
Hardware Efficient Piecewise Linear Branch
Predictor

Jiajin Tu, Jian Chen, Lizy K.John

Department of Electrical and Computer Engineering
The University of Texas at Austin

 tujiajin@mail.utexas.edu, {jchen2,ljohn}@ece.utexas.edu

Abstract- Piecewise linear branch predictor has been
demonstrated to have superior prediction accuracy; however,
its huge hardware overhead prevents the predictor from being
practical in the VLSI design. This paper presents two novel
techniques targeting at reducing the hardware cost of the
predictor, i.e., history skewed indexing and stack-based
misprediction recovery. The former is designed to reduce the
number of ahead-pipelined paths by introducing the history
bits in the index of the weight table, while the latter employs
stacks instead of arrays of registers to recover predictor
states from misprediction. Experimental results show that
history skewed indexing helps the predictor improve
prediction accuracy by 5.8% at the same harware cost.
Moreover, the combination of these techniques can achieve
about 30% area reduction with less than 3% IPC loss
compared with the original piecewise linear predictor.

I. INTRODUCTION

Modern high-performance microprocessor design features
deep pipelining and wide instruction issue. These widely
used techniques have created tremendous impact on the
branch predictor from two sides. On one hand, branch
predictor is required to produce more accurate prediction
results. Although modern aggressive branch predictor like
2Bc-gskew [9] is able to achieve an average prediction
accuracy of around 96%, the 4% misprediction rate still
contributes a significant portion of performance loss
considering tens of instruction cycles of misprediction
penalty. On the other hand, the predictor has to be fast
enough to prevent performance degradation caused by long
prediction latency. Prediction overriding provides a viable
solution to multi-cycle predictors, however, this method
leads to more complicated fonrt-end pipeline design without
fully exploiting the potential of the complex predictor.

To enhance prediction accuracy, a new breed of branch
predictors based on neural network has been proposed,
which are demonstrated to be more accurate than its
saturating counter based counter part [1][7]. The perceptron
predictor achieves competitive prediction accuracy by
learning the behavior of branches via a simple linear neuron
[2]. However, it is unable to learn linearly inseparable
branches [3]. Moreover, it suffers from high prediction
latency [8], and can only be used as an overriding predictor.
The path-based neural branch predictor improves the
prediction latency by selecting a neuron dynamically along
the path to the branch and staggering computation in time [4].

Piecewise linear branch predictor generalizes the these two
types of neural branch predictors. It develops a set of linear
functions, one for each program path to the branch to be
predicted, to separate predicted taken from predicted not
taken branches [1]. With ahead-pipeline, the predictor is able
to make a prediction in one cycle. Unfortunately, piecewise
linear branch predictor is extremely hardware hungry due to
the three-dimensional integer array as well as the additional
registers and adders required for ahead pipeline. The huge
hardware overhead practically limits the width of the address
used to index the integer array to a very small number,
preventing the predictor from achieving its full potential.

This paper proposes a modified piecewise linear branch
predictor, which significantly reduces the hardware cost with
negligible performance degradations. The key idea of this
method is to use the combination of the branch address and
speculative global branch history bits to index the integer
array. Since these global history bits are known during
prediction, they can filter out unnecessary copies of
speculative predictor states in the ahead pipeline. In addition,
the hardware cost can be further reduced down by using a
circular stack to recover the branch predictor instead of using
the non-speculative checkpoint for all the predictor states.
Experimental result shows a substantial area reduction with
less than 3% IPC degradation compared with the original
piecewise linear predictor.

The rest of the paper is organized as follows: Section II
makes a brief review of the background about the piecewise
linear predictor. Section III presents the algorithm and
hardware implementation of the modified piecewise linear
branch predictor. Section IV provides the simulation and
implementation results. Section V concludes the paper.

II. BACKGROUND

The idealized piecewise linear predictor maintains a
three-dimensional memory array of integers (W), a global
history register (GHR) with history length h, and an array of
previous h branch addresses (GA). As shown in Figure 1, n
bits of current branch address activates one bank of memory
array, which will be further indexed by m bits of previous
branch addresses stored in GA. Then, the weights fetched
from the W will dot product with the corresponding bits in
GHR. The prediction is made according to the dot-product
result plus a bias weight representing the overall tendency of
the branch.

