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Abstract— Dummy fills are being extensively used to enhance CMP planarity.
However presence of these fills can have a significant impact on the values of inter-
connect capacitances. Accurate capacitance extraction accounting for these dum-
mies is CPU intensive and cumbersome. For one, there are typically hundreds to
thousands of dummy fills in a small layout region, which stress the general purpose
capacitance extractor. Second, since these dummy fills are not introduced by the
designers, it is of no interest for them to see the capacitances to dummy fills in the
extraction reports; they are interested in equivalent capacitances associated with
signal power and ground nets. Hence extracting equivalent capacitances across
nets of interest in the presence of large number of dummy fills is an important and
challenging problem. We present a novel extension to the widely popular Monte-
Carlo capacitance extraction technique. Our extension handles the dummy fills
efficiently. We demonstrate the accuracy and scalability of our approach by two
methods (i) classical and golden technique of finding equivalent interconnect ca-
pacitances by eliminating dummy fills through the network reduction method and
(ii) comparing extracted capacitances with measurement data from a test chip.

I. INTRODUCTION

Modern fabrication technologies can have up to 10 or 12 routing
layers with non-uniform metal density. This results in severe pla-
narity issues which can cause manufacturing problems and timing
unpredictability. With the advent of Chemical-Mechanical Polish-
ing (CMP) [1], it has been possible to achieve local as well as global
planarity of the wafer surface. However the CMP process can re-
sult in dishing[2] of a layer that is being planarized if there is an
uneven distribution (empty spaces) of interconnects, thereby dimin-
ishing the effectiveness of CMP technology. In order to minimize
this dishing phenomenon, dummy fill objects[3] are used. Tech-
niques have been suggested towards placement of these fill objects
between signal nets in [4] and [5]. In literature these fill objects
are referred to with names like; fill metals, fill nets or dummy fills.
Typically these dummy fills are small objects (1um X 1um or so)
inserted automatically by layout optimization tools in sparse regions
between the signal nets. While achieving the desired CMP planarity
these dummies have an adverse impact on coupling capacitances.
Their inclusion increases coupling capacitances by large amounts.
This necessitates that parasitic extractors should account for these
dummies during capacitance extraction. Before going into details of
extraction we us first define a few terminologies.
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Fig. 1. Capacitances between 2 interconnects and a fill metal between them

Consider a simple example consisting of two interconnects and a
floating fill net between them as shown in Figure 1. ���� ��� and
��� are the direct capacitances between (A,B), (A,F) and (B,F) re-
spectively. However since fill F is floating, the crosstalk between A
and B is determined not by ��� alone but by ���� � ��� �

��� ���
�������

.

The capacitance ���� between interconnects in the presence of float-
ing fill net(s) is called the equivalent capacitance. Since ��� and ���
are positive it is easy to see that ���� � ���.

Fig. 2. 2x2 cross bus with and without fill metals. Net I is the top conductor and Net II
is the left conductor

Floating fill nets: As we observed in Figure 1, equivalent capac-
itance between A & B is more than that of the direct capacitance
in the presence of fill net F. Let us look at the impact on equivalent
capacitance in the presence of large numbers of floating fills with
another example. Figure 2 shows a 2x2 cross bus with and with-
out fill nets. The capacitance between nets I and II without fill nets
is ����� �� (femto Farads) and with fill nets the equivalent capac-
itance becomes ����� �� which is a ����	 increase in value. We
observed similar behavior in other pairs of capacitances too. He et.
al. [6] give examples in which the relative change in capacitance
can be more than 
��	. For a more detailed analysis of capaci-
tance deviation due to floating fill metals, see the work of Lee et.
al. [7]. To minimize the increase in capacitance because of the
floating fills, various fill metal shapes and placement strategies have
also been investigated. Towards this, [8] suggests using fill patterns
which are plus (‘+’) shaped and impose restrictions on where the fill
nets can be placed. However this still does not eliminate the need
to compute accurate equivalent capacitances. Since there could be
hundreds to thousands of floating fill nets near a signal net, extract-
ing each net becomes a non-trivial task. Also, as these floating fill
nets are not introduced by the designers, they are not interested in
the coupling capacitances to these nets; they are interested only in
the equivalent capacitances between interconnects. Hence the need
to compute equivalent capacitances in the presence of floating fill
nets.

