
A Reduced Complexity Algorithm for Minimizing N-Detect Tests

Kalyana R. Kantipudi and Vishwani D. Agrawal
Auburn University

Department of Electrical and Computer Engineering

Auburn, AL 36849, USA

kantikr@auburn.edu, vagrawal@eng.auburn.edu

Abstract – We give a new recursive rounding
linear programming (LP) solution to the problem of
N -detect test minimzation. This is a polynomial-
time solution that closely approximates the exact
but NP-hard integer linear programming (ILP)
solution. In ILP, a test is represented by a [0, 1]
integer variable and the sum of those variables
is minimized. Constraints ensure that each fault
has at least N tests with non-zero variables. Tra-
ditionally, the problem has been transformed to
less complex LP by treating the variables as real
numbers, regarded as probabilities with which they
can be rounded off to 0 or 1. This is known as the
randomized rounding method. In the new method,
the LP is recursively used, each time rounding the
largest variable to 1 and reducing the size of the
LP. The method is found to converge to a solution
in just a few LP runs and the result is usually better
than that of randomized rounding. Experimental
results include ISCAS85 benchmarks and a set of
multiplier circuits. N -detect tests for N = 1, 5 and
15 are considered. Also, a 10-vector single-detect
sequence for c6288 is given.

1. Introduction

N -detect tests are stuck-at fault tests such that
each fault is detected by at least N different test
vectors. N -detect tests are of interest because they
are found to be useful in improving the defect cover-
age [2, 3, 8, 18, 22]. Therefore, various test genera-
tion strategies have been developed [2, 14, 16, 19, 22]
to derive and apply such tests. The main disadvan-
tage of the N -detect tests is their size. Various op-
timization strategies based on the ideas of reverse
order N -detection fault simulation [19] and integer
linear programming [14] have been proposed. Basi-
cally, we must reduce the test application time by
reducing the test set size.

2. Background

Single-detect test sets are widely used and fa-
vored in the industry. The closeness of stuck-at

faults to actual defects, the ease of generating tests
for those faults and the availability of efficient test
generation strategies highly favor the stuck-at tests.
The recent demands for improved defect coverage
are based on experiments showing that the single-
detect test sets can only achieve up to 360-1000
dpm [18]. N -detect tests are suggested as an alter-
native to single-detect tests because of their ability
to improve the defect coverage and their ability to
be easily accommodated into the normal test gen-
eration flow. N -detect tests can be generated using
a normal single detection ATPG [2, 3, 12, 19, 22].

It is observed that detecting a fault multiple
times under different excitation and observation
conditions increases the probability of detecting the
physical defects associated with that fault site [8].
The cost will be increased test set size. The im-
provement in the defect coverage of N -detect tests
is often attributed to the increase in node-to-node
bridge fault coverage [3]. Among the defect cov-
erage metrics are excitation balance [5] and logic-
proximity bridge coverage [21]. Though there are
other types of tests with known defect coverage
qualities [9], N -detects have gained acceptance in
manufacturing environments and their minimiza-
tion is a relevant problem.

2.1. N-Detect Test Minimization by Integer Lin-
ear Programming (ILP) – Previous Work

Suppose we have a set of k vectors that detects
every fault at least N times. We use diagnostic fault
simulation, i.e., fault simulation without fault drop-
ping, to identify the vector subset Tj that detects a
fault j, for all j. We assign an integer-valued vari-
able tiε[0, 1] to ith vector such that ti = 1 means
that ith vector should be included in the minimal
vector set and ti = 0 means that ith vector should
be discarded. The problem of finding the minimal
N -detect set then reduces to assigning values to ti’s
so as to [14]:

minimize

k∑

i=1

ti (1)

c©2007 IEEE Page 1 of 6 Proc. 20th International Conf. VLSI Design, Jan. 2007

under following constraints:

∑

tiε{Tj}

ti ≥ Nj ,∀ faults j (2)

where Nj is the multiplicity of detection for the jth

fault. In general, Nj can be selected for individual
faults based on some criticality criteria or on the ca-
pability of the initial vector set. For simplicity, we
have assumed all Nj ’s to be equal. An integer lin-
ear program (ILP) solver [7] can then find the [0,1]
values of the variables {ti} that define a minimal
N -detect vector set. For N = 1, the ILP produces
the minimal single-detect test set [6, 11, 17]. Inte-
ger programming has also been applied to sequential
circuit test minimization [4].

