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Abstract 

PhaseMAC (PMAC), a phase domain Gated-Ring-Oscillator 

(GRO) based 8bit MAC circuit, is proposed to minimize both area 

and power consumption of deep learning accelerators. PMAC 

composes of only digital cells and consumes significantly smaller 

power than standard digital designs, owing to its efficient analog 

accumulation nature. It occupies 26.6 times smaller area than 

conventional analog designs, which is competitive to digital MAC 

circuits. PMAC achieves a peak efficiency of 14 TOPS/W, which 

is best reported and 48% higher than conventional arts. Results in 

anomaly detection tasks are demonstrated, which is the hottest 

application in the industrial IoT scene. 

Introduction 

DNN is a key enabler of new paradigm in cognitive computing, 

spanning from speech recognition to anomaly detection for 

industrial systems. Edge-computing with ultra low-power DLAs 

are essential to adopt DNN into data-traffic, power-supply limited 

factories; microwatt operation is one of the ultimate goals. It is well 

known that in CNNs, memory power(EMemory) is mostly consumed 

by the partial output movements. On the other hand, for fully-

connected (FC) and LSTM models (DNNs served in industrial 

applications), most EMemory is consumed by readout of weight 

parameters, which can be 10x larger than the computation energy 

of digital MACs(EDMAC). However, by simply batching inputs, 

weights can be broadcast and reused; significantly cutting down 

EMemory(Fig.1). In other words, batching reduces the effective 

memory-readouts/inference. For batch size=64, calculated based on 

ref.[1] and anomaly detection FC models, EDMAC becomes the 

dominant power source; the computation power is 3 times larger 

than memory. Therefore, to ultimately scale down the power of 

DLAs to be operated in batteries or energy-harvesting, power-

efficiency of the MAC circuits must be improved. The overhead of 

64x batching is increased memory area of only 5% and longer 

latency, which is acceptable for most applications. 

  Analog signal processing have been explored to achieve better 

efficiency than digital MAC(DMAC)[2,3]. However, only 1-3bit 

available resolution limits the application to image classification, 

since 6-8bits are required to execute more complex tasks such as 

speech and sensor time series data analysis today[4]. Moreover, 

analog MACs has a large area overhead compared to DMACs. In 

time domain processing[2], since time information cannot be 

sampled, accumulation is not realized and huge silicon area is 

required. Switched-capacitor (SC) based MAC[3] also achieve 

efficient computing but consumes plentitude of area-consuming 

analog elements and its area is >20x larger than DMACs.  

PhaseMAC 

We propose the PhaseMAC(PMAC), which is >20x area-

efficient than conventional analog MACs and 8x power-efficient 

than DMACs. For DLAs whom power is dominated by EDMAC(as in 

Fig.1), PMAC will reduce 66% power of the entire DLA. Fig.2 

shows the key concept of the proposed phase domain operation of 

PMAC. GRO is basically composed of a ring oscillator with a 

power gating switch; the oscillation is conducted only when the 

switch is shorted, and when the switch opens, the phase information 

is saved[5]. A DTC generates a pulse (DTCOUT) proportional to 

the input signal (Din), which is applied to every GRO gating switch, 

and weight signal (W) controls the GRO frequency to enable the 

“multiply” operation.  

Here, 2 sequences of the PMAC operation and its readout is  

 
Fig.1 Batch size versus memory-computation energy ratio 

Fig.2 Concept of the PhaseMAC 

explained. Since Din=3, W=1 is given at Seq.1, DTCOUT pulse 

width is 3*tinv (tinv is the GRO inverter delay at W=1) and the GRO 

advances its phase for 3 inverter cells, or 0.6. After DTCOUT sets 

down, the GRO gating switch simultaneously opens and saves the 

phase state. Notice that since the oscillation of Seq.2 starts from the 

advanced phase state, phase domain accumulation is realized. Since 

the GRO is a 5-stage ring oscillator, the phase state returns to the 

initial condition after the phase excesses 2; this event is caught 

with a counter circuit which counts up when the GRO’s phase 

returns to 0. Therefore, the PMAC can continuously operate as a 

phase domain accumulator as long as the counter does not saturate. 