Grounded fill nets: Grounded fill nets are not common as they
require significant additional routing resources to connect fill struc-
tures to nearby ground lines. The presence of grounded fills intro-
duce shielding across neighboring signal wires on either sides, at the
expense of increased grounded capacitance for these wires. Since
the lumped grounded capacitances increase, signal delay increases
for these wires. Since they do not pose the problem of equivalent ca-
pacitance extraction, existing capacitance extractor tools can grace-
fully handle grounded fill nets. The pros and cons of floating and



grounded fills are discussed in [9]. In this paper we consider only
floating fill nets and henceforth by fill nets we mean floating fill nets.

Since floating fills increase coupling capacitances across signal
lines crosstalk and hence timing is directly affected. It is impor-
tant to accurately account for the presence of fills during capaci-
tance extraction. The available capacitance extraction techniques
(FEM [10], BEM [11], Monte Carlo [12]) do not have specific treat-
ment to dummy fills. [13] gives a scheme to modify the geometry of
signal nets and to remove the dummy fills to get approximate capac-
itance values quickly. However, exact computation of equivalent ca-
pacitances in the presence of floating fill nets is not well researched.
The most straight forward and classical way would be to find all the
coupling capacitances, and then eliminate the fill nets using network
reduction techniques, thereby finding the equivalent capacitances.
The problem with this approach is that too many coupling capaci-
tances must be computed, as there would be thousands of fill nets.
This increases the extraction time by several folds. The subsequent
network reduction step is also runtime and memory intensive. To-
wards this, extensions to BEM method have been reported in [14]
and [15] which can directly compute equivalent capacitances. The
capacitance obtained by imposing zero-charge on floating conduc-
tors contains the equivalent coupling effect. Thus the equivalent ca-
pacitance matrix is evaluated without constructing the full bare ca-
pacitance matrix. However with this no real runtime advantage is
gained, as one still needs to write equations at fill metal surfaces.
This makes the overall system matrix too large. [16] uses the so-
called fictitious domain method to transform the problem with float-
ing conductors to a one without floating conductors. However the
matrix size is still determined by the total number of conductors and
floating fills.

We present a novel extension to the technique of Le-Coz and Iver-
son [12] wherein capacitances are computed by statistical Monte-
Carlo integrations though a series of Random Walks (RW). A ran-
dom walk starts from a conformal surface (called Gaussian surface)
around a signal net, makes a series of hops in dielectric space, and
terminates on another signal net, thereby giving an estimate of cou-
pling capacitance between the two signal nets. The problem arises
when a walk hits a floating net and the integral equation to deter-
mine the potential at that point can no longer be used. To get around
this we use the fact that a fill net is an equi-potential surface and
the potential of a fill net can be computed from the potentials of its
neighborhood. This results in an additional integral equation along
with the equations used in [12]. The addition of this equation mod-
ifies the random walk process, and we call this extension the Modi-
fied Random Walk (MRW) method. With the MRW method, walks
can ‘snap’ across the floating nets, thereby directly computing the
equivalent capacitances associated with the signal nets.

In order to establish the accuracy of the MRW method, we use
the classical technique of network reduction (NR) to find the true
equivalent capacitances. First, we use the standard RW method to
determine all the coupling capacitances and then apply network re-
duction to eliminate nodes corresponding to fill nets. The result-
ing network contains nodes corresponding to only the signal nets,
thereby yielding the equivalent capacitances. Since RW methods
report capacitances as a value plus an associated error bound (statis-
tical uncertainty), it becomes imperative to use these error bounds
in the network reduction process. We use real intervals to represent
capacitances, and use interval arithmetic in the network reduction
process. We use results from statistics to come up with tight bounds
for the eventual equivalent capacitances. We use efficient algorithm
to do network reduction. With these techniques, we demonstrate the
accuracy and scalability of our MRW technique with synthetic and
real test cases.

The remainder of this paper is organized as follows. In Section
II, we describe the network reduction method and an efficient im-
plementation of it. Section III describes the underlying principle of
MRW. Section IV contains experimental results to validate the accu-

racy and scalability of MRW method. Concluding remarks are given
in Section V.

II. THE GOLDEN METHOD - NETWORK REDUCTION (NR)

In the example used in Section I a simple formula for equivalent
capacitance in the presence of a single fill net was used. However in
practice, there are hundreds to thousands of fill nets. In this section
we first describe underlying theory behind computing equivalent ca-
pacitances from direct capacitances in presence of an arbitrary num-
ber of fill nets, and then describe an algorithm to efficiently compute
it. We also describe how to handle the more general case wherein
direct capacitances are intervals instead of real numbers.

