent lines if the line size increases.  

Given a runtime reconfigurable cache, determining the best 

cache configuration is a difficult process. Dynamic and static 

analyses are two possible techniques. With dynamic analysis, 

cache configurations are evaluated in system during runtime to 

determine the best configuration. However, it is inappropriate for 

real-time systems as it either imposes unpredictable performance or 

significant energy overhead, both due to the exploration of 

suboptimal cache configurations. During static analysis, various 

cache alternatives are explored and the best cache configuration is 

selected for each application in its entirety (application-based 

tuning) [7] or for each phase of execution within an application 

(phase-based tuning) [17]. Regardless of the tuning method, the 

predetermined best cache configuration (based on design 

requirements) may be stored in a look-up table or encoded into 

specialized instructions. The static analysis approach is most 

appropriate for real-time systems due to its non-intrusive nature. 

However, previous methods focus solely on energy savings or 

Pareto-optimal points trading off energy consumption and 

performance. However, none of these methods consider task 

deadlines, which are imperative in real-time systems. 

3. Scheduling-Aware Cache Reconfiguration 
A major challenge for cache reconfiguration in real-time systems is 

that tasks are constrained by their deadlines. Even in soft real-time 

systems, task execution time cannot be unpredictable or prolonged 

arbitrarily. Our goal is to realize maximum energy savings while 

ensuring the system only faces an innocuous amount of deadline 

violations (if any). Our proposed methodology, Scheduling-Aware 

Cache Reconfiguration (SACR), provides an efficient and near 

optimal strategy for cache tuning based on static program profiling 

for both statically and dynamically scheduled real-time systems. 

Our approach statically executes, profiles, and analyzes each task 

intended to run in the system. The information obtained in the 

profiling process is fully utilized to make reconfiguration decisions 

dynamically. The remainder of this section is organized as follows. 

First, we present an overview of our approach using simple 

illustrative examples. Next, we present our static analysis 

technique for optimal cache configuration selection. Finally, we 

describe how the static analysis results are used during runtime for 

statically-   and dynamically-scheduled real-time systems.  

3.1 Overview  
This section presents a simple demonstrative example to show how 

reconfigurable caches benefit real-time embedded systems. This 

example assumes a system with two tasks, T1 and T2. Traditionally 

if a reconfigurable cache technique is not applied, the system will 

use a base cache 1  configuration Cachebase  throughout all task 

executions. In the presence of a reconfigurable cache, as shown in 

Figure 1, different optimal cache configurations are determined for 

every phase of each task. For ease of illustration, we divide each 

task into two phases. Phase1 starts from the beginning to the end, 

and phase2 starts from the half position of the dynamic instruction 

flow (midpoint) to the end. The terms CacheT1
1 ,  CacheT1

2 , CacheT2
1 , 

and CacheT2
2  represent the optimal cache configurations for phase1 

and phase2 of task T1 and task T2, respectively. These 

                                                                 

1 In this paper, we use the term “base cache” to refer to the cache used in 

typical real-time systems. Caches in such systems, as discussed in 

Section 2.2, are chosen to ensure durable task schedules.  
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Figure 1: Cache configurations selected based on phases 



configurations are chosen statically to be more energy efficient 

(with same or better performance), in their specific phases, than the 

global base cache, Cachebase .  
      Figure 2 illustrates how energy consumption can be reduced 

by using our approach in real-time systems. Figure 2(a) depicts a 

traditional system and Figure 2(b) depicts a system with a 

reconfigurable cache (our approach). In this example, T2 arrives (at 

time P1) and preempts T1. In a traditional approach, the system 

executes using Cachebase  exclusively. With a reconfigurable cache, 

the first part of T1 executes using CacheT1
1 . Similarly, CacheT2

1  is 

used for execution of T2. Note that the actual preemption point of 

T1 is not exactly at the same place where we pre-computed the 

optimal cache configuration (midpoint). When T1 resumes at time 

point P2, the cache is tuned to CacheT1
2  since the actual preemption 

point is closer to the midpoint compared to the starting point.  

The overall energy consumed using a reconfigurable cache 

results from the energy savings due to use of different energy 

optimal caches for each phase of task execution compared to using 

one global base cache in the traditional system. Our experimental 

results suggest that the proposed approach can reduce energy 

consumption up to 74% without introducing any performance 

penalty.  

