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Abstract 

The pervasive use of advanced reticle enhancement technologies demanded by VLSI technology scaling leads 
to dramatic increases in mask costs. In response to this trend, mUltiple project wafers (MPW) have been proposed 
as an effective technique for sharing the cost of mask tooling among Up to tens of prototype and low volume de
signs. Previous works on MPW reticle design and dicing have focused on the simple scenario in which production 
volumes are known a priori. However, this scenario does not apply for low- and medium-volume production, in 
which mask manufacturing is typically started when only rough estimates of future customer demands are avail
able. In this paper we initiate the study of MPW use for production under demand uncertainty and propose efficient 
algorithms for two main optimizations that arise in this context: reticle design under demand uncertainty and on
demand wafer dicing. Preliminary experiments on simulated data show that our methods help reducing the cost 
overheads incurred by demand uncertainty, yielding solutions with a cost close to that achievable when a priori 
knowledge of production volumes is available. 

1 Introduction and Motivation 

With the pervasive use of advanced reticle enhance
ment technologies such as Optical Proximity Correction 
(OPe) and Phase Shifting Masks (PSM), mask costs are 
predicted to reach $10 million by the end of the decade 
[8]. These high mask costs push prototype, low-volume, 
and low-price medium-volume production designs past 
the limits of economic feasibility since the costs cannot 
be amortized over the volume. In response to this trend, 
multiple project wafers (MPW) have been proposed as 
an effective technique for sharing the cost of mask tool
ing among up to tens of designs [3, 9]. 

Multi-project reticle design and wafer dicing have re
ceived much attention recently. Xu et al. [11] studied 
the MPW mask floorplanning under die-alignment con
straints imposed by the use of die-to-die mask inspec
tion. A grid-packing formulation for MPW mask floor
planning was proposed in [2], where the objective is to 
find a minimum area grid floorplan with at most one 
die per grid cell. The grid-packing formulation in [2] 
was revisited by Kahng and Reda [7], who proposed a 
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new floorplanner with guaranteed yield. Kahng et al. 
[5] considered the side-to-side wafer dicing problem, 
and proposed a general multi-project reticle floorplan
ning method seeking to maximize dicing yield. Xu et 
al. [12] combined the horizontal and vertical conflict 
graphs of [5] into a single conflict graph, and proposed 
dicing algorithms based on coloring of the combined 
conflict graph (all dies receiving a certain color can be 
diced in the same step). Wu et al. [14] proposed in
teger linear program (ILP) formulations for wafer dic
ing, further extending the graph coloring approach. In 
[15], Wu et al. gave ILP formulations for simultaneous 
floorplanning and dicing (which, unfortunately, cannot 
be solved in practical runtime even for small testcases) 
and proposed more practical algorithms for independent 
reticle floorplanning and wafer dicing, also incorporat
ing chip replication in the former. Recently, Kang et al. 
[6] proposed (1) algorithms for balancing mask cost and 
schedule delay cost, (2) a new hierarchical quadrisec
tion floorplanning algorithm based on simulated anneal
ing, (3) shot-map optimization methods for maximiz
ing the number of functional dies extracted from each 
wafer, and (4) new side-to-side dicing algorithms allow
ing multiple dicing plans for different wafers. 

All previous works on MPW reticle design and dic-
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Figure 1: (a) 2-level hierarchical quadrisection floorplan mesh. (b)-(c) Two different floorplans obtained from 
different assignments of dies to mesh regions. 

ing have focused on the simple scenario in which pro
duction volumes are fully known at reticle design time. 
While this assumption holds for prototype manufactur
ing, it may not hold for low- and medium-volume pro
duction. Due to the time-to-market pressure, the mask 
set must be manufactured as soon as possible, when only 
rough lower and upper bounds on customer demand are 
available. Once the mask set is available, lots of wafers 
can be manufactured in response to customer orders. 
To increase profitability, it is possible to manufacture 
larger wafer lots in anticipation of future customer de
mand, and then dice the wafers as customer orders ar
rive. Multi-project wafers become even more attractive 
in this context because, in addition to mask cost shar
ing, they allow reducing the risks associated with mis
prediction of customer demand. 

In this paper we initiate the study of MPW use for 
low- and medium-volume production under demand un
certainty and address the two main optimizations that 
arise in this scenario: reticle design under demand un
certainty and on-demand wafer dicing. Our contribu
tions include novel simulated annealing (SA) algorithms 
for robust reticle floorplanning under demand uncer
tainty (Section 2). A key enabler of solution quality 
is the integration within the SA framework of project 
replication, or cloning. Unlike in [15], where project 
replication was proposed as a post-processing step in
tended to use the white space left on the reticle, our 
algorithm works with mUltiple copies (and can dynam
ically adjust their number) throughout the entire solu
tion search process, therefore resulting into both a bet
ter use of reticle area and improved dicing properties. 
Our cloning strategy further allows full control of reticle 
size, and should also be useful for MPW reticle design 
in the case when production volumes are known. We 
also give algorithms for on-demand wafer dicing (Sec
tion 3). For both reticle design and on-demand dicing, 
our best algorithms require little or no knowledge about 
customer order distribution. Nevertheless, experiments 
on simulated data show that our algorithms are very ef
fective in reducing overheads incurred by demand un
certainty, coming very close in solution quality to al-

gorithms that rely on a priori knowledge of customer 
orders (Section 4). 