Let there be � � � nets in the layout; the first � nets constitute
the set of interconnects � and the remaining � form the set of float-
ing fill nets � . One of the interconnects is the reference ground
net. The capacitance model for the circuit can be represented as
a � � � terminal multi-port, with each net modeled as a terminal
or a port. Let �� be the port current injected through the port 	.
Let 
� � ���� ��� � � � � ���

� and 
� � ������ ����� � � � � �����
� be

the port current vectors. Let �� be the potential at the port 	. Let
� � �	

�

. Then �� � � ��� � � � � ���

� and �� � � ����� � � � � �����
�

are derivatives of port voltage vectors. �� is an � � � matrix
that gives the coupling (mutual) capacitances between the nets in
�. The �
� row of �� , �� ��� � ����������� � � � � ���� � � � ������
where ��� � ��� is the coupling capacitance between nets � and 	

and ��� �

����
������

�� is the self (total) capacitance of net �. Sim-

ilarly we define �� and �� . From the definitions we observe
that �� , �� and the block capacitance matrix in Equation 1 are
all symmetric. Port current and voltage derivative vectors are related
through  by the matrix equation�


�

�

�
�

�
�� ��
�� ��

��
��
��

�
� (1)

Since no current is injected in any of the floating fills in � , we have
���� � � � � � ���� � �. i.e., 
� � �. Hence if we eliminate ��
from row (1) in Equation 1, we get


� �
�
�� � ����

����
�
�� � (2)

Equation 2 relates voltage derivative with injected current for inter-
connect terminals; hence the equivalent capacitance matrix �� is
given by

�� � �� � ����
���� (3)

A. Efficient Implementation through Graphs

Evaluation of �� by first computing constituent matrices of
Equation 1 and then doing the matrix operation of Equation 3 could
be very inefficient. However the matrices �� � �� and �� are in
general very sparse. Bunch and Rose [17] give efficient methods to
handle such matrices. Also, the system matrix of Equation 1 is pos-
itive definite and one can use graph based techniques for equation
solution (George and Liu [18]). In our implementation, we model
the symmetric sparse matrix as an undirected graph. Each intercon-
nect net, which is modeled as a terminal � in the multi-port model, is
taken as node � in the graph. Coupling capacitance across terminal
� and 	 is modeled as an edge with initial weight ��� across nodes �
and 	. The initial weight of node � is taken as the self capacitance
��� of terminal �. We do not add zero weight edges to the graph.
Also we use thresholding on the self and coupling capacitances so
that extremely small values are discarded. The threshold is auto-
matically determined by the error tolerance value and the minimum
capacitance value above which the capacitances are of interest to the
designer.



Let us interpret the elimination process by examining how we
eliminate �� from the first row in Equation 1. Let us consider the
interconnect net � and a fill net �. Then the network equations for
these two nets can be obtained from rows (�) and (�) of the expanded
matrix Equation 1, they are,

��� �� � ��� �� � � � � � �� ��� ���� � �� (4)

��� � �� � � � �� �� � �� � � � � � �� ��� ���� � �� (5)

Then after eliminating �� from Equation 4, coefficients of 4 get up-
dated to

���� �
����
���

� �� � ���� �
������
���

� �� � � � � � � ��

� � � � � ������ �
��������

���
� ���� � ��

Generalizing this, we see that after fill net � has been eliminated, the
equivalent coupling capacitance between nets, say � and 	 changes
from ��� to ���� � ��� �

������
���

and self capacitance of net � to ���� �

��� �
��
��

���
.

The algorithm for computing equivalent capacitance is as follows:

1. Construct the weighted undirected graph
2. Pick a �������� vertex � which corresponds to a fill net. How

� is chosen is described later on
3. For all possible pairs of edges ���� ��� ��� ��� incident on

�, update ��� by ��� � ������
���

. If �����, does not exist
(��� � �), we create an edge from � to � and assign a weight
of ������

���
to it

4. For all vertices � adjacent to � update ��� by ��� �
����
���

5. Delete � along with all edges incident on it
6. If there is any fill vertex still remaining go to step (2)
7. The weights on the remaining edges and vertices are the equiv-

alent coupling and self capacitances

Figure 3 illustrates the step when vertex � corresponding to fill
net � is being removed. Initially � has edges to �, �, � and �. When
� is removed, it adds edges between (�� �), (�� �), (�� �), (�� �), (�� �)
and (�� �). We see that there is already an edge between � and �. The
weights on these 2 parallel edges can be added since it represents
parallel capacitances.