3.2 Phase-based Optimal Cache Selection 
This section describes our static analysis approach to determine the 

optimal cache configurations for various task phases. In a 

preemptive system, tasks may be interrupted and resumed at any 

point in time. Each time a task resumes, cache performance for the 

remainder of task execution will differ from the cache performance 

for the entire application due to its own distinguishing behaviors as 

well as cold-start compulsory cache misses. Thus, the optimal 

cache configuration for the remainder of the task execution may be 

different. Figure 3 depicts the general case where a task is divided 

by n potential preemption points (0, P1, P2 … Pn-1). We define a 

static profiled phase as the period of time between a predefined 

potential preemption point (also called partition points) and task 

completion. Here, C1, C2 … Cn represent the optimal cache 

configuration (either energy or performance) for each phase, 

respectively. Again, the potential preemption points, which define 

phases, are decided during the static profiling stage and are not 

necessarily the same as actual preemption points observed during 

system execution.  

During static profiling, a partition factor is chosen that 

determines the number of potential preemption points and resulting 

phases. Partition granularity is defined as the number of dynamic 

instructions between partition points. The partition granularity is 

determined by dividing the total number of dynamically executed 

instructions by the partition factor. Smaller granularities result in 

finer grained configuration, and potentially greater energy savings. 

However, making granularity too fine would result in a 

prohibitively large look-up table which would not be feasible due 

to area constraints. Thus, a trade-off should be made to determine a 

reasonable partition factor based on energy-savings potential and 

acceptable overheads.  

An important question is whether a larger partition factor (finer 

granularity) reveals more energy savings. Our experimental results 

show that once the partition factor is larger than a certain threshold 

for a task, more and more neighboring partitions share the same 

optimal cache configuration. This is evident due to the well-

established 90/10 rule of execution – 90% of the execution time is 

spent in only 10% of the code – in which the 90% of the time is 

typically spent executing small loops. For each loop iteration, 

except the first and last, execution behavior is typically similar, 

thus resulting in the same optimal cache configuration for all 

iterations. For a loop with N iterations, the partition factor need 

only be large enough to capture all dynamic instructions of 

iterations 2 through N – 1, as any smaller granularity would 

capture a subset of iterations, each of which have the same optimal 

configuration. Clearly, if there is no variation, no energy savings is 

possible. Even if variations can be observed, according to our 

experiments, they only happen with very limited ranges, which 

means a minor energy saving is possible only when 

preemption/resumption takes place in these ranges (8% of the 

dynamic instruction flow on average). Thus, the goal of a system 

designer is to find a partition factor which leads to maximized 

energy reduction and minimizes the number of partition points that 

need to be stored. Based on our experience, a partition factor 

ranging from four to seven is sufficient to generate a static profile 

table that SACR can utilize efficiently.  

The profile table is the output of static analysis that stores the 

potential preemption points and the corresponding optimal cache 

configurations for each task. Section 3.3 and 3.4 describe how this 

profile table is used during runtime of statically- as well as 

dynamically-scheduled systems.  
 

3.3 Statically Scheduled Systems 
With static scheduling, arrival times, execution times, and 

deadlines are known a priori for each task and this information 

serves as scheduler input. The scheduler then provides a schedule 

detailing all actions taken during system execution. According to 

this schedule, we can statically execute and record the energy-

optimal cache configurations that do not violate any task’s deadline 

(in hard real-time systems) for every execution phase of each task. 

For soft real-time systems, global (system-wide) energy-optimal 

Figure 3: Task partitioning at n potential preemption points (Pi) 

resulting in n phases. Each phase comprises execution from the 

invocation/resumption point to task completion. Ci denotes the 

cache configuration used in each phase 
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configurations can be selected as long as the configuration 

performance does not severely affect system behavior. After this 

profiling step, the profile table is integrated with the scheduler so 

that the cache reconfiguration hardware can tune the cache 

accordingly for each scheduling decision.  

3.4 Dynamically Scheduled Systems 
With dynamic scheduling (online scheduling), scheduling decisions 

are made during runtime. In this scenario, task preemption points 

are unknown since new tasks may enter the system at any time 

with any feasible time constraint. In this section, we present two 

versions of our technique based on the nature of the target system.  