Figure 1.Block diagram of ideal piecewise linear predictor

The ahead-pipelined piecewise linear branch predictor
proposed in [1] keeps 2n copies of the speculative predictor
states to drive 2n possible predictions, where n is the width of
the branch address used to index the W array. These
speculative states are maintained in SR, which is a 2n ×h
two-dimensional shift array of small integers. SR[i,j] holds
the speculative partial sum for the jth branch in the future
whose address modulo 2n is i. In order to recover the
predictor state from misprediction, an additional
two-dimensional shift array R is required. R has the same
size and same structure as SR, but it is updated
non-speculatively when a branch is resolved.

Although the proposed structure in [1] gives the
opportunity for the predictor to make a prediction in one
cycle, it suffers from several disadvantages. First, the size of
both SR and R is in exponential relationship with n, which
practically limits n to be a very small number. This limitation
in effect confines the branch predictor in an operational
region that its performance is noticeably below what it can
achieve in theory. Second, the proposed ahead-pipeline is
inefficient in terms of hardware cost and power consumption.
The ahead-pipeline has to compute 2n partial sums in almost
every stage of the ahead-pipeline, although only one out of
these 2n computation results is useful. That means a large
amount of hardware is dedicated on computing the partial
sums for nothing. In addition, the non-speculative R is only
useful when there is a branch misprediction. However, it
needs to be updated every time a branch instruction is
resolved, wasting power for most of the time.

III. MODIFIED PIECEWISE LINEAR BRANCH PREDICTOR

This section presents the modified piecewise linear branch
predictor, which overcomes the afore-mentioned
disadvantages of the original one in [1]. Two major
techniques, i.e., history skewed indexing and recovering state
with stack, are employed to make the predictor more
hardware and power efficient.

A. History Skewed Indexing
The idea of history skewed indexing is to use the

combination of branch address and history pattern to index

into W array, as oppose to using branch address only in the
original piecewise linear predictor. The mapping of index
after combination is as follows:

index = (b_addr << his_bit)+(history&(2his_bit-1)) mod 2n

where b_addr, history, his_bit, and n stand for branch
address, global history register, number of history bits in
index, and the width of index respectively. Note that his_bit
is smaller than n and the width of index can remain
unchanged after the combination. The detailed algorithm of
the history skewed indexing is as follows.

Algorithm 1. Piecewise Linear Branch Predictor with
History Skewed Indexing

function prediction (b_addr, history, his_bit: integer):boolean
begin
 i:= (b_addr<<his_bit) +
 (history&((1<<his_bit)-1)) mod 2n;

j:= (b_addr<<his_bit) +
 (history&((1<<his_bit)-1)) mod 2m;

k:= b_addr mod 2n-his_bit ;
output: = SR[k,h]+W[i,j,0];
if output >= 0 then
 prediction := taken;
else
 prediction := not_taken;
endif
for i in 0..(2n-his_bit-1) in parallel do
 for p in 1..h in parallel do
 ap = h – p;
 w_index=(i<<his_bit)+(history&((1<<his_bit)-1));
 if prediction == taken then
 SR’[i, ap+1] := SR[i, ap] + W[w_index, j, p];
 else
 SR’[i, ap+1] := SR[i, ap] - W[w_index, j, p];

 endif
 endfor
 SR[i, 0..h] :=SR’[i,0..h];
 SR[i, 0] := 0;
 endfor
 history := (history<<1) | prediction;
end

The main advantage of introducing history bits into index
is that it decouples the size of SR(R) from the index width n.
Since there are only portion of index coming from branch
address, the size of SR and R can be substantially smaller
than the original one. As shown in the algorithm above, the
number of ahead-pipeline paths is reduced to 2n-his_bit, which
means at least half of the area of SR(R) can be saved with
history skewed indexing. Figure 2 shows the ahead-pipeline
structure for piecewise linear predictor when n=2. The
original one in [1] has four ahead-pipeline paths, however,
the number of paths is reduced to two with one bit history
skewed indexing. The introduced history bit is used to select
the weights from the W array through a 4-to-2 multiplexer.

