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Abstract- Piecewise linear branch predictor has been 
demonstrated to have superior prediction accuracy; however, 
its huge hardware overhead prevents the predictor from being 
practical in the VLSI design. This paper presents two novel 
techniques targeting at reducing the hardware cost of the 
predictor, i.e., history skewed indexing and stack-based 
misprediction recovery. The former is designed to reduce the 
number of ahead-pipelined paths by introducing the history 
bits in the index of the weight table, while the latter employs 
stacks instead of arrays of registers to recover predictor 
states from misprediction. Experimental results show that 
history skewed indexing helps the predictor improve 
prediction accuracy by 5.8% at the same harware cost. 
Moreover, the combination of these techniques can achieve 
about 30% area reduction with less than 3% IPC loss 
compared with the original piecewise linear predictor. 

I. INTRODUCTION 

Modern high-performance microprocessor design features 
deep pipelining and wide instruction issue. These widely 
used techniques have created tremendous impact on the 
branch predictor from two sides. On one hand, branch 
predictor is required to produce more accurate prediction 
results. Although modern aggressive branch predictor like 
2Bc-gskew [9] is able to achieve an average prediction 
accuracy of around 96%, the 4% misprediction rate still 
contributes a significant portion of performance loss 
considering tens of instruction cycles of misprediction 
penalty. On the other hand, the predictor has to be fast 
enough to prevent performance degradation caused by long 
prediction latency. Prediction overriding provides a viable 
solution to multi-cycle predictors, however, this method 
leads to more complicated fonrt-end pipeline design without 
fully exploiting the potential of the complex predictor.  

To enhance prediction accuracy, a new breed of branch 
predictors based on neural network has been proposed, 
which are demonstrated to be more accurate than its 
saturating counter based counter part [1][7]. The perceptron 
predictor achieves competitive prediction accuracy by 
learning the behavior of branches via a simple linear neuron 
[2]. However, it is unable to learn linearly inseparable 
branches [3]. Moreover, it suffers from high prediction 
latency [8], and can only be used as an overriding predictor. 
The path-based neural branch predictor improves the 
prediction latency by selecting a neuron dynamically along 
the path to the branch and staggering computation in time [4]. 

Piecewise linear branch predictor generalizes the these two 
types of neural branch predictors. It develops a set of linear 
functions, one for each program path to the branch to be 
predicted, to separate predicted taken from predicted not 
taken branches [1]. With ahead-pipeline, the predictor is able 
to make a prediction in one cycle. Unfortunately, piecewise 
linear branch predictor is extremely hardware hungry due to 
the three-dimensional integer array as well as the additional 
registers and adders required for ahead pipeline. The huge 
hardware overhead practically limits the width of the address 
used to index the integer array to a very small number, 
preventing the predictor from achieving its full potential.  

This paper proposes a modified piecewise linear branch 
predictor, which significantly reduces the hardware cost with 
negligible performance degradations. The key idea of this 
method is to use the combination of the branch address and 
speculative global branch history bits to index the integer 
array. Since these global history bits are known during 
prediction, they can filter out unnecessary copies of 
speculative predictor states in the ahead pipeline. In addition, 
the hardware cost can be further reduced down by using a 
circular stack to recover the branch predictor instead of using 
the non-speculative checkpoint for all the predictor states. 
Experimental result shows a substantial area reduction with 
less than 3% IPC degradation compared with the original 
piecewise linear predictor.   

The rest of the paper is organized as follows: Section II 
makes a brief review of the background about the piecewise 
linear predictor. Section III presents the algorithm and 
hardware implementation of the modified piecewise linear 
branch predictor. Section IV provides the simulation and 
implementation results. Section V concludes the paper. 

II. BACKGROUND 

The idealized piecewise linear predictor maintains a 
three-dimensional memory array of integers (W), a global 
history register (GHR) with history length h, and an array of 
previous h branch addresses (GA). As shown in Figure 1, n 
bits of current branch address activates one bank of memory 
array, which will be further indexed by m bits of previous 
branch addresses stored in GA. Then, the weights fetched 
from the W will dot product with the corresponding bits in 
GHR. The prediction is made according to the dot-product 
result plus a bias weight representing the overall tendency of 
the branch.  