3.4.1 SACR - Conservative Approach 
In some soft real-time systems where time constraints are pressing, 

only an extremely small number of violations are tolerable. The 

SACR conservative approach could ensure that given a carefully 

chosen partition factor, almost every task could meet their 

deadlines with only few exceptions. To ensure the largest task 

schedulability, any reconfiguration decision will only change the 

cache into a lowest energy configuration whose execution time is 

not longer than that of the base cache. In other words, to maintain a 

high quality of service, only cache configurations with equal or 

higher performance than the base cache are chosen for each task 

phase. Note that the chosen energy-optimal configuration may not 

be the global lowest energy configuration but is the one with 

lowest energy consumption given the time constraint. We denote 

them as deadline-aware energy-optimal cache configurations.  
The scheduler chooses the appropriate cache configuration 

from the generated profile table that contains the deadline-aware 

energy-optimal cache configurations for each task phase. Table 1 

(a) shows the profile table for task i with a partition factor p. 

EOi(n/p) represents the deadline-aware energy-optimal cache 

configuration for partition phase n/p (which means the execution of 

this phase is from the partition point of n/p until the end of the 

task) in task i. Here, n/p represents the n’th phase in the set of p 

phases. The total dynamic instruction count (TIN) refers to the 

number of dynamic instructions executed in a single run of that 

task.  
During system execution, the scheduler maintains a task list 

keeping track of all existing tasks as shown in Table 1(b). In 

addition to the static profile table records from Table 1(a), runtime 

information such as arrival time (Ai), deadline (Di), and remaining 

number of dynamic instructions (RIN) is recorded. This 

information is stored not only for the scheduler, but also for the 

cache tuner. When a newly arrived task begins execution, the 

deadline-aware energy-optimal cache configuration (EOi(0/p)) is 

obtained from the task list entry, and the cache tuner adjusts the 

cache appropriately.  
As indicated in Section 3.2.1, potential preemption points are 

pre-decided during the profile table generation process. However, 

it is highly unlikely that the actual preemptions will occur precisely 

on these potential preemption points. Hence, a nearest-neighbor 

technique is used to determine which cache configuration should 

be used. Essentially, if the preemption point falls between partition 

points n/p and (n+1)/p, the nearest point will be selected as the 

current cache configuration. As our experimental result shows, 

conservative SACR obtains significant energy savings with little or 

no impact on quality of service.  

3.4.2 SACR - Aggressive Approach 
In a soft real-time system with less pressing time constraints, a 

more aggressive version of SACR can reveal additional energy 

savings at the cost of possibly violating several low priority future 

task deadlines, while remaining in an acceptable range.  
Similar to the conservative approach, a profile table is 

associated with every task in the system; however this profile table 

contains the performance-optimal cache configuration (whose 

execution time is the shortest) in addition to the energy-optimal 

configuration (the one with lowest energy consumption among all 

candidates) cache for every task phase. In order to assist dynamic 

scheduling, the profile table also includes the corresponding 

phase’s approximate execution time (in cycles) for each 

configuration. Table 2(a) shows the profile table for task i with a 

partition factor of p. The terms EO, EOT, PO, and POT stand for 

the energy-optimal cache configuration, the energy-optimal cache 

configuration’s execution time, the performance-optimal cache 

configuration, and the performance-optimal cache configuration’s 

execution time, respectively.  
Table 2(b) shows the task list entry for the aggressive 

Table 1: (a) Static profile table and (b) Task list entry 

for task i for the conservative approach. 

Table 2: (a) Static profile table and (b) task list entry for 

task i in the aggressive approach.  

 
Task ID: i Partition Factor: p 

Total Instruction Number (TIN) 

EOi(0/p) EOTi(0/p) POi(0/p) POTi(0/p) 

EOi(1/p) EOTi(1/p) POi(1/p) POTi(1/p) 

EOi(2/p) EOTi(2/p) POi(2/p) POTi(2/p) 

…… 

EOi(p-1/p) EOTi(p-1/p) POi(p-1/p) POTi(p-1/p) 

 

Task ID: i Partition Factor: p 

Arrival time (Ai) Deadlinei (Di) 

Total Instruction Number 

(TIN) 

Remaining Instruction 

Number (RIN) 

Current Phase (CP) 

EOi(0/p) EOTi(0/p) POi(0/p) POTi(0/p) 
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EOi(p-1/p) EOTi(p-1/p) POi(p-1/p) POTi(p-1/p) 
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approach. The difference from the conservative approach (shown 

in Table 1(b)) is that every task list entry also holds a Current 

Phase (CPi) identifier. CPi denotes the partition point that this 

task’s execution just passed and is useful for cache reconfiguration 

upon task resumption. In addition to the task list, the scheduler also 

maintains another runtime data structure called the ready task list 

(RTL), which contains an identifier representing each task currently 

ready to execute in the system.  