2 Robust Reticle Floorplanning 

Reticle floorplanning is perhaps the most important op
timization step of any MPW flow. Compared with tradi
tional chip floorplanning, the difficulty of MPW reticle 
floorplanning lies in the complex relationship between 
the reticle floorplan and overall manufacturing cost, via 
conflicting factors such as reticle area and dicing com
patibility [15]. Manufacturing cost estimation becomes 
even more difficult when production volumes are uncer
tain. Two reticle floorplans that require the same num
ber of wafers for satisfying a certain set of production 
volumes may require significantly different numbers of 
wafers even for slight changes in the production vol
umes. Ideally, we would like a reticle floorplan that 
leads to low production costs under most possible pro
duction requirements. This robustness objective for ret
icle design under production demand uncertainty can be 
formulated as follows: 

Robust Reticle Design Problem (RRDP). 
Given: Maximum reticle size, dies 'D = {DJ, ... ,Dn}, 
and probability distribution of customer orders for each 
die. 
Find: a reticle floorplan for 'D that maximizes the ex

pected number of wafers required to satisfy customer 
orders over the time horizon for which production is be
ing planned. 

Our RRDP algorithm uses the simulated annealing 
(SA) framework introduced in [6]. As in [6], a hierarchi
cal quadrisection mesh is defined recursively as follows: 

• At level 1, the full reticle area is divided via one 
horizontal line and one vertical line into 4 rectan
gular regions denoted R(l, 1), R(1,2), R(I, 3), and 
R(1,4), respectively. 

• In general, each level i Z 1 has 4i regions denoted 
R(i,j), 1 '5. j '5. 4i. Regions at level i + 1 are ob
tained by dividing each region R(i,j) at level i into 



Input: Dimensions and volume requirement distributions of n dies, parameter 13, 0 < 13 < 1 
Output: Reticle floorplan and wafer dicing plan 

1. Construct the hierarchical quadrisection floorplan mesh 
2. Assign the n dies to regions at random 
3. If (floorplan width and heigh smaller than maximum reticle dimensions) then FoundFeasible f- True 
4. Else FoundFeasible f- False 
5. While (not converged and # of moves < Move_Limit) 
6. Pick a move at random 
7. If (floorplan width and heigh smaller than maximum reticle dimensions) then 
8. FoundFeasible f- True; 0 f-New Objective Value - Old Objective Value 
9. Else, if(FoundFeasible = False) then 0 f- New Area - Old Area, else 0 f- 00 

10. If (0 < 0) then accept the move, else accept the move with probability e-� 

11. T f-I3T 

Figure 2: Hierarchical quadrisection ftoorplanning algorithm. 

4 new regions, R(i+ 1,4J-1 + 1), R(H 1,41-1 +2), 
R(i+ 1,4'-1 +3) and R(i+ 1,4J-1 +4), respec
tively, via one horizontal line and one vertical line. 

The number of levels I is chosen such that the number of 
regions at levell, 41, is greater than the number of dies. 
Figure l(a) shows a mesh with 2 levels. 

In our algorithm, each one of the n given dies is as
signed to a different region of the hierarchical quadri
section mesh. The mesh itself is "soft" since the di
mensions of each mesh region are determined by the 
die assigmnent. As shown in Figure 1 (b) and (c), dif
ferent die assigmnents lead to different region dimen
sions and therefore to different reticle ftoorplans. We 
denote the width of the region R(i,j) by W(R(i,j)) 
and the height by H(R(i,j)). For a given die assign
ment, region heights and widths can be computed in a 
bottom-up manner, as follows. At levell, if there is a 
die in the region R(l,j), then W(R(l,j)) is set to the 
width of the die and H(R(l,j)) is set to the height of 
die; otherwise, W(R(l,j)) = H(R(l,j)) = O. At level 
i < I, W(R(i,j)) = max{W(R(H 1,4J-1 + 1)), W(R(i+ 
1,4J-1 + 4))} + max{W(R(i + 1,4J-1 + 2)), W(R(i + 
1,41-1 +3))} andH(R(i,j)) = max{H(R(i+ 1,4J-1 + 
1)),H(R(i + 1,4J-1 + 2))} + max{H(R(i + 1,4J-1 + 
3)),H(R(i+ 1,41-1 +4))}. 