Following theorems characterize the ILP method:
Theorem 1 [1]: The size of the largest clique

in the independence graph is a lower bound on the
single-detect test set size.

Here the independence graph is defined by faults
as nodes and independence of two faults by an undi-
rected edge between the corresponding nodes. In-
dependence of two faults simply means that they
cannot be detected by the same test.

Theorem 2 [14]: A lower bound on the size
of the N -detect test set is N times the size of the
largest clique in the independence graph.

Theorem 3 [14]: When the minimization is per-
formed over an exhaustive set of vectors of a combi-
national circuit, any ILP solution that satisfies ex-
pressions (1) and (2) is a minimum N-detect test.

3. Linear Programming (LP) Methods

The complexity of the integer linear program-
ming (ILP) is known to be exponential in terms of
the number of variables. We illustrate this by a
very simple three-vector three-fault (3V3F) exam-
ple. Consider three faults, f1, f2 and f3, and three
vectors. We assign a binary integer ti to vector i.
The single-detection problem is specified as follows:

Minimize t1 + t2 + t3 (3)

subject to constraints,

f1 : t1 + t2 ≥ 1

f2 : t2 + t3 ≥ 1 (4)

f3 : t3 + t1 ≥ 1

The solution space is shown in Figure 1. Any pair
of vectors is an optimum solution for this problem
and the three solutions are shown by black dots.
Four points, marked as 0 or 1, do not satisfy the
constraints 4 and one point, t1 = t2 = t3 = 1,
though it satisfies constraints is non-optimal. The

Non−optimum solution

Recursive rounding:

(0.5,0.5,0.5)

1

1

1
t 2

t
3

t
1

0

ILP solutions (optimum)

LP solution

Step 1
Step 2

Figure 1. ILP and LP solution space for the
three vector three fault (3V3F) example.

ILP basically must search among all vertices of the
unit cube (a unit hypercube in general) to find one
of the optimal solutions. Although a branch and
bound solution can be implemented, the ILP search
complexity remains exponential, as the number of
vertices for n vectors is 2n.

3.1. Randomized Rounding LP Solution

As observed by others [4], the above problem can
be converted into a linear programming (LP) prob-
lem if we redefine the variables t’s as real variables
in the range [0.0,1.0]. The LP solution, which can
be found in polynomial time and sometimes in linear
time, lies in the interior of the hypercube. For the
3V3F example, the LP solution t1 = t2 = t3 = 0.5
is shown in Figure 1. The problem now remains to
convert it into an ILP solution.

Notice that the LP solution for the sum in Equa-
tion 3 is 1.5. This is known to be a lower bound
for the exact ILP solution, which is 2 in this case.
The literature [4, 20] gives a randomized rounding
method. The real variables t’s are treated as prob-
abilities. We generate a random number xi uni-
formly distributed over the range [0.0,1.0] for each
variable ti. If ti ≥ xi then ti is rounded to 1, oth-
erwise it is rounded to 0. If the rounded variables
satisfy the constraints 4 then the rounded solution
is accepted, otherwise, rounding is again performed
starting from the original LP solution.

For many problems, randomized rounding works
efficiently. However, notice that for our 3V3F prob-
lem, t1 = t2 = t3 = 0.5, and therefore, all nodes
in Figure 1 are equally likely. Here, the random-
ized rounding is nothing but a random search. In
general, we found that the LP solution for the test
minimization problem contains a large number of
equal values. That makes the search almost ran-
dom. Since the number of tests is much larger than

Page 2 of 6

the size of the minimal test set, we find ourselves
conducting a random search in a very large solution
space, which contains very few optimal and many
non-optimal solutions (this last point is not illus-
trated by the small 3V3F example). As a result, it
may require many iterations of rounding before all
constraints are satisfied and even then the solution
generally turns out to be non-optimal.