Choosing v: The complexity of the above algorithm is propor-
tional to the number of edges created in step (3). The objective is
to ensure that sparsity of graphs is not lost in the elimination pro-
cess. Towards this end, various heuristics like Dynamic Minimum
Degree, Dynamic Minimum Fill-in, Nested Dissection etc. are sug-
gested in [18]. In our implementation we use dynamic minimum
degree heuristic.
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Fig. 3. Illustration of vertex elimination using Graphs- Before & after vertex f being
removed. Dotted arcs indicate the edges that are being added in the process of
removing f

B. Handling Intervals

In the algorithm described above, ��� was a real value. However,
RW method outputs an associated error ��� with each ��� . We de-
scribe how to update ��� tightly along with ��� .

Let � be a random variable estimated by � random samples
��� ��� � � � � ��. �, the mean of the � samples is an estimate for
����, the true mean of � . Let ��� be the the variance of the � sam-
ples. Then the standard error �� � �	�

�
gives the standard deviation

of the mean. Typically the error is reported as a 3-sigma confidence
interval, which means ���� will lie within (�� 
��� ��
��) with
99.8% confidence. The notation � � ��� ��� means that � is the
estimated mean of � and �� is the associated standard error.

Let � and � be two independent random variables which we have
already estimated, and suppose now we are interested in � � � .
The estimate of the mean of � � � can be computed easily, and it
is �� �. It can be verified that ���� � �� � ��. However using the
property of errors of independent random variables, we can show
that ���� �

�
��� � ���. If �� � ��, then the new error bound is

��
�

of the naive bound; hence much tighter.
In the RW method, �� is a random variable which denotes the

coupling capacitance from � to 	. RW reports (��� � ��� ). We have
to update these (��� � ���) pairs when we do the network reduction.
Any two distinct �� and �� are estimated by independent random
walks; hence �� and �� are independent. Looking back at the
updates done by the network reduction method, we should provide
tight bounds for standard errors of � � � , � � � , �� and ��� .
Theorem II.1 provides the bounds.

Theorem II.1: Let � � ��� ��� and � � ��� ��� be two inde-
pendent random variables. Then

1. � 	 � = (�	 �,
�

��� � ���)

2. �� = (��,
�

����� � ����� � ������)
3. �

�
= ( �

�
, �

���	 �
�

�
)

Proof: (1) and (2) follow from the definition of standard error and
the identities

����� � ��� � ���

���� � ����� � ����� � ����
�
�

respectively. The proof of (3) is straight forward.
It is easy to see that if there are no errors associated with � and

� , then there are no errors associated with either of the above op-
erations and hence it boils down to the non-interval case. In our
algorithm, whenever we update ��� ’s we also update the ���’s using
Theorem II.1.

III. MODIFIED RANDOM WALK (MRW)

A. Monte-Carlo Integration through Random Walks (RW)

p1

A

B

Gaussian surface   Γ

p

2

p3

p

Fig. 4. Illustration of random walk process.

In this section we extend the RW method of [12] to handle fill
nets by modifying the walk process around a floating metal. But



first we briefly describe the RW method of [12] which computes
capacitances indirectly by evaluating the charge integrals by Monte-
Carlo sampling. Total charge �� on net � can be expressed in terms
of the coupling capacitance ��� between nets � and 	 and the potential
vector ���� � � � � ��� as

�� �

��
����� ���

������ � ���� (6)

If we keep net � at � volt and all the other nets at � volt, we can
compute the self capacitance of net � and the coupling capacitances
between net � and the other nets in the system. The self capacitance
is equal to the total charge on � and the coupling capacitances are
computed by linear separation of �� in Equation 6.

Basic electrostatic equations used for the evaluation of charge �
are given below. �

� � �

�
�

  ���!� � �"�!� �� (7)

���!� �

�
�
���!��#�!�� �
 (8)

#�!�� �

�
��

$��!��#�!�� �
� (9)

where,
� is a Gaussian surface
�� is the elemental area on � containing point !

 is the surface of a maximal conductor free cube centered

around !