A main advantage of the proposed hierarchical 
quadrisection mesh structure is that it guarantees dicing 
compatibility between dies placed in certain regions. In 
particular, dies located in diagonally opposing sibling 
regions can always be diced together. This property is 
used by our simulated annealing algorithm to quickly 
evaluate the quality of a reticle ftoorplan. 

We call a set of mesh regions independent if the dies 
in these regions can be diced simultaneously. For an 
independent set S the expected wafer requirement is up
perbounded by 

W(S) = / rg:� I ���n dN (1) 

where N(D) is the random variable denoting the vol-

ume requirement for die D, and Q(D) is the number of 
copies of die D per wafer for the evaluated ftoorplan. In 
our implementation we use a Monte-Carlo simulation to 
evaluate (1): we generate 100 random production vol
ume vectors N according to the given distributions, and 

then average max DES r �igll over these vectors. 

To evaluate a given hierarchical quadrisection ftoor
plan, we start by creating 41 sets, each consisting of at 
most one die, corresponding to the level-I regions of the 
ftoorplan mesh. We then merge, in bottom-up order, 
pairs of sets coming from diagonally opposing sibling 
regions, thus ensuring that the merged sets remain in
dependent. Note that the wafer requirement of a merged 
pair is the maximum of the wafer requirements of its two 
sets. Thus, to ensure the smallest total wafer require
ment, when merging the sets coming from two diago
nally opposing sibling regions we sort the sets in each 
region according to their wafer requirement, merge the 
sets with highest wafer requirement in each region, then 
merge the sets with second highest wafer requirement, 
and so on. Since at each level the merging process de
creases the number of sets in half, we end up with 21 
independent sets covering all dies at level 1. The ob
jective function used by our simulated annealing algo
rithm to evaluate ftoorplan changes is the sum of wafer 
requirement upperbounds computed using (1) for these 
i independent sets. 

The algorithm (Figure 2) starts by assigning each die 
randomly to one of the 41 regions of the hierarchical 
quadrisection mesh. The objective function is calculated 
and recorded for this initial ftoorplan. At each step we 
find a neighbor solution based on the following moves: 

• Region exchange move: exchange the dies in two 
regions; if one of the regions is empty this amounts 
to moving a die from one region to another. 

• Orientation move: rotate one die by 90 degrees if 
die width and height are different. 

After each move, we evaluate the objective function for 
the resulting ftoorplan. To enforce the given maximum 



reticle dimensions, the objective value is set to infinity 
when the evaluated floorplan's dimensions exceed al
lowed maximums (unless we have not yet found a fea
sible floorplan, in which case the algorithm switches to 
using floorplan area as objective function). As in any 
simulated annealing algorithm, improving moves are al
ways accepted, while remaining ones are accepted with 
a probability exponentially decreasing with the objec
tive value increase and the current annealing tempera
ture. 

2.1 Die Cloning 

Most previous works on MPW reticle design assume 
that the reticle contains a single copy of each die. This 
is appropriate for prototype manufacturing, when only 
a small number of wafers is produced, since it min
imizes reticle area (and hence total cost). For low
and medium-production volume the number of manu
factured wafers is larger, and die cloning (i.e., using 
multiple copies of a die in the reticle) may be justified 
even when it leads to some increase in reticle area, since 
cloning can improve dicing yield and thus decrease the 
number of required wafers. 

A simple die cloning method was proposed in [15], 
based on insertion of additional die copies within the 
white space available in a floorplan constructed start
ing with a single copy of each die. However, this post
processing approach has limited potential for improve
ment since typically there is not much empty space left 
on the reticle. Here, we propose a comprehensive ap
proach to die cloning, which involves making cloning 
decisions before, during, as well as after running the 
simulated annealing algorithm in Figure 2. 

First, we set the initial number of copies CD for die D 
with average volume requirement V D to 

Here, f(VD) is a monotonically increasing function of 
VD. We used f(VD) = VD and f(VD) = v'VD in our 
experiments, the resulting algorithms are referred to as 
SA-clone 1 and SA-clone2, respectively. Parameter 13 is 
a scaling factor chosen such that 

where, aD denotes the area of die D, A denotes the max
imum reticle area and a :s: 1 is a maximum reticle uti
lization factor, which was set to 0.6 in our experiments. 
To facilitate dicing, all copies of a die are arranged in a 
k x I "clone array" which is always assigned to a single 
floorplan mesh region. 

We also modified the simulated annealing algorithm 
in Figure 2 by adding four new moves: addition/deletion 
of a row/column of copies from a clone array. Finally, 
after the completion of the algorithm, we try to insert 

additional rows or columns into the clone arrays without 
increasing reticle size. 