3.2. Recursive Rounding (Present Contribution)

After unsuccessful attempts at using randomized
rounding for a solution for benchmark circuits, we
devised a new recursive rounding procedure:

1. Obtain an LP solution. Stop if each ti is either
0.0 or 1.0.

2. Round the largest ti to 1 and fix its value to
1.0. If several ti have the largest value, then
arbitrarily set only one to 1.0. Go to Step 1.

Step 1 guarantees that any solution thus obtained
satisfies all constraints. The maximum number of
LP runs in Step 1 is bounded by the minimized test
set size because each iteration selects at least one
vector. Of course, an absolute optimality is not
guaranteed.

For the 3V3F example, Step 1 gives t1 = t2 =
t3 = 0.5. In Step 2, we arbitrarily set t1 = 1.0.
Thus, the first and third constraints in 4 are satis-
fied. Repeating Step 1, we get either t2 = 1, t3 = 0
or t2 = 0, t3 = 1 or t2 = t3 = 0.5. In the last
case, Step 2 sets t2 = 1.0 and then Step 1 gives
t3 = 0.0. Thus, we always select two vectors, which
is an optimum solution.

To understand recursive rounding, let us reexam-
ine the 3V3F example in Figure 1. The LP solution
and the optimal ILP solutions form a tetrahedron.
Having found the apex (LP solution), which is an in-
terior point, we wish to get to any one of the points
at the base of the tetrahedron. The recursive round-
ing procedure involves successively projecting onto
one of the faces (by setting a variable to 1.0) and
thereby reducing the dimension of the solution space
by one each time. When the process terminates, the
LP solution is found at a corner of the reduced di-
mension hypercube. These LP solutions are shown
by the bold dashed line arrows in Figure 1.

This small example clearly shows the effective-
ness of recursive rounding, whose key feature is
the guaranteed convergence to a solution in a small
number (size of the minimal test set) LP runs. It is
observed that in each run, many 1’s are generated
by the LP, thereby reducing the number of LP runs
as well as the sizes of the repeated LP runs. For
most large circuits the total time was dominated by
the time taken by the first LP run. Although this

Table 1. Optimized single-detect tests for
ISCAS85 circuits.

Circ. Initial Lower Rand round Rec. round ILP
name vect. bound Vect. CPU Vect. CPU Vect. CPU

s s s

c432 608 34.7 66 1 36 2 35 4
c499 379 52.0 52 1 52 1 52 4
c880 1023 23.4 124 8 28 31 28 31h*
c1355 755 84.0 84 5 84 5 84 14
c1908 1055 106.0 109 7 107 8 107 29
c2670 959 84.0 96 9 84 9 84 49
c3540 1971 89.9 301 64 105 197 108 70m*
c5315 1079 62.7 223 121 72 464 74 70m*
c6288 243 10.2 92 33 18 78 18 6h*
c7552 2165 144.1 231 145 145 151 145 8035

* Incomplete run

example is too small to illustrate the limitations of
the method, in practice we have found it to work
well. In most cases, our ability to find the minimum
test is restricted by Theorem 3, which says that an
absolute minimality is guaranteed only if we start
with the exhaustive vector set. The following result
is easily derived:

LP lower bound ≤ ILP size ≤ Recur. LP size (5)

Because ILP size is optimum, whenever the recur-
sive LP test set size equals the LP lower bound, we
have the optimum solution. Otherwise, the differ-
ence between the recursive solution and the lower
bound provides the maximum possible deviation
from optimality.

4. Results

4.1. Single-Detect Tests

Our first results evaluate the relative merits
of recursive rounding against randomized round-
ing [4, 20] and ILP. Table 1 gives optimized test set
sizes for single-detection. The initial vectors in the
second column were obtained from an ATPG pro-
gram [15]. Enough vectors were generated so that
every fault was covered by at least five vectors. This
required between 5 to 8 complete test sets from the
ATPG. The industrial methods mentioned in earlier
papers [2, 3, 12, 22] can also be used to generate a
similar test set for further minimization.