History skewed indexing also helps to improve the
prediction accuracy of practical piecewise linear predictor.

The history bit brings path information to the index,
therefore can reduce aliasing in a way similar with
McFarling’s gshare predictor [6]. Moreover, piecewise linear
predictor delivers the highest prediction accuracy when m
and n are approximately the same [1], yet it is extremely
difficult to achieve it in practice due to hardware constraints.
History skewed indexing, however, opens the possibility to
tune m and n flexibly to achieve the best performance that
piecewise linear predictor has to offer.

Figure 2 Ahead-pipeline in piecewise linear predictor with n=2. (a).
Original ahead-pipeline proposed in [1]. (b). Ahead-pipeline with 1
bit history skewed indexing.

In practice, speculative global history is used due to the
latency between branch prediction and resolve. Therefore, a
small speculative global history register is required for this
technique.

B. Recovering Predictor with Stack
The purpose of R is to restore the SR to the

non-speculative start point from misprediction. Although it
has the capability to restore the state in one clock cycle, it
has a large area penalty and wastes power for most of the
time considering the high accuracy of the predictor.

The basic idea of recovering predictor state with stack is
based on the observation shown in the Figure 3. Assume the
global history length h is 4, and each branch is predicted as
taken. Wi(i=1,2,3,4) is the weight for ith branch instruction in
the speculative path. On a misprediction, the state of SR can
be recovered in the reversed order by subtracting the weights
cycle by cycle. Therefore, R and associated adders are not
necessary for misprediction recovery, which can further
reduce area and avoid unnecessary power consumptions
without losing prediction accuracy. The following
subsections present the components required for this solution
as well as the analysis of its disadvantages.

Figure 3. Misprediction recovery with multiple cycles. The solid
arrow shows the forward SR update path during prediction; the
dashed arrow shows the backward SR update path during recovery.

1) Stack for the Branches in Speculative Path

In the backward calculation for prediction recovery, the
branch address in the speculative path is used as the index of
W again, but in reversed sequence. As shown in Figure 3, the
address of branch 4 indexes into W array for W4, followed by
branch 3 for W3 and so on. This First In Last Out (FILO)
restore sequence can be captured by a stack structure. In the
worst case each instruction in the speculative path is branch
instruction, which should be pushed onto the stack during
prediction time. Therefore, the depth of the stack d depends
on the number of in-flight branch instructions between
instruction fetch and branch resolve. The content of each
stack entry is composed of branch address and the
information required for misprediction recovery. Because the
bit number of branch address used as indices for W is
bounded by MAX(m,n) , q (q = MAX(m,n)) least significant
bits of branch address should be stored in the stack. Two
additional bits are needed, one for the prediction result of the
corresponding branch, and the other for whether W array
training is required. As a result, the size of the stack is (q+2)
× d bit. It should be noted that these information also need to
be stored in memory cells even in the original
ahead-pipelined piecewise linear predictor proposed in [1].
Therefore, by substituting those memory cells with the stack,
it will not contribute extra hardware cost.

Figure 5. Stack operations in prediction and recovery

Figure 5 shows the detailed stack operations for both
prediction and recovery. The stack maintains two pointers,
i.e., tail pointer and head pointer. Each time a branch is

predicted, the data will be pushed onto the stack and the tail
pointer will be incremented by one. When the branch that the
head pointer points to is resolved and the prediction is
correct, the head pointer is incremented by one. Otherwise, if
it is a misprediction, the head pointer remains in its original
position, and the entries between head and tail are popped up
cycle by cycle. Therefore, the stack is a circular stack.