To explain the SACR aggressive approach, we use an 

illustrative example in which there are three tasks, T1, T2, and T3, 

with deadlines DT1, DT2, and DT3, where DT2 < DT1 < DT3. 

According to EDF, the priority sequence is simply the opposite of 

the deadlines, which is Pri2 > Pri1 > Pri3. Figure 4 shows a 

schedule for these tasks. Note that P0, P1, P2, and P3 represent the 

time instances when any event (arrival, completion, etc.) occurs. At 

time point P0, T1 arrives and the scheduler generates the task list 

entry for T1 and adds T1 to the RTL. Since T1 is currently the only 

task in the system, the scheduler instructs the cache tuner to 

configure the cache to EOT1(0/p) if and only if P0 + EOTT1(0/p) < 

DT1, otherwise the cache will be tuned to POT1(0/p), which ensures 

that T1’s deadline will be met. At time point P1, T2 arrives with 

priority higher than the currently active task T1. The scheduler 

calculates T1’s current phase CPT1 and updates T1’s task list entry. 

Note that T1’s deadline may be violated if the following inequality 

holds: 

 P1 + POTT1((CPT1+1)/p) + POTT2(0/p) > DT1            (1) 

This is obviously an underestimation of the execution time that T2 

and the remaining portion of T1 will take, thus more aggressive, 

but it favors tasks with higher priority. However, if we use 

POTT1(CPT1/p) in Equation 1, T2 may have a lower chance of 

being accepted, but T1 would likely meet its deadline.  

If Equation 1 does not hold, the scheduler determines T2’s 

cache configuration CT2 as follows (assuming POTi(0/p) < Di for 

all tasks i otherwise task i is not schedulable in any situation):  

if (P1 + EOTT2(0/p) > DT2) 

     then CT2 = POT2(0/p) 

else if (P1 + EOTT2(0/p) + POTT1((CPT1 + 1)/p) < DT1)  

     then CT2 = EOT2(0/p) 

else if ( P1 + EOTT2(0/p) + POTT1((CPT1 + 1)/p) > DT1) 

     then CT2 = POT2(0/p) 

At time point P2, T2 completes and T1 resumes since it is the 

only ready task. The scheduler utilizes CPTI to determine the 

appropriate partition to choose a cache configuration. This 

technique is similar in principle to the nearest neighbor approach 

used in Section 3.4.1, except that a decision should be made 

whether to use the energy-optimal or performance-optimal 

configuration based on the remaining time budget. At some point 

during T1’s execution, T3 arrives but since T3 has a lower priority 

than T1, T3 begins execution after T1 completes execution. By this 

time, T3 is the only task and its cache configuration decision is 

made using the same method as task T1 at time P0.  

4. Experiments 
4.1 Experimental Setup 

To quantify energy savings using SACR, we examined selected 

benchmarks from the MediaBench [11] and EEMBC Automotive 

[5] benchmark suites, representing typical tasks that might be 

present in a real-time system. All applications were executed with 

the default input sets provided with the benchmarks suites.  
We utilized the configurable cache architecture developed by 

Zhang et al [20] with a four-bank cache of base size 4 KB, which 

offers sizes of 1 KB, 2 KB, and 4 KB, line sizes ranging from 16 

bytes to 64 bytes, and associativity of 1-way, 2-way, and 4-way. 

For comparison purposes, we define the base cache configuration 

to be a 4 KB, 2-way set associative cache with a 32-byte line size, 

a reasonably common configuration that meets the needs of the 

benchmarks studied.  
To obtain cache hit and miss statistics, we used the 

SimpleScalar toolset [3] to simulate the applications. Our energy 

model, adopted from the one used in [20], calculates both dynamic 

and static energy consumption, memory latency, CPU stall energy, 

and main memory fetch energy. We updated the dynamic energy 

consumption for each cache configuration using CACTI 4.2 [9].  

To populate the static profile tables for each benchmark, we 

utilize SimpleScalar’s external I/O trace files (eio file), 

checkpointing, and fastforwarding capabilities. This method allows 

for every benchmark phase to be individually profiled via 

fastforwarding execution to each potential preemption point. In our 

experiments, we examined partition factors ranging from two to 

seven potential preemption points. Driven by Perl scripts, the 

design space of 18 cache configurations is exhaustively explored 

during static analysis to determine the energy-, performance-, and 

deadline-aware energy-optimal cache configurations for each phase 

of each benchmark.  