� is the surface of a maximal conductor free cube centered

around !�
According to Gauss’s law, total charge � stored on a net in a

multi-conductor system is evaluated by integrating the dot product
of electric field ����� and unit normal vector �"��� on a surface �
around the net. This surface is often called a Gaussian surface. By
definition, Gaussian surfaces should completely enclose the net on
which total charge is being computed and should not contain any
other net in the system. Given the geometric description of the in-
terconnect nets, a Gaussian surface can be constructed, and unit nor-
mal vectors can be computed at every point on the surface. How-
ever, the electric field ���!� at points ! on Gaussian surface � needs
to be evaluated. ���!� can be computed in terms of electric poten-
tials around a cube  centered around point !. The field is related
to boundary potentials through a vector Green’s function ����� as
shown in Equation 8. The potential at point !� on the surface 
 of
this cube  can again be expressed in terms of boundary potentials
around another cube � centered around point !�. The relationship
involves a scalar Green’s function $���� as shown in Equation 9.
We evaluate the integral (7) by sampling points ! on �. We very
briefly sketch the algorithm with the help of Figure 4.

1. Build Gaussian surfaces around the nets to be extracted. For
example around net A

2. Pick a point ! on � so as to find an estimate for Equation 7
3. To find an estimate for Equation 7, an estimate for ���!� as

given by Equation 8 is needed. For that, build a maximal con-
ductor free cube  centered around ! and pick a point !� on

, the surface of 

4. Now to find an estimate for Equation 8, an estimate for #�!��
as given by Equation 9 is needed. For that, build another max-
imal conductor free cube � and pick a point !� on 
�

5. If !� lies on a net say B, the walk ends as #�!�� � �. Oth-
erwise keep generating points !�� � � � until it ends in a net say
again B.

�For notational simplicity we represent surface integral by simple integral sign
�

.

6. Since the walk started at A and ended at B, the estimate com-
puted above is an estimate of the coupling capacitance between
A and B

B. Modified Random Walk

A

B

Fill net F

walk ends on B

Γ

walk ends on F

Fig. 5. Random walk in the presence of fill net

Consider a simple example shown in Figure 5. It has three nets;
A, B and a fill net F. A walk beginning from net A could terminate
on A or B or F. If it terminates on A, we get an estimate for the
self capacitance of A. If it terminates on B, we get an estimate for
the direct coupling capacitance between A and B. If it terminates
on F, we get an estimate for the capacitance between A and F. We
need to modify the walks so that (1) we don’t compute coupling
capacitances to F, and (2) instead of computing the direct coupling
capacitance between A and B, we compute the equivalent capaci-
tance (which in this simple case is ��� � ��� �

��� ���
�������

). We want
to have a technique which will work in conductor configurations
having any number of complex shaped fill metals placed arbitrarily
in a complex dielectric medium. This will enable the technique to
be useful in equivalent capacitance extraction problems likely to be
encountered in modern technologies using dummy fills.

Let us examine Equation 9, which enables the walk to proceed
in the dielectric medium. A random walk at point !� in the dielec-
tric medium is extended to the next point, by sampling points on
the surface 
� of a conductor free cube centered at point !�. The
sampling is done treating the Green’s function $� as a probability
density function (pdf) for point selection. This hop process has two
prerequisites:

1. The point !� is in a dielectric medium with a non-zero size
conductor free dielectric cube available centered around it.

2. There is a pre-computed Green’s function available for the
conductor free cube which can be used as pdf for point se-
lection on its surface 
�.

Clearly, when a walk hits a floating metal at point !� there is no
conductor free cube possible centered at !�. However if we use the
fact that the fill metal is an equi-potential surface (since it is a piece
of metal) we can write another potential Green’s function at the fill
metal and use that to continue the walk.

The potential #�� � on a fill net F can be computed from the po-
tential around its neighborhood as follows:

#�� � �
�

%

�
��

 
�

#�!���� (10)

where ! is a point on neighborhood boundary �� around F (see Fig-
ure 6) .   is the average permittivity over the line joining ! and and
the nearest point on F. � is the length of this line. % is a normalizer
and is given by

% �

�
��

 
�

��� � (11)

Equation 10 is conceptually similar to the Equation 9. While
Equation 9 expresses the potential at a point in dielectric medium



in terms of potentials at a cube shaped boundary through a pre-
computed Green’s function, Equation 10 expresses potential at a
point on a floating metal in terms of potentials on a not-necessarily
cube shaped boundary. The boundary can best be thought of as (pos-
sibly non-uniform) inflation of floating metal. Also, �


��

can be

thought of as a Green’s function (See Equation 9) for this boundary.
Further more, such Green’s functions can be pre-computed for each
floating metal and stored in the form of a pdf for point selection on
their corresponding boundaries.