2) Structure for Backward Calculation

The ahead-pipeline has to be modified in order to support
for backward calculation. Since forward prediction and
backward recovery does not happen simultaneously, one
adder can be used for both operations. Additional control
logic is required to switch between the two operational
modes. Figure 6 shows the logic structure between any two
neighboring SR array elements, SR[i,j] and SR[i,j+1] (i=1..n
and j=1..h-1). When the predictor is in the forwarding
prediction mode, MUX1 selects the data from forward path
L1. Otherwise, backward path L2 is chosen. The prediction
result, either from the predictor or from the stack, is used to
determine whether addition or subtraction is required. Since
the backward calculation is opposite to the forward
calculation, the prediction result from stack needs to be
complemented.

Figure 6 Modified ahead-pipeline supporting for backward
calculation. Note that subtraction can be implemented by
complementing the weight and setting the carry in port of the adder
to one.

The critical path for the forward calculation of the
ahead-pipelined piecewise linear predictor is composed of a
table lookup, a multiplexer, an adder, and a comparator. On
the other hand, the critical path of the proposed recovery
structure includes a table lookup, one inverter, two
multiplexers, and an adder. Note that the access to stack can
be hidden with the rest of recovery operations , and that the
overall delay of one inverter and one multiplexer is less than
a comparator. Therefore, the proposed recovery technique
will not lead to performance degradation of the
ahead-pipeline.

3) Penalty of Stack Based Misprediction Recovery

With stack based misprediction recovery, the number of
recovery cycles dynamically depends on the number of
in-flight branch instructions between instruction fetch and

branch resolve. Therefore, it may take multiple cycles to
restore the predictor to the latest non-speculative state, as
opposed to one cycle with the recovery scheme in [1]. In
other words, stack based misprediction recovery could
increase the branch misprediction penalty and lead to
degradation of instruction-per-cycle (IPC) rate. Fortunately,
the IPC loss due to the increase of misprediction penalty is
small considering the high prediction accuracy of piecewise
linear predictor. Only less than 3% IPC loss is observed in
the experiment.

C. Combining Two Techniques
While history skewed indexing reduces the number of

forward pipeline paths on both SR and R arrays, the stack
based misprediction recovery completely removes the
pipeline of R. The combination of these two techniques can
further reduce the area requirement of the predictor. In
addition, the potential prediction accuracy improvement with
history skewed indexing can help to alleviate the IPC loss
caused by stack based misprediction recovery.

IV. EXPERIMENTAL RESULTS

This section describes the methods used to evaluate the
proposed techniques. The analysis for the obtained data is
presented as well.

A. Experiment Setup
The experiment is composed of two parts, i.e.,

architectural level simulation and hardware implementation.
The former part is used to analyze the performance of the
proposed techniques, and the latter is used to evaluate the
effectiveness of area reduction.

The simulation is based on SimpleScalar [10] configured
to support Alpha ISA. The microarchicture parameters of the
simulated microprocessor are listed in Table I. All 12 SPEC
CPU2000 integer benchmarks are selected for simulation.
Data are collected after running 100 million instructions for
each benchmark.

TABLE I
MICROARCHITECTURAL CONFIGURATION OF THE PROCESSOR SIMULATED

Parameter Configuration
L1 I-Cache 16KB, 64Byte block, 2-way

L1 D-Cache 16KB, 64Byte block, 4-way

L2 Unified Cache 1MB, 64Byte block, 4-way

Decode/Issue Width 8

L2 hit latency 7 cycles

L2 miss latency 200 cycles

We also implemented piecewise linear predictors with

Verilog HDL, and mapped them to TSMC 0.18µm standard
cell library with Synopsys Design Compiler. The logic
synthesis was performed in worst corner case with wireload
model and 7ns clock timing constraint. The area data are
collected according to the report of DesignCompiler.
Although the area information reported in Design Compiler

3.1%

3.2%

3.3%

3.4%

3.5%

3.6%

3.7%

3.8%

3.9%

0 1 2 3 4 5
History Bit in Index

(a)

Av
er

ag
e

M
is

pr
ed

ic
tio

n
Ra

te

n=6
n=5
n=4
n=3
n=2

4.2%

4.4%

4.6%

4.8%

5.0%

5.2%

5.4%

5.6%

5.8%

0 1 2 3 4 5
History Bit in Index

(b)

Av
er

ag
e

M
is

pr
ed

ic
tio

n
Ra

te

n=6
n=5
n=4
n=3
n=2

Figure 7 (a) Average misprediction rate of ideal piecewise linear predictor with history skewed indexing . (b)Average misprediction rate of
ahead-pipelined piecewise Linear Predicctor with History Skewed Indexing. In both (a) and (b), h=16, and m=8.