3 On-Demand Wafer Dicing 

A wafer consists of reticle projections ("flashes") ar
ranged in a number of projection rows and projection 
columns. Each projection is an image of the reticle, 
which includes one or more copies of each die. Al
though all die copies on a wafer can be recovered by 
using expensive dicing technologies such as laser cut
ting [10], with the prevalent side-to-side wafer dicing 
technology some die copies will be destroyed. Under 
the side-to-side dicing model all reticles in the same row 
(column) on the wafer are sawed by a single set of hor
izontal (resp. vertical) cut lines, as the diamond blades 
cannot stop at arbitrary points during cutting. 

3.1 Single Batch Dicing 

Dicing a single batch of customer of orders can be 
formulated as the following Side-to-Side Wafer Dicing 
Problem (SSWDP): Given a multi-project reticle and re
quired production volumes for each die, find the mini
mum number of wafers and a set of wafer dicing plans 
yielding for each die a number of copies equal to or 
greater than the required production volume. Xu et al. 
[12] assumed that each wafer uses exactly one horizon
tal dicing plan and one vertical dicing plan for all reticle 
image rows/columns. This assumption allowed them to 
use a coloring-based heuristic giving good results for 
testcases with large volume requirement. In [6] we have 
given an integer linear programming formulation which 
allows finding an optimal set of dicing plans restricted in 
this way. Next we refine the formulation in [6] to change 
the objective from pure minimization of the number of 
wafers to the minimization of the combined wafer and 
dicing cost, where the former is proportional to the num
ber of wafers and the latter is proportional to the number 
of different wafer dicing plans used to fulfill the batch 
of orders. 

As in [12], two dies D and D' on a reticle are said to be 
in dicing conflict if they are either in horizontal dicing 
conflict or vertical dicing conflict. The conflict graph 
is the graph with vertices corresponding to the dies and 
edges connecting pairs of dies in dicing conflict. A max
imum conflict independent set is a subset of 'D which can 
be sliced out by a set of horizontal and vertical cut lines. 
We use MCIS to denote the set of all maximal indepen
dent sets in the conflict graph. For each independent 
set C E MCIS, let fc be an integer variable denoting the 
number of wafers which use the dicing plan defined by 
C. Also, let Xc be a 0/1 variable which is set to 1 if and 
only if the dicing plan defined by C is used to dice at 
least one wafer. Denoting by a the cost of a wafer and 



Input: reticle floorplan with dies 'D = {D\, ... ,Dn}, wafer shot-map, 
customer orders Qi, I < i < m 

Output: number of wafers Ni to be diced after receiving each order Qi 
01. For each k= I, ... ,n, in-.Stock(k) +--- 0 
02. For i = I, ... , m do 
03. For eachk= I, ... ,n 
04. If in-.Stock(k) 2: Qi(k) then 
05. in-.St ock( k) +--- in-.St ock( k) - Qi (k) 
06. Qi(k) +--- 0 
07. Else 
08. Qi(k) +--- Qi(k) - in-.Stock(k) 
09. in-.Stock(k) +--- 0 
10. If Qd O 
II. Run the SSWDP algorithm in Section 3.1 with production volumes given by Qi 
12. Let Ni be the number of wafers required by the algorithm, and 
13. yield(k) be the resulting number of copies of die Dk 
14. For eachk= I, ... ,n 
15. in-.Stock(k) +--- in_stock(k) +yield(k) - Qi(k) 
16. Else Ni +--- 0 
17. RetumNi, i = I, ... ,m 

Figure 3: Greedy ODSSWDP algorithm. 

by 13 the cost of reprogramming the dicing machine, we 
obtain the following integer linear program: 

Minimize aNw + I3Ndp 
subject to 

L Q(C,D)1e 2: N(D), VD E 'D 
CEMCIS 
Nxc2:le, VCEMCIS 
Nw = L Ie 

CEMCIS 
Ndp= L Xc 

CEMCIS 
Ie E Z+, Xc E {O, I} VC E MCIS 

where Q(C,D) is a constant which represents the num
ber of copies of die D obtained from a wafer diced ac
cording to C and N = maxDE'DN(D). This integer pro
gram can be optimally solved efficiently for practical 
SSWDP instances since there are only O(IMCISi) vari
ables and O(I'DI + IMCISi) constraints. 