Equation 10 along with Equations 7, 8 and 9 is interpreted as the
modified random walk (MRW) process. Whenever a walk lands on a
fill net, we use Equation 10 instead of Equation 9 to compute the po-
tential at that point. To do this, we select a point on a neighborhood
around the fill net (see Figure 6) and continue. With this modifica-
tion, walks start and terminate only at non-fill nets (interconnects)
and thus we get true equivalent capacitance between non-fill nets,
taking into account the presence of all fill metals.

A

B

Fill net F

Γ

Γf       

walk hits F but ...

   boundary 
neighbourhood 

... continues & ends
     on Bwalk ends on B

Fig. 6. Modified random walk

Neighborhood �� around fill nets are implicitly constructed from
inflations of constituent 3D boxes in the fill nets. A weight func-
tion is computed based on average permittivity value   and average
normal distance � on each face of the neighborhood. These can be
easily computed from the geometric description of the fill net and
the dielectric specification of its surroundings. This enables compu-
tation of equivalent capacitances in arbitrary dielectric profiles. In
particular, this enables equivalent capacitance computation in uni-
form, layered and conformal dielectric profiles, which are the most
commonly encountered situations in modern fabrication technolo-
gies.

This natural extension of RW is also well suited for parallel im-
plementation. Hence the technique described in [19] can gracefully
adapt to compute equivalent capacitances.

IV. EXPERIMENTAL RESULTS

We present the accuracy and scalability of MRW through four
sets of experiments. The first one consists of theoretical example
for which the true answer can be arrived at by hand computation.
The second set consists of real test structures with fills for which
silicon data is available. The third set consists of synthetic examples.
Accuracy in this case is established by comparing with the golden
method - NR. The last one has real large designs with thousands of
fills and is used to demonstrate the scalability of MRW. In all the
experiments we use a 3-sigma confidence level. All computations
were done on Sun-UltraSparc-III machine (1200MHz, 4GB RAM).

TABLE I

Equivalent capacitance between T and B in pF

true value NR MRW

����� ����� � ����	 ����� � ����	

Theoretical Example: Parallel Plates Figure 7 depicts a parallel
plate capacitor with 4 thin parallel plates inserted between the top

εr = 1

εr = 2

εr = 3

εr = 4

εr = 5

5nm

B

T

5um

5um

Fig. 7. Front & Top views of 6 identical & equally spaced parallel plates. Middle 4 are
fill nets. Thickness of each plate is 1nm

(T) and bottom (B) plates. These in-between plates are treated as
fill nets. The plates are made very thin (1nm) and have large ar-
eas so as to minimize the ratio of fringe capacitance to the overlap
capacitance. Thus the equivalent capacitance between T and B is
effectively a series combination of 5 capacitances. We put slabs
of different dielectric strengths between the plates as shown in the
front view. Table I contains true capacitance computed from series
combination of 5 parallel plate capacitors along with the equiva-
lent capacitances as computed by NR and MRW methods. One can
note a very good correlation across these values. Because of some
marginal fringe capacitances not accounted in analytical calculation,
the equivalent capacitance between T and B is slightly more than the
series approximation and we observe that in the results computed by
NR and MRW.

TABLE II

Results of Test Structures - Capacitances in pF

Struc # fills SD NR MRW MRW Time

P1S 2119 1.73 ��
� � ����	 ��
� � ����	 189s
P31 2119 1.20 ���
 � ���
	 ���
 � ����	 664s

L2PSb 2552 4.39 ���� � ����	 ���� � ����	 108s
LA1Pa 2943 4.13 ���� � �����	 ���� � ���	 87s
FAPSa 2610 10.17 ����� � �����	 ����
 � ��
�	 110s
FA3Sb 11833 6.224 - ���� � ����	 128s
FA9Sa 27513 6.33 - ���� � ����	 401s
FA5Sb 17782 6.39 - ���� � ����	 325s

PLATE STRUCTURE              LINE STRUCTURE                      FINGER STRUCTURE

PWX                                         LWXYZ                                            FWXYZ
P: Plate                                      L:Line                                               F:Finger