 



 
Figure 1.Block diagram of ideal piecewise linear predictor  

The ahead-pipelined piecewise linear branch predictor 
proposed in [1] keeps 2n copies of the speculative predictor 
states to drive 2n possible predictions, where n is the width of 
the branch address used to index the W array. These 
speculative states are maintained in SR, which is a 2n ×h 
two-dimensional shift array of small integers. SR[i,j] holds 
the speculative partial sum for the jth branch in the future 
whose address modulo 2n is i. In order to recover the 
predictor state from misprediction, an additional 
two-dimensional shift array R is required. R has the same 
size and same structure as SR, but it is updated 
non-speculatively when a branch is resolved.  

Although the proposed structure in [1] gives the 
opportunity for the predictor to make a prediction in one 
cycle, it suffers from several disadvantages. First, the size of 
both SR and R is in exponential relationship with n, which 
practically limits n to be a very small number. This limitation 
in effect confines the branch predictor in an operational 
region that its performance is noticeably below what it can 
achieve in theory. Second, the proposed ahead-pipeline is 
inefficient in terms of hardware cost and power consumption. 
The ahead-pipeline has to compute 2n partial sums in almost 
every stage of the ahead-pipeline, although only one out of 
these 2n computation results is useful. That means a large 
amount of hardware is dedicated on computing the partial 
sums for nothing. In addition, the non-speculative R is only 
useful when there is a branch misprediction. However, it 
needs to be updated every time a branch instruction is 
resolved, wasting power for most of the time.  

III. MODIFIED PIECEWISE LINEAR BRANCH PREDICTOR 

This section presents the modified piecewise linear branch 
predictor, which overcomes the afore-mentioned 
disadvantages of the original one in [1]. Two major 
techniques, i.e., history skewed indexing and recovering state 
with stack, are employed to make the predictor more 
hardware and power efficient.   

A. History Skewed Indexing 
The idea of history skewed indexing is to use the 

combination of branch address and history pattern to index 

into W array, as oppose to using branch address only in the 
original piecewise linear predictor. The mapping of index 
after combination is as follows: 

index = (b_addr << his_bit)+(history&(2his_bit-1)) mod 2n 

where b_addr, history, his_bit, and n stand for branch 
address, global history register, number of history bits in 
index, and the width of index respectively. Note that his_bit 
is smaller than n and the width of index can remain 
unchanged after the combination. The detailed algorithm of 
the history skewed indexing is as follows.   

Algorithm 1. Piecewise Linear Branch Predictor with 
History Skewed Indexing 

function prediction (b_addr, history, his_bit: integer):boolean       
begin 
 i:= (b_addr<<his_bit) + 
       (history&((1<<his_bit)-1)) mod 2n; 

j:= (b_addr<<his_bit) + 
       (history&((1<<his_bit)-1)) mod 2m; 

k:= b_addr mod 2n-his_bit ; 
output: = SR[k,h]+W[i,j,0]; 
if output >= 0 then 
 prediction := taken; 
else 
 prediction := not_taken; 
endif 
for i in 0..( 2n-his_bit-1) in parallel do 
  for p in 1..h in parallel do 
 ap = h – p; 
    w_index=(i<<his_bit)+(history&((1<<his_bit)-1)); 
    if prediction == taken then 
   SR’[i, ap+1] := SR[i, ap] + W[w_index, j, p]; 
    else 
   SR’[i, ap+1] := SR[i, ap] - W[w_index, j, p]; 

     endif 
   endfor 
   SR[i, 0..h] :=SR’[i,0..h]; 
   SR[i, 0] := 0; 
    endfor 
    history := (history<<1) | prediction;  
end 
 

The main advantage of introducing history bits into index 
is that it decouples the size of SR(R) from the index width n. 
Since there are only portion of index coming from branch 
address, the size of SR and R can be substantially smaller 
than the original one. As shown in the algorithm above, the 
number of ahead-pipeline paths is reduced to 2n-his_bit, which 
means at least half of the area of SR(R) can be saved with 
history skewed indexing. Figure 2 shows the ahead-pipeline 
structure for piecewise linear predictor when n=2. The 
original one in [1] has four ahead-pipeline paths, however, 
the number of paths is reduced to two with one bit history 
skewed indexing. The introduced history bit is used to select 
the weights from the W array through a 4-to-2 multiplexer.  