3.2 Dicing Multiple Batches 

The SSWDP formulation is appropriate in the context of 
current shuttle services, which are focusing on serving 
the prototyping needs of independent design companies. 
In this context, there is no uncertainty on the number of 
prototype copies required for each project since these 
are specified by the customers before reticle design, and 
all dicing can be done in a single batch. However, for 
low- and medium production the exact customer de
mand may not be known a priori. When a single com
pany owns all designs on the MPW, it is advantageous 
to manufacture a large wafer lot in anticipation of future 
customer demand, and then dice the wafers only in re
sponse to incoming customer orders. This motivates the 

study of the following on-demand version of the dicing 
plan optimization problem: 

On-Demand Side-to-Side Wafer Dicing Problem 
(ODSSWDP). 
Given: 

• A multi-project reticle floorplan with dies 'D = 
{Dt, ... ,Dn}, 

• A wafer shot-map, i.e., the position of reticle im
ages on the wafer, and 

• A sequence of customer orders Qi, 1 ::; i ::; m, 
where each Qi is an n-dimensional vector of non
negative integers 

Find: number of wafers Ni to be diced after receiving 
each order Qi and corresponding dicing plans 
Such that: 

• Each customer order is satisfied before receiving 
the next order, i.e., for every k E {I, ... , n} and 
j E {l, ... ,m}, the number of copies of die Dk that 

result from dicing the first L{= \ Ni wafers is at least 

L{=\ Qi(k) (we assume that excess die copies ob
tained in a dicing step are stored at no cost and can 
be used to satisfy customer orders in subsequent 
step.) 

• Dicing decisions are made on-demand, i.e., for ev
ery i, the number of wafers Ni and the associated 
dicing plans are chosen without any knowledge of 
Qj for j > i, and 

• The total wafer and dicing cost is minimized. 



Input: reticle floorplan with dies II} = {Dl, ... ,Dn}, wafer shot-map, 
customer orders Qi, 1 :::: i :::: m 

Output: number of wafers Ni to be diced after receiving each order Qi 
01. For each k = I, ... ,n, in--stock(k) +---0, pasLdemand(k) +---0 
02. For i = 1, ... , m do 
03. For each k = 1, ... , n 
04. past..demand(k) +---pasLdemand(k) + Qi (k) 
05. If in--stock(k) 2': Qi(k) then 
06. in--stock(k) +---in--stock(k) - Qi(k) 
07. Qi(k)+---0 
0 8. Else 
09. Qi(k) +---Qi(k) - in--stock(k) 
10. in--stock(k) +---0 
11. If QdO 
12. a+---max.{Qi(k)/ pasLdemand(k) I pasLdemand(k) '" O} 
13. For each k= 1, ... ,n 
14. (f (k) +---max.{O, r a· pasLdemand(k)l - in_stock(k)} 
15. Run the SSWDP algorithm in Section 3.1 with production volumes given by (f 
16. Let Ni be the number of wafers required by the algorithm, and 
17. yield(k) be the resulting number of copies of die 4: 
1 8. For each k = 1, ... , n 
19. in--stock(k) +---in--stock(k) + yield(k) - Qi (k) 
20. Else Ni +---0 
21. RetumM, i= 1, ... ,m 

Figure 4: History-based ODSSWDP algorithm. 

We remark that, although we refer to the demand vec
tors Qi as "customer orders", they may represent cus
tomer orders aggregated over certain periods of time 
(e.g., daily, weekly, etc.) In Section 4.2 we will use this 
flexibility to gauge the benefits of bat ching customer or
ders for dicing purposes. 

A simple greedy ODSSWDP algorithm is given in 
Figure 3. The algorithm keeps track of the existing die 
stock, which changes after each dicing step. For every 
incoming customer order, the algorithm tries first to use 
existing dies to satisfy as much as possible of the order. 
If the order is fulfilled using existing stock, no additional 
wafers are diced. Otherwise, the SSWDP algorithm in 
Section 3.1 is invoked with the remaining order balance 
as required production volume to determine how many 
additional wafers to dice (and what dicing plans to use 
for them). Finally, the die copies thus obtained are used 
to complete the order, and any leftover copies are stored 
for future use. 

The algorithm in Figure 3 is attractive for its simplic
ity, but has a number of weaknesses. The SSWDP in
stances solved in Line 11 of the algorithm in Figure 3 
will typically require only a few wafers. This means 
that a large fraction of the resulting die copies will end 
up being stocked for future use. These die are chosen 
by the SSWDP algorithm without considering the al
ready existing stock or the demand trends that can be in
ferred from past customer orders. An improved ODSS
WDP algorithm correcting these weaknesses, which we 
call "history-based", is given in Figure 4. In addition 

Testcase # dies Min Vol. Max. Vol. Die area(cmL ) 
Indl 12 200 20000 1.13 
Ind2 14 100 10000 1.36 
Ind3 24 200 20000 1.82 
Ind4 31 100 20000 1.62 
Ind5 14 100 10000 0.86 
Ind6 24 100 3000 2.26 

Table I: CMP testcases parameters. 

to tracking the existing stock, the improved algorithm 
also tracks the past order history. When a customer or
der cannot be fulfilled using the existing stock, instead 
of calling the SSWDP algorithm with production vol
umes given by the remaining balance, we call it with a 
vector of production volumes given by the past demand 
scaled down as much as possible while still ensuring that 
we can satisfy the remaining order balance, and further 
adjusted by subtracting existing stock quantities (Lines 
12-14). 