A=AIR     P=POLYSIICON     S=SUBSTRATE

s

w

s

w

X; Bottom Plate                         X: Line                                             X:Line
W:Top Plate                              W:Top Plate                                      W:Top Plate

                                                  Z: Line width a=w b=2w                  Z: Line space a=s b=2s
                                                  Y: Bottom Plate                               Y: Bottom Plate

s=5.5u  w=12u                            s=0.5u   w=0.14u                          s=0.14u   w=0.14u

w

s

Fig. 8. TSMC90nm Test Structures

Real Test Structures: Figure 8 shows the top view of three
test structures; plate, line and finger, which were fabricated using
TSMC90nm technology. There are two identical plates in different
metal layers in each structure. For example, P31 contains identical
plates (as shown in left shape in Figure 8) in M3 & M1 and they
are connected to pad. Similarly in FAPSa, the finger structure (mid-



dle shape in Figure 8) has no top plate (i.e., air) and a bottom plate
is placed in polysilicon (P). Also, the spacing between the lines is
0.14um. Floating fills were added at the database level using the
TSMC guidelines from the design rule document. The metal fill di-
mensions were 2um x 2um with a 2um space.

Table II gives the results. Owing to the large number of fill nets
in each structure, the NR method took hours to compute full capaci-
tance network and the equivalent capacitances. In certain test struc-
tures final result could not be computed by NR because too much
computational effort was involved in computing the full capacitance
network. On the contrary MRW could compute these capacitances
in reasonable amounts of time. (reported in Table II) One can note
very good correlation on equivalent capacitances with silicon data
(SD).

TABLE III

Pair-wise equivalent capacitances (fF) between T, B, L and R.

Coupling Cap NR MRW

��� ���� � ����	 ���� � ���	

�� ���� � ����	 ���� � ����	

��� ���
� � ��
�	 ���
� � ����	

�� ����
 � ����	 ����� � ����	

��� ���� � ����	 ���� � ���	

�� ���� � ���
	 ���� � ����	

Synthetic Example: 2x2 Cross Bus This synthetic test case is sim-
ilar to the one shown in Figure 2. The 2 horizontal conductors of
M2 are denoted as T (top) and B (bottom) respectively. Similarly
the 2 vertical conductors of M1 are denoted as L (left) and R (right)
respectively. There is an array of 11x11 fill metals between the con-
ductors in each layer (total of 242 fill nets). Owing to the smaller
number of fill nets, a very accurate capacitance network was com-
puted by NR and one can note strong match across the equivalent
capacitances as computed by NR and MRW methods. Table III sum-
marizes the results.

TABLE IV

Results of Real Designs with fills - Coupling capacitance (in fF) between certain pair

of nets

Design # fills MRW Time

des1 60816 ���� � ���	 36m
des2 10383 ��

 � ����	 401m

Real Designs: We used 2 real designs with thousands of fills
present. Table IV shows the results of coupling capacitance between
certain large nets. One can note that even in these large examples
MRW can compute equivalent capacitances in reasonable time. For
these examples NR results could not be computed, and no silicon
data was available for comparison.

As noted above, equivalent capacitance numbers for certain ex-
amples were not computed by NR method. This is due to the fact
that NR computes all coupling capacitances associated with each
fill net within some error bounds. However, not all coupling capac-
itances have the same impact on the equivalent capacitance. A few
of them could be computed with looser error bounds, which would
still not affect the final outcome. However it is difficult to determine
these insignificant capacitances a priori. So we end up computing
each coupling capacitance with same error bound. This results in
over computation in NR which increases its runtime. Since MRW
does not try to compute capacitances associated with fill metals sep-
arately, it does not suffer from this. Hence runtime of MRW is much
better than that of NR. Note that we use the variance reduction tech-
niques reported in [20] in our implementations.

V. CONCLUSIONS

We have presented a natural and intuitive extension to the Monte
Carlo method to compute equivalent capacitances in the presence of
large number of fill metals. The extension is applicable to capaci-
tance extraction problems commonly encountered in modern fabri-
cation technologies using dummy metals. We have demonstrated the
accuracy and scalability of our new method with synthetic as well
as real examples and test chip measurement data. The method is ex-
tremely efficient in runtime and memory utilization. In addition, it
also scales very well to perform extraction in presence of thousands
of dummy fills in between signal nets.
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