As stated before, the minimum value of the sum
of variables provided by the LP is a lower bound
(sometimes unattainable) on the size of the absolute
minimum test set. This is given in the third column
of Table 1. The next six columns give optimized test
set sizes and CPU times (Sun Ultra-5) for random-
ized rounding, recursive rounding, and ILP, respec-
tively. In some cases, ILP runs did not complete.

Page 3 of 6

Table 2. Single-detect test optimization for
multipliers.

Mult. Initial Lower Rec. round. ILP (*incomplete)
size vect. bound Vect. CPU s Vect. CPU s

3 64 5.5 6 0.13 6 0.25
4 256 6.0 7 3 6 6
5 1024 6.0 8 10 7 56
6 1024 6.1 8 18 8 9704
8 1024 6.4 10 45 10 1007*

10 1024 6.9 12 112 12 1011*
12 1024 8.3 14 173 17 1016*
14 1024 8.2 14 428 15 1022*
16 1024 8.4 16 742 * *

Those are shown by asterisk (*) in the last column.
A simpler form of randomized rounding as described
by Hochbaum [11] was implemented. We notice that
recursive rounding solutions are almost the same as
ILP. For c3540 and c5315, ILP solution was subopti-
mal because the program did not complete. Recur-
sive rounding found better solutions. Randomized
rounding was suboptimal in several cases although
its CPU time was always the smallest. As stated in
the previous section, the recursive LP may iterate in
the worst case as many times as the size of the opti-
mized vectors. However, the CPU times in columns
5 and 7 show that not to be the case, considering
that randomized rounding does not iterate.

To study the complexity of the recursive round-
ing we used array multipliers of increasing sizes. As
shown in Table 2 the initial vector sets were ex-
haustive for multipliers up to five bits. For larger
multipliers 1,024 random vectors that could detect
all faults were used. ILP could not complete in sev-
eral cases and its test sets above 12-bits were larger
than those obtained by recursive rounding. Figure 2
shows the time complexities and the minimized test
set sizes. The exponential complexity of ILP is ev-
ident. CPU time limits had to be used and the
ILP solutions became worse than those of recursive
rounding.

4.2. N-Detect Tests

Table 3 gives optimized 5-detect test set sizes for
ISCAS85 benchmarls. The initial vectors in the sec-
ond column are the same as those used in the previ-
ous subsection for single-detection. Here again, we
had problems with excessive CPU times for the ILP.
The time complexity of recursive rounding is much
lower. The test set sizes are either equal to those
of ILP (optimum) or are very close. The usefulness
of determining how close the recursive solution by
the relation (5) is to the optimun can be verified.
For c7552, even without knowing the ILP solution,
we can say that the recursive rounding solution is
optimal. For c6288, the lower bound is 53 (rounded

0

20

40

60

80

100

120

140

160

180

200

3
 4
 5
 6
 7
 8
 9
 10
 11
 12

Size of Multiplier (bits)

C
P

U
 S

ec
on

ds

0

2

4

6

8

10

12

14

16

18

Te
st

 S
et

 S
iz

e

LP/Recur. Test Set

ILP Test Set

ILP (incomplete) Test Set

LP/Recur. Time

ILP Time

Figure 2. Quality and Complexity of recur-
sive LP and ILP solutions for multipliers.

Table 3. Optimized 5-detect tests for IS-
CAS85 circuits.

Circuit Initial Lower LP/rec. round. ILP (optimum)
name vect. bound Vect. CPU s Vect. CPU s

c432 608 196.4 197 1.0 197 1.0
c499 379 260.0 260 1.2 260 2.3
c880 1023 126.0 128 14.0 127 881.8
c1355 755 420.0 420 3.2 420 4.4
c1908 1055 543.0 543 4.6 543 6.9
c2670 959 477.0 477 4.7 477 7.2
c3540 1971 467.3 477 72.0 471 20008.5
c5315 1079 374.3 377 18.0 376 40.7
c6288 243 52.5 57 39.0 56 56000.0
c7552 2165 841.0 841 52.0 841 114.3

to integer) and the recursive rounding solution of
57, according to (5), is within 4 vectors from the
optimum. As is evident from columns 4 and 6, this
deviation from the optimum does not diverge when
the circuits become larger.