4 Experimental Results 

To evaluate the performance and scalability of the pro
posed algorithms, we used six industry testcases from 
CMP [I], each having between 12 and31 dies with vary
ing sizes. For each die, we assumed upper and lower 
bounds on the production volume requirements as given 
in Table l. 



4.1 Reticle Design 

We included in our comparison several floorplans: 

• The industry floorplan designed by CMP engineers 
(CMP); 

• The floorplan obtained by running the hierarchi
cal quadrisection algorithm in [6] (HQ) with pro
duction volumes set to the median point of the ex
pected distribution, i.e., to the average between the 
minimum and the maximum expected customer or
ders; 

• The floorplan obtained by running the simulated 
annealing algorithm in Figure 2 driven by the uni
form, respectively normal distributions for cus
tomer orders (SA-unif and SA-norm); and 

• The floorplans obtained by running the simulated 
annealing algorithm with cloning, using an initial 
number of clones which is proportional to the aver
age production volume (SA-clone 1), respectively 
to the square root of the average production vol
ume (SA-clone2). In these versions of the algo
rithm we used a simpler SA objective instead of 
the Monte Carlo simulation used in SA-unif and 
SA-norm, namely the number of wafers needed to 
satisfy the average production volumes. 

Table 2 gives the observed average and standard devi
ation of the number of wafers required to fulfill 100 ran
dom production requirement vectors generated for each 
die according to uniform, respectively normal probabil
ity distributions. Dicing was done in all cases using the 
integer linear programming SSWDP algorithm in Sec
tion 3.1 with a = 1 and 13 = O. For comparison, we 
include in the table the observed average and standard 
deviation for the number of wafers obtained by indepen
dently running the hierarchical quadrisection algorithm 
of [6] for each of the 100 random production volume 
requirements (HQ*). HQ* can be used to estimate the 
reticle floorplanning suboptimality incurred due to de
mand uncertainty, since in its computation we allow se
lecting an individual floorplan for every production vol
ume vector. (Note that HQ* is not a true lower-bound 
since HQ does not guarantee optimality.) The results 
show that the two cloning based SA algorithms give 
the best results, often better even than HQ*, despite the 
unfair advantage of the latter. The cloning algorithm 
which starts with a number of clones proportional to the 
square root of average production volumes gives best 
results, improving over CMP floorplans by an average 
of 33% for production volumes generated from uniform 
distributions, and by an average of 28% for production 
volumes generated from normal distributions. Most of 
the improvement is due to the use of cloning, as can 
be seen from the fact that the SA algorithms without 
cloning give significantly worse results (although still 

.... , . ... .. , . .. 

....... " 

..... ., 
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Figure 6: Four quadrant dicing: the wafer is first di
vided into four quadrants, then each quadrant is diced 
independently using side-to-side cuts. 

better than CMP when driven by the correct distribu
tion). 

In Figure 5 we explore another measure of floorplan 
robustness. Here, we plot the tradeoff curve between 
the number of wafers and the probability of satisfying 
customer orders generated from the underlying distribu
tions. To efficiently determine these tradeoffs, we used 
the following Monte-Carlo simulation: 

• First, we generated a large number Q of random 
production volume vectors according to the given 
distributions. 

• Then, for each production volume vector q we 
computed the minimum number of wafers N (q) re
quired to satisfy it using the integer linear program
ming SSWDP algorithm in Section 3.1 

• Finally, for every number of wafers N, we estimate 
the probability of satisfying an arbitrary customer 
order as the ratio between I { q I N(q) :s: N}I and Q. 

The tradeoff curves show that cloning based floorplan
ning yields the highest success probability over the en
tire range of number of wafers. Besides showing the 
intrinsic qualities of a selected multi-project floorplan, 
estimates of success probability in Figure 5 could be 
useful, e.g., in determining how many wafers to man
ufacture in order to maximize expected profit. 

4.2 On-Demand Wafer Dicing 

We have implemented in the C++ language the greedy 
and history-based algorithms for on-demand side-to
side wafer dicing as described in Section 3.2. In the 