Lastly, the readout logic samples the counter output and the GRO 

phase as the MSB and LSB, respectively. The GRO phase is 

quantized by latching each inverter output.  

The PMAC power is mostly cheap inverter transitions where the 

number corresponds to the Din and W values, (in contrast with the 

over 40 DFFs in an 8bit DMAC) hence, the power consumption is 

fundamentally low. Importantly, the PMAC’s power consumption  
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Fig.3 Block diagram of the Multi-GRO architecture 

supporting 8b multiplication function. 

 
Fig.4 In-Sensor-Edge-Computing for Anomaly Detection of 

Industrial Machines 

 
Fig.5 Measured anomaly score with various MAC resolution 

TABLE. 1 MNIST classification results 

 
TABLE 2. Performance comparison 

 

 
Fig.6 Chip photo and measurement setup 

correlates with Din, W mean values and it is ubiquitous that in DNNs 

the Din, W mean values are very low (3~10%). Therefore, PMAC 

becomes up to 8x more efficient than DMAC for such operations; 

PMAC is an optimal MAC circuit for DNNs (Fig.2).  

Fig.3 shows the PMAC schematic. To achieve an 8b 

multiplication function with minimum area, we propose a multi-

GRO architecture. Foremost, it is essential to deal with negative 

numbers for MAC operation in DNNs. To realize such MAC 

circuits with minimum overhead, we simply utilize a set of two 

GROs: one GRO to accumulate positive numbers and other to 

accumulate the negative, the final MAC output is obtained by 

conducting subtraction in the digital domain. The positive 

accumulator is activated when the SIGN signal (XNOR of Din and 

W MSBs) is 1, and vice versa. Moreover, design of GRO with 7b 

linear frequency control capability is challenging to achieve 

without calibration. To evade such complexity, 7b frequency 

resolution is functionally realized by assigning two individual 

GROs to 3b MSB and 4b LSB, respectively. The readout circuit 

generates the MAC output by summing the bit shifted MSB GRO 

output to the LSB GRO output. Inverters turned-off simply act as 

load capacitors, and hence, the GRO frequency is linearly 

controlled with W and achieves phase domain multiplication with 

7b resolution. 

Measurement results 

PMAC proof of concept chip was fabricated in 28nm CMOS. 

Anomaly detection task is demonstrated in Fig.4, where the Matrix 

Multiply is executed by the PMAC, and the host FPGA controls the 

entire DNN data flow(Fig.6). Unlike ref.[2,3], all 8 DNN layers are 

computed via analog MAC. In-sensor, ultra low-power anomaly 

detection is essential for industrial IoT applications, such as motor 

vibration monitoring in huge plants under strong radio 

communication and power supply constraints. The autoencoder 

based DNN inputs 400 points of sensor data and trained to predict 

the next 400 data points[6]. The system determines that the target 

is operating normally when the prediction error is small, since the 

operation is close to the trained normal condition. On the other hand, 

alerts are made when the prediction error exceeds the threshold; the 

operation is abnormal and clearly differing from the trained 

condition. Fig.5 shows the measured anomaly detection task results, 

where detection with 8bit resolution obtains the anomaly score 

close to 32FP processing, but less than 4bit quantization clearly 

degrades the detection accuracy; conventional low resolution 

analog MAC is not acceptable for this task. Also, MNIST has been 

tested with a similar FC NN, achieving a TOP-1 validation 

accuracy of 98.1%, where the 32FP results gave 98.2%(TABLE.1).  

TABLE.2 shows the performance comparison against 

conventional analog MACs. Assuming that both MAC power and 

area linearly increases with the MAC resolution, the proposed 

PMAC achieves 48% higher and 26.6 times smaller normalized 

power efficiency and area, respectively compared to conventional 

arts. Compared to a DMAC synthesized in the same process, our 

PMAC achieves 8 times better power efficiency; by replacing the 

DMAC to a PMAC in well-structured DLAs, 66% power reduction 

will be achieved. The overheads are acceptable area increase and 

maximum operation speed limit of both only around 20%.  
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