Table 4 gives the result of 15-detect tests. Al-
though the unoptimized vectors are generated, same
as before, by Atalanta [15], in some cases we re-
quired many more vectors to have at least 15 detec-
tions for every fault. These numbers are given in
column 2. Many ILP solutions (c880, c3540, c5315
and c6288) were obtained by setting time limits,
while recursive rounding LP always converged, giv-
ing test set sizes within one vector of ILP. For c3540
it was better than the time-limited ILP. The last
three columns compare the 15-detect results from
the literature [16]. The lower bound (L.B.) is sim-
ply a number that is 15 times the minimum reported
for single-detection [10].

CPU times (ILP and [16]) are for Sun Ultra-5,
except those with † (Ultra-10) and ‡ (Sun Fire-
280R-900MHz-Dual-Processor). Once again we
see that the new LP/recursive rounding result is
extremely close to the optimum (ILP) and its time

Page 4 of 6

Table 4. Optimized sizes of 15-detect tests for ISCAS85 benchmark circuits.
Circuit Initial Lower LP/recur. rounding (this paper) ILP [14] Heuristic [16] L.B.
name vectors bound Vectors CPU s Vectors CPU s Vectors CPU s [10]

c432 14882 429.5 430 83.5 430 444.8 505 292.1 405
c499 1850 780.0 780 17.8 780 24.9 793 153.2 780
c880 4976 318.9 322 94.5 321 521.4 338 229.6 195
c1355 2341 1260.0 1260 41.2 1260 52.1 1274 5674.6 1260
c1908 6609 1590.0 1590 150.4 1590 191.0 1648 1563.9 1590
c2670 8767 1248.0 1248 380.6 1248 607.8† 962 9357.6 660
c3540 4782 1400.5 1407 239.6 1411 1223.7 - - 1200
c5315 4318 921.9 924 494.3 924 1368.4† - - 555
c6288 731 130.1 134 250.5 134 1206.3 144 1813.8 90
c7552 6995 2370.0 2371 359.1 2370 346.1‡ - - 975

does not increase as rapidly with the increasing
size of the circuit.

5. Finding Minimal Tests for c6288

In this section, we give some minimal single-
detect test results on the ISCAS85 benchmark
c6288. This circuit is of interest because there ex-
ists a huge difference between its theoretical lower
bound of six and its practically achieved test set
of size 12 [10]. As shown in Figure 3, c6288 is a
15 × 16 matrix of full-adders (FA) and half-adders
(HA). There is prior work on finding minimum test
sets of regular array structures that deals with min-
imization of test sets of ripple carry adders using
the minimum test sets of their building blocks [13].
Initially, the minimum test sets for the 1-bit adders,
used to build the ripple carry adder, are derived. As
the carry-out of an adder passes on as the carry-in
of the next adder, the test sets are replicated such
that carry-out output bit of the adder is matched to
the carry-in input bit of the next adder. We observe
that faults of the ith cell propagated to its sum out-
put are immediately detected. Faults propagated to
the carry output are detected at the i + 1 sum out-
put irrespective of the input states of that block.
Unfortunately, c6288 is not a completely regular as
the ripple carry adder. So, we partitioned the circuit
into regular modules, found a minimum test set for
a module and tried to replicate it to get the entire
vector set for the circuit. Unlike the ripple-carry
adders, the outputs of the modules which are fed as
inputs to the other modules are not able to propa-
gate to their outputs. So we formulated an exper-
iment in which lower order multipliers of the same
architecture (Figure 3) are used along with the lin-
ear programming techniques to find minimum test
sets.