Testcase CMP HQ SA-un if SA-norm HQ* SA-clone 1 SA-c1one2 I 
Uniform distribution 

indl 166.9/48.0 138.7/38.7 138.7/38.7 154.2/42.2 128.6/31.8 115.7/22.2 114.0123.6 
ind2 116.7/19.8 107.3/17.8 103.1113.1 132.9/27.6 101.7/16.2 93.9/15.7 85.9/13.6 
ind3 352.2/52.0 348.6/50.5 347.2/48.2 417.7/67.4 257.6/35.0 247.9/46.3 210.0/38.4 
ind4 101.9/22.1 103.7/20.5 100.2/20.7 108.3/19.9 89.7/19.6 68.6/11.1 60.8/6.6 
ind5 107.3/15.8 104.8/16.0 99.6/15.7 107.3/21.3 84.3/12.4 88.9/16.1 75.3113.1 

ind6 80.9/9.6 85.6/11.6 77.3/10.2 78.9/9.9 72.8/8.4 74.3/9.4 74.0/8.2 

Improvement 0 4.02% 6.46% -7.93% 20.65% 25.55% 33.04% 

Normal distribution 

indl 137.3/22.7 144.2/24.0 144.2/24.0 131.5/20.9 127.0/22.3 116.5/16.4 108.4115.2 

ind2 149.7/19.6 135.3/15.7 161.1/24.8 127.3/16.1 114.9/14.9 115.3/14.9 113.7/14.7 

ind3 375.0/36.6 355.6/27.3 361.8/26.7 352.8/31.3 270.3/19.2 281.1/38.1 272.4/21.5 

ind4 120.2/28.9 97.0/10.4 104.6/11.5 95.3/10.4 88.2/9.9 80.9/19.7 81.0/26.2 

ind5 119.5/15.9 96.0/10.4 93.2/10.0 81.0/8.4 75.7/8.3 74.8/8.5 73.6/8.3 
ind6 105.317.9 78.4/5.6 89.217.4 76.1/5.8 74.1/4.7 76.8/6.4 73.2/5.6 

Improvement 0 9.98% 5.25% 14.20% 25.50% 25.98% 28.27% 

Table 2: Average and standard deviation of the number of wafers assuming fixed whole wafer dicing. 
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Figure 5: Tradeoff curves between the probability of satisfying an order and the number of wafers for eMP testcase 
"Ind5" with production volumes generated from the (a) uniform and (b) normal distributions. 

basic ODSSWDP formulation we assumed that side-to
side cutting is done on whole wafers. As reported in [6], 
when production volumes are known, significant dicing 
yield improvement can be achieved by first partitioning 
each wafer into four equal quadrants, then dicing each 
quadrant independently using side-to-side cuts ([6], see 
Figure 6). To explore the advantages of quadrant-based 
methods in an on-line dicing environment we have also 
implemented quadrant-based versions of the two algo
rithms in Section 3.2. 

To compare the quality of the two on-demand dic
ing algorithms, we generated for each die 100 individ
ual customer orders with quantities coming from either 
a uniform or a normal distribution, and then randomly 
permuted their arrival order. Tables 3 and 4 give (in 
the columns for batch size of 1) the number of wafers 
required by the two algorithms for each of the 6 indus
try testcases when run on individual customer orders. 
To gauge the benefits of batching customer orders we 
also include in the two tables results obtained by run-

ning the algorithms on "batched orders" that combine 
groups of 10 or 100 consecutive customer orders. Fi
nally, to estimate the overhead in the number of wafers 
due to demand uncertainty during dicing, we ran the two 
algorithms on a single batch combining all orders (both 
algorithms reduce to running the integer programming 
SSWDP algorithm in Section 3.1 on the production vol
ume totals in this case, and therefore both result in the 
same number of wafers). 

The results show that, compared to the simple greedy 
algorithm, the history-based algorithm reduces wafer 
overhead by an average of 19.2% (respectively 8.9%) 
for the uniform (normal) distributions. This consistent 
improvement suggests that the proposed history track
ing scheme is effective in "learning" the demand distri
bution. As expected, regardless of the algorithm used, 
batching leads to significant reduction in wafer over
head, i.e., the required number of wafers required by 
on-demand dicing gets closer to the number of wafers 
required when knowing all orders in advance. Some-



how surprisingly, the results show that the more com
plex quadrant-based dicing does not help on-line dicing 
unless using large batch sizes. 

5 Conclusions and Future Work 

In this paper we have explored the use of multiple 
project wafers for production under demand uncertainty. 
We have proposed novel algorithms and methodologies 
for robust multi-project reticle floorplanning and on
demand wafer dicing, and have shown that our algo
rithms come close in solution quality to algorithms re
lying on a priori knowledge of production volumes. In 
ongoing work we investigate the use of multi-layer reti
cles for further reductions in manufacturing costs. 

References 

[1] http://cmp . imag. fr 

[2] M. Andersson, C. Levcopoulos and J. Gudmunds
son, "Chips on Wafers, or packing rectangles into 
grids," Computational Geometry 30, pp. 95-111, 
2005. Preliminary version in Proc. WADS ( Work
shop on Algorithms and Data Structures), August 
2003. 

[3] A. Balasinski, "Multi-layer and multi-product 
masks: cost reduction methodology," Proc. 24th 
BACUS Symp. on Photomask Technology, Proc. 
SPIE, Vol 5567, 2004, pp. 351-359. 