0

0.01

0.02

0.03

0.04

0.05

0.06

bzip
2 gc

c
vorte

x
mcf

parse
r

gzip vpr

perlb
mk eo

n
craf

ty gap
twolf

ari
thm

atic
mean

Benchmarks

M
is

pr
ed

ic
tio

n
Ra

te

m=9,n=3,his_bit=0
m=8,n=4,his_bti=1
m=7,n=5,his_bit=2
m=6,n=6,his_bit=3

0

0.2

0.4

0.6

0.8

1

1.2

bzip
2

gcc
vo

rte
x mcf

parse
r

gzip vp
r

perlb
mk

eon
cra

fty gap
tw

olf

hym
on

ic
mean

Benchmarks

N
or

m
al

iz
ed

 IP
C

PLP
PLP w ith stack
PLP w ith history indexing
PLP w ith history indexing and stack

Figure 8. Misprediction rate per benchmark. The size of W array is Figure 9. Normalized IPC rate. The size of W array is 10x212bit,
10x212bit, and h=16 for all four configurations. the number of ahead-pipeline path is 8, and h=16 for all cases

is only rough estimation of the final area in silicon, it
provides enough precision for comparison between circuits
with similar structures.

B. Experimental Result Analysis
Figure 7 shows the average misprediction rate of

piecewise linear predictor with history skewed indexing. As
the history bit increases, the misprediction rate of idealized
one decreases, which means history skewed indexing helps
improve prediction accuracy. However, the misprediction
rate of ahead-pipelined predictor increases as the history bit
in index increases. A total 8.6% misprediction rate
degradation is observed as the history index bit number
goes from zero to five. The reason for this is that the history
bits in index are speculative in ahead-pipelined predictor, as
opposed to non-speculative in idealized one.

Figure 8 shows the misprediction rate of ahead-pipelined
piecewise linear predictor across different benchmarks. The

hardware budget, including the size of W array and the
number of paths in ahead-pipeline (8 in this case), is the
same in all configurations. On average, the misprediction
rate decreases by 5.3% as the number of history bits in
index increases from 0 to 3. That means the benefit from
balancing m and n removes the prediction accuracy
degradation caused by speculative history bits in index.

Figure 9 highlights the effect of the proposed techniques
on normalized IPC rate. Stack based misprediction recovery
alone leads to 2% IPC loss compared with the original
predictor. The IPC loss is reduced to 1.4% when both of the
proposed techniques are employed. The reason is that with
history skewed indexing, the predictor is tuned to be more
accurate with the same hardware cost.

Table II summarizes the circuit area of piecewise linear
predictor after logic synthesis. The data are normalized to
the area of original piecewise linear predictor with the

configuration of h=7,m=4,n=3. It should be noted that the
percentage of area reduction depends on the ratio of the area
dedicated for the ahead-pipeline versus the area for the W
array. Since both of them are linearly proportional to h, the
increase of h has no effect on the percentage of area
reduction. However, as m increases, the size of W would
increase exponentially and the size of SR remains the same.
Therefore, the percentage of area reduction will decrease.

TABLE II
NORMALIZED AREA OF PIECEWISE LINEAR PREDICTOR

Normalized Area
Configuration

Original
Stack
Only

Stack and
History*

Max. area
Reduction

h=7,m=4,n=3 1 0.79 0.68 32.0%

h=10,m=4,n=3 1.38 1.10 0.93 32.6%

h=7,m=5,n=3 1.72 1.37 1.28 25.6%

h=10,m=5,n=3 2.43 1.95 1.84 24.3%

*Note that only 1 history bit is included in the index.