Using exhaustive vector sets, the minimal single-
detect required 6 vectors for four-bit multiplier and
7 vectors for six-bit multiplier. Two sets were gen-
erated for the four-bit circuit. These test sets are
carefully duplicated to create nearly 900 different

HA
 HA
 HA

FA

FA

FA

FA
 FA

FA
 FA

HA
FA

A
0
B
0
A
1
B
0
A
2
B
0
B
0
A
n
-
1

A
n
-
1
B
1

B
2
A
n
-
1

B
n
-
1
A
n
-
1

P
2
n
-
1
P
2
n
-
2
 P
n

P
0

P
1

P
2

P
3

P
n
+
1

A
0

B
1

B
2

A
0

A
0

B
3

1

1

n
-
2

1

2

1
n
-
2

2

n
-
2
 1

3
3

Figure 3. Structure of an n-bit multiplier.

test vectors for c6288, which are minimized using
ILP (CPU time over one day on Sun Ultra-5) to
obtain a test set of 10 vectors. This, we believe,
is the lowest ever achieved for the circuit c6288.
The vector sets are given in Table 5. Recursive
rounding found a 12 vector set in 301 seconds.

6. Conclusion

We have shown that test minimization for sin-
gle and N -detection can be efficiently done (in
polynomial-time) by the new procedure of linear
programming and recursive rounding. The quality
of this result is almost the same as that of integer
linear program (ILP), which is capable of exact min-
imality but has exponential computing complexity.
In practice, the quality of the ILP method is com-
promised due to limits on the CPU time. A recently
published [12] heuristic method solves this problem
as a set covering problem using polynomial-time re-
duction techniques, such as, essentiality, row dom-
inance and column dominance, adopted from logic
synthesis. A greedy heuristic breaks cyclic choices of
vectors. The method takes polynomial time and the
result is comparable to the ILP solution. However,
a comparison with the presented polynomial-time
LP/recursive rounding method is not yet available.
We do not know whether the 10-vector set we give

Page 5 of 6

Table 5. Single-detect tests for multipliers.
Vector No. Four-bit multiplier

Test set 1 Test set 2
1 0011 0110 1111 1100
2 0111 1101 1111 0011
3 1010 1111 1101 1111
4 1101 1111 1010 1111
5 1110 1100 0111 0110
6 1111 0011 0110 1101

Vector No. Six-bit multiplier
1 001101 110111
2 011011 001011
3 011011 110100
4 100100 101110
5 110110 110101
6 110111 011011
7 111111 111110

Vector No. Sixteen-bit multiplier, c6288
1 11011011011011011101111111111111
2 01101101101101101111111111111111
3 00000000000000000010111111111111
4 10110110110110111101111111111111
5 11111111111111111101010101010101
6 11111111111111110110101010101010
7 00111111111111011101010101010101
8 00111111111111011010101010101011
9 11101101101101100010111111111111
10 11011011011011001010101010101010

for c6288 is the ultimate minimum and the search
may continue.

References

[1] S. B. Akers, C. Joseph, and B. Krishnamurthy, “On
the Role of Independent Fault Sets in the Genera-
tion of Minimal Test Sets,” in Proc. International
Test Conf., 1987, pp. 1100–1107.

[2] M. E. Amyeen, S. Venkataraman, A. Ojha, and
S. Lee, “Evaluation of the Quality of N -Detect
Scan ATPG Patterns on a Processor,” in Proc. In-
ternational Test Conf., 2004, pp. 669–678.

[3] B. Benware, C. Schuermyer, S. Ranganathan,
R. Madge, P. Krishnamurthy, N. Tamarapali, K.-
H. Tsai, and J. Rajski, “Impact of Multiple-Detect
Test Patterns on Product Quality,” in Proc. Inter-
national Test Conf., 2003, pp. 1031–1040.

[4] P. Drineas and Y. Makris, “Independent Test
Sequence Compaction through Integer Program-
ming,” in Proc. International Conf. Computer De-
sign, 2003, pp. 380–386.

[5] J. Dworak, “An Analysis of Defect Detection and
Site Observation Counts for Weighted Random
Patterns and Compact Test Pattern Sets,” in Proc.
North Atlantic Test Workshop, 2006, pp. 183–190.

[6] P. F. Flores, H. C. Neto, and J. P. Marques-Silva,
“An Exact Solution to the Minimum Size Test Pat-
tern Problem,” ACM Trans. Design Autom. Elec-
tronic Sys., vol. 6, no. 4, pp. 629–644, oct 2001.