[4] S. Chen and E. C. Lynn, "Effective Placement of 
Chips on a Shuttle Mask," Proc. SPIE, Vol 5130, 
2003, pp. 681-688. 

[5] A. B. Kahng, I. I. Mandoiu, Q. Wang, X. Xu, and 
A. Zelikovsky, "Multi-Project Reticle Floorplan
ning and Wafer Dicing," Proc. Inti. Symp. on Phys
ical Design, pp. 70-77, April 2004. 

[6] A.B. Kahng, I.I. Mfuldoiu, X. Xu, and A. Ze
likovsky. Yield-driven mUlti-project reticle design 
and wafer dicing. In Proc. 25th Annual BACUS 
Symposium on Photomask Technology, 2005. 

[7] A. B. Kahng and S. Reda, "Reticle Floorplanning 
With Guaranteed Yield for Multi-Project Wafers," 
Proc. International Coriference On Computer De
sign, pp. 106-110, October 2004. 

[8] M. LaPedus, "The IC industry heading 
to the $10 million photomask?" Semi
conductor Business News, Oct. 7, 2002, 
http://www.siliconstrategies.com/ 
story/OEG20021007S0053 

[9] R. D. Morse, "Multiproject Wafers: not just for 
million dollar mask sets," Proc. SPIE, Vol 5043, 
2003, pp. 100-113. 

[10] D. Perrottet, J.-M. Buchilly, B. Richerzhagen, and 
W. Kroninger. "WaterJet-Guided Laser Achieves 
Highest Die Fracture Strength," Future Fab Inter
national 18, 2005, pp. 157-159. 

[11] G. Xu, R. Tian, D.F. Wong, and A. Reich, "Shuttle 
Mask Floorplanning," Proc. SPIE, Vol 5256, pp. 
185-194. 

[12] G. Xu, R. Tian, D. Z. Pan and M. D. F. Wong "A 
Multi-objective Floorplanner for Shuttle Mask Op
timization," Proc. SPIE, Vol 5567, 2004, pp. 340-
350. 

[13] G. Xu, R. Tian, D. Z. Pan and M. D. F. Wong 
"CMP Aware Shuttle Mask Floorplanning," Proc. 
Asia South Pacific Design Automation Conference 
(ASPDAC), 2005. 

[14] M.-C. Wu and R.-B. Lin, "A Comparative Study 
on Dicing of MUltiple Project Wafers", Proc. IEEE 
Symp. on VLSI, pp. 314-315, 2005. 

[15] M.-C. Wu and R.-B. Lin, "Reticle Floorplanning 
and Wafer Dicing for Multiple Project Wafers", 
Proc. Inti. Symposium on Quality Electronic De
sign, pp. 610-615, 2005. 



#Parts Whole Wafer 4 Quadrants 
Batch size 1 10 100 all 1 10 100 all 

Test Greedy 
indl 64 62 54 54 64 59 48 47 
ind2 356 289 268 253 356 272 250 239 
ind3 228 186 153 144 211 178 146 135 
ind4 72 68 57 51 69 62 50 45 
ind5 185 160 156 148 185 152 148 141 
ind6 86 84 76 76 86 83 70 67 

Overhead 36.5% 16.9% 5.2% 0 44.1% 19.6% 5.6% 0 

Test History-based 
indl 59 57 55 54 58 53 50 47 
ind2 301 272 282 253 294 264 267 239 
ind3 182 161 157 144 177 161 150 135 
ind4 63 58 53 51 61 57 52 45 
ind5 167 156 163 148 159 156 162 141 
ind6 80 77 79 76 81 75 73 67 

Overhead 17.3% 7.6% 8.6% 0 23.1% 13.6% 11.8% 0 

Table 3: On-demand wafer dicing results for six industry testcases with customer orders generated from a uniform 
distribution. 

#Parts Whole Wafer 4 Quadrants 
Batch size 1 10 100 all 1 10 100 all 

Test Greedy 
indl 215 183 177 177 215 176 167 167 
ind2 123 108 108 104 123 107 104 97 
ind3 375 354 338 322 372 361 325 306 
ind4 96 95 93 87 92 90 88 83 
ind5 118 107 90 83 118 101 88 80 
ind6 99 89 81 81 101 98 77 74 

Overhead 20.1% 9.6% 3.9% 0 26.5% 15.6% 5.2% 0 

Test History-based 
indl 193 177 185 177 187 174 175 167 
ind2 110 105 108 104 106 102 102 97 
ind3 354 344 339 322 346 343 326 306 
ind4 94 95 87 87 90 91 87 83 
ind5 107 103 85 83 99 96 86 80 
ind6 92 86 82 81 93 86 81 74 

Overhead 11.2% 6.5% 3.7% 0 14.1% 10.5% 6.2% 0 

Table 4: On-demand wafer dicing results for six industry testcases with customer orders generated from a normal 
distribution. 