TABLE III
NORMALIZED AVERAGE IPC RATE

Normalized IPC
Configuration

Original
Stack
Only

Stack and
History*

Max.IPC
Reduction

h=10,m=4,n=3 0.992 0.967 0.963 2.9%

h=10,m=5,n=3 1 0.976 0.975 2.5%

*Note that only 1 history bit is included in the index.

Table III shows the normalized average IPC rate for the
hardware implemented predictors. Due to the small value of
h and m, the prediction accuracy of these predictors is not as
high as those in Figure 8. Therefore, the IPC degradation
caused by the introduction of stack would be higher.
However, the IPC rate decreases only by about 3%. In
particular, for a piecewise linear predictor with h=10, m=4
and n=3, the combination of the two techniques proposed in
the paper achieves about 30% area reduction with 2.9% IPC
loss.

V. CONCLUSION

This paper presents two techniques that can make the
piecewise linear branch predictor hardware efficient in
VLSI design, meanwhile maintaining its prediction
accuracy. History skewed indexing is designed to reduce
the number of ahead-pipelined paths by introducing the
history bits in the index of weight table. It decouples the
number of ahead-pipeline paths from the number of index
bits, and opens the possibility to tune the width of the
weight table indices for higher accuracy without additional
hardware cost. Stack based misprediction recovery employs
stacks to restore the predictor from misprediction. It
completely removes the inefficient pipeline used for
misprediction recovery without losing prediction accuracy.
Experimental results show that history skewed indexing is

able to improve the prediction accuracy by 5.8% without
additional hardware cost. For a particular configuration, the
combination of these techniques can achieve about 30% area
reduction with less than 3% IPC loss compared with the
original piecewise linear predictor.

REFERENCES

[1] Daniel A.Jimenez, “Piecewise linear branch predictor,” Proceedings
of the 32nd International Symposium on Computer Architecture
(ISCA-32), June 2005.

[2] Daniel A.Jimenez and Calvin Lin, “Dynamic branch prediction with
perceptrons,” Proceedings of the 7th International Symposium on
High Performance Computer Architecture (HPCA-7), pp.197-206, Jan.
2001.

[3] David Tarjan and Kevin Skadron, “Revisiting the Perceptron Predictor
Again,” Technical Report CS-2004-28, University of Virginia
Department of Computer Science, Sept.2004.

[4] Daniel A. Jimenez, “Fast path-based neutral branch prediction,”
Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, pp.43-52, Feb. 2002.

[5] A.Seznec, “Redundant History Skewed Perceptron Predictor: pushing
limits on global history branch predictors,” Technical Report 1554,
IRISA, Sept. 2003.

[6] S.McFarling, “Combining Branch Predictors,” Technical Report
TN-36, Digtial Western Research Laboratory, June 1993.

[7] T.Y-.Yeh and Y.N.Patt, “A Comparison of Dynamic Branch
Predictors that use Two Levels of Branch History,” Proceedings of the
20th Annual International Symposium on Computer Architecture,
pp.257-266, 1993.

[8] Oswaldo Cadenas, Graham Megson and Daniel Jones, “A New
Organization for a Perceptron-Based Branch Predictor and Its FPGA
Implementation, ” IEEE Computer Society Annual Symposium on
VLSI: New Frontiers in VLSI Design (ISVLSI'05), pp. 305-306, 2005.

[9] Andr´e. Seznec, Stephen Felix, Venkata Krishnan, and Yiannakakis
Sazeides. “Design tradeoffs for the Alpha EV8 conditional branch
predictor,” In Proceedings of the 29th InternationalSymposium on
Computer Architecture, May 2002.

[10] Doug Burger and Todd M. Austin., “The SimpleScalar tool set
version 2.0,” Technical Report 1342, Computer Sciences Department,
University of Wisconsin, June 1997.

	1) Stack for the Branches in Speculative Path
	2) Structure for Backward Calculation
	3) Penalty of Stack Based Misprediction Recovery