[7] R. Fourer, D. M. Gay, and B. W. Kernighan,
AMPL: A Modeling Language for Mathematical

Programming. South San Francisco, California:
The Scientific Press, 1993.

[8] M. R. Grimaila, S. Lee, J. Dworak, K. M. But-
ler, B. Stewart, H. Balachandran, B. Houchins,
V. Mathur, J. Park, L.-C. Wang, and M. R. Mer-
cer, “REDO–Random Excitation and Determinis-
tic Observation – First Commercial Experiment,”
in Proc. IEEE VLSI Test Symp., 1999, pp. 268–274.

[9] R. Guo, S. Mitra, E. Amyeen, J. Lee, S. Sivaraj,
and S. Venkataraman, “Evaluation of Test Metrics:
Stuck-at, Bridge Coverage Estimate and Gate Ex-
haustive,” in Proc. 24th IEEE VLSI Test Symp.,
2006, pp. 66–77.

[10] I. Hamzaoglu and J. H. Patel, “Test Set Com-
paction Algorithms for Combinational Circuits,”
IEEE Trans. on CAD, vol. 19, no. 8, pp. 957–963,
Aug. 2000.

[11] D. S. Hochbaum, “An Optimal Test Compres-
sion Procedure for Combinational Circuits,” IEEE
Trans. Computer-Aided Design, vol. 15, no. 10, pp.
1294–1299, oct 1996.

[12] Y. Huang, “On N -Detect Pattern Set Optimiza-
tion,” in Proc. 7th International Symp. on Qual-
ity Electronic Design (ISQED’06), Mar. 2006, pp.
445–450.

[13] S. Kajihara and T. Sasao, “On the Adders with
Minimum Tests,” in Proc. Asian Test Symp., 1997,
pp. 10–15.

[14] K. R. Kantipudi and V. D. Agrawal, “On the Size
and Generation of Minimal N -Detection Tests,” in
Proc. 19th International Conf. VLSI Design, 2006,
pp. 425–430.

[15] H. K. Lee and D. S. Ha, “On the Generation of
Test Patterns for Combinational Circuits,” Tech.
Report 12-93, Dept. of Elec. Eng., Virginia Poly.
Inst. and St. Univ., Blacksburg, Virginia, 1993.

[16] S. Lee, B. Cobb, J. Dworak, M. R. Grimaila, and
M. R. Mercer, “A New ATPG Algorithm to Limit
Test Set Size and Achieve Multiple Detections of
all Faults,” in Proc. Design Automation and Test
in Europe Conf., 2002, pp. 268–274.

[17] J. P. Marques-Silva, “Integer Programming Models
for Optimization Problems in Test Generation,” in
Proc. IEEE Asia-South Pacific Design Automation
Conf., 1998, pp. 481–487.

[18] E. J. McCluskey and C. W. Tseng, “Stuck-Fault
Tests vs. Actual Defects,” in Proc. International
Test Conf., 2000, pp. 336–343.

[19] I. Pomeranz and S. M. Reddy, “Forming N -
Detection Test Sets from One-Detection Test Sets
Without Test Generation,” in Proc. International
Test Conf., 2005, pp. 527–535.

[20] P. Raghavan and C. D. Thompson, “Randomized
Rounding: A Technique for Provably Good Algo-
rithms and Algorithmic Proofs,” Combinatorica,
vol. 7, no. 4, pp. 365–374, 1987.

[21] E. N. Tran, V. Kasulasrinivas, and S. Chakravarty,
“Silicon Evaluation of Logic Proximity Bridge Pat-
terns,” in Proc. 24th IEEE VLSI Test Symp., 2006,
pp. 78–83.

[22] S. Venkataraman, S. Sivaraj, E. Amyeen, S. Lee,
A. Ojha, and R. Guo, “An Experimental Study of
N -Detect Scan ATPG Patterns on a Processor,” in
Proc. IEEE VLSI Test Symp., 2004, pp. 23–29.

Page 6 of 6