4.2 Results 
To model sample real-time embedded systems with multiple 

executing tasks, we created four different task sets as shown in 

Table 3. In each task set, the three selected benchmarks have 

comparable dynamic instruction counts in order to avoid 

behavioral domination by one relatively large task. For system 

simulation, task deadlines and priorities are as described in Section 

3.4.2. We examine a varying set of preempting points and average 

these values so that our results represent a generic degree of 

scheduling decisions since task T2 may preempt task T1 at any 

point in time.  

We compare the energy consumption for each task set using 

different schemes: a fixed base cache configuration, the SACR 

conservative approach, and the SACR aggressive approach. Energy 

consumption is normalized to the fixed base cache configuration 

such that value of 1 represents our baseline. Figure 5 and Figure 6 

present energy savings for the instruction and data cache 

subsystems, respectively. Energy savings in the instruction cache 

subsystem ranges from 22% to 36% for the SACR conservative 

approach, while it reaches as high as 74% for the SACR aggressive 

approach. Energy savings average 28% and 51% for the SACR 

conservative and aggressive approaches, respectively. In the data 

cache subsystem, energy saving is generally less than that of the 

Table 3: Benchmark task sets. 

 

 
 

 

Figure 4: Task set and sample scheduling. 

 Task 1 Task 2 Task 3 

Task Set 1 epic* pegwit* rawcaudio* 

Task Set 2 cjpeg* toast* mpeg2* 

Task Set 3 A2TIME01** AIFFTR01** AIFIRF01** 

Task Set 4 BITMNP01** IDCTRN01** RSPEED01** 

 * MediaBench   **EEMBC 

T1 

P0 P1 P2 P3 

T2 T1 T3 

T1 arrives T2 arrives, 

preempts T1 
T2 completes, 

T1 resumes 
T3 arrives T1 completes, 

T3 begins 



instruction cache subsystem due to less variation in cache 

configuration requirements. In the data cache subsystem, energy 

savings range from 15% to 47% for the SACR conservative 

approach, while it reaches as high as 64% for the SACR aggressive 

approach, and average 17% and 22% for the SACR conservative 

and aggressive approaches, respectively.  

The remainder of this section describes the overhead of 

implementing the profile table in hardware. The profile table is 

stored in SRAM and accessed by the cache tuner to fetch the cache 

configuration information. The size of the table depends on the 

number of tasks in the system and the partition factor used. The 

table entry consists of five bits since the configurable cache 

architecture used in this study offers 18 possible cache 

configurations. We have implemented the profile table using 

Verilog HDL and synthesized using Synopsis Design Compiler 

with TSMC 0.18 cell library. Table 4 illustrates our results.  Each 

row in the table indicates the area, dynamic power, leakage power, 

and critical path length for profile table with different sizes. We 

assume a table lookup frequency of one million nanoseconds 

during dynamic power computation, which means there is a table 

lookup every five hundred thousand cycles (a reasonably frequency 

based on normal task sizes) using a 500MHz CPU. We observed 

that on average for each task set, the energy overhead of our 

approach only account for less than 0.02% (450 nJ comparing to 

2825563 nJ) of the total energy savings. Therefore, the energy 

overhead of implementing the profile table is negligible compared 

to the energy savings produced by our approach.  

Table 4: Overhead of different lookup tables 
Table 

size (# of 

entries) 

Area       

(µm2) 

Dynamic 

Power 

(nW) 

Leakage 

Power  

(nW) 

Critical 

Path Length 

(ns) 

64 61416 134.40 114.37 0.91 

128 121200 266.22 224.90 0.91 

256 244520 544.73 461.30 1.08 

512 483416 994.20 904.70 1.20 

5. Conclusions 
Dynamic reconfiguration techniques are widely used in designing 

efficient embedded systems. Dynamic cache reconfiguration is a 

promising approach to improve both energy consumption and 

overall performance. The contribution of this paper is a novel 

scheduling aware dynamic cache reconfiguration technique for soft 

real-time embedded systems. To the best of our knowledge, this is 

the first approach integrating dynamic cache reconfigurations into 

real-time embedded systems. Our methodology employs an ideal 

combination of static analysis and dynamic tuning of cache 

parameters with minor or no impact on timing constraints. Our 

experiments demonstrated a 50% reduction on average in the 

overall energy consumption of the cache subsystem in soft real-

time embedded systems.  
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Figure 5: Instruction cache subsystem energy consumption 

normalized to the base cache configuration for each task set 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6: Data cache subsystem energy consumption 

normalized to the base cache configuration for each task set 
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