History skewed indexing also helps to improve the 
prediction accuracy of practical piecewise linear predictor. 



The history bit brings path information to the index, 
therefore can reduce aliasing in a way similar with 
McFarling’s gshare predictor [6]. Moreover, piecewise linear 
predictor delivers the highest prediction accuracy when m 
and n are approximately the same [1], yet it is extremely 
difficult to achieve it in practice due to hardware constraints. 
History skewed indexing, however, opens the possibility to 
tune m and n flexibly to achieve the best performance that 
piecewise linear predictor has to offer.  

 
Figure 2 Ahead-pipeline in piecewise linear predictor with n=2. (a). 
Original ahead-pipeline proposed in [1]. (b). Ahead-pipeline with 1 
bit history skewed indexing.  

In practice, speculative global history is used due to the 
latency between branch prediction and resolve. Therefore, a 
small speculative global history register is required for this 
technique.    

B. Recovering Predictor with Stack 
The purpose of R is to restore the SR to the 

non-speculative start point from misprediction. Although it 
has the capability to restore the state in one clock cycle, it 
has a large area penalty and wastes power for most of the 
time considering the high accuracy of the predictor.  

The basic idea of recovering predictor state with stack is 
based on the observation shown in the Figure 3. Assume the 
global history length h is 4, and each branch is predicted as 
taken. Wi(i=1,2,3,4) is the weight for ith branch instruction in 
the speculative path. On a misprediction, the state of SR can 
be recovered in the reversed order by subtracting the weights 
cycle by cycle. Therefore, R and associated adders are not 
necessary for misprediction recovery, which can further 
reduce area and avoid unnecessary power consumptions 
without losing prediction accuracy. The following 
subsections present the components required for this solution 
as well as the analysis of its disadvantages.   

 
Figure 3. Misprediction recovery with multiple cycles. The solid 
arrow shows the forward SR update path during prediction; the 
dashed arrow shows the backward SR update path during recovery.   

1) Stack for the Branches in Speculative Path 

In the backward calculation for prediction recovery, the 
branch address in the speculative path is used as the index of 
W again, but in reversed sequence. As shown in Figure 3, the 
address of branch 4 indexes into W array for W4, followed by 
branch 3 for W3 and so on. This First In Last Out (FILO) 
restore sequence can be captured by a stack structure. In the 
worst case each instruction in the speculative path is branch 
instruction, which should be pushed onto the stack during 
prediction time. Therefore, the depth of the stack d depends 
on the number of in-flight branch instructions between 
instruction fetch and branch resolve. The content of each 
stack entry is composed of branch address and the 
information required for misprediction recovery. Because the 
bit number of branch address used as indices for W is 
bounded by MAX(m,n) , q (q = MAX(m,n)) least significant 
bits of branch address should be stored in the stack. Two 
additional bits are needed, one for the prediction result of the 
corresponding branch, and the other for whether W array 
training is required. As a result, the size of the stack is (q+2) 
× d bit. It should be noted that these information also need to 
be stored in memory cells even in the original 
ahead-pipelined piecewise linear predictor proposed in [1]. 
Therefore, by substituting those memory cells with the stack, 
it will not contribute extra hardware cost.  

 
Figure 5. Stack operations in prediction and recovery 

Figure 5 shows the detailed stack operations for both 
prediction and recovery. The stack maintains two pointers, 
i.e., tail pointer and head pointer. Each time a branch is 



predicted, the data will be pushed onto the stack and the tail 
pointer will be incremented by one. When the branch that the 
head pointer points to is resolved and the prediction is 
correct, the head pointer is incremented by one. Otherwise, if 
it is a misprediction, the head pointer remains in its original 
position, and the entries between head and tail are popped up 
cycle by cycle. Therefore, the stack is a circular stack. 

2) Structure for Backward Calculation 

The ahead-pipeline has to be modified in order to support 
for backward calculation. Since forward prediction and 
backward recovery does not happen simultaneously, one 
adder can be used for both operations. Additional control 
logic is required to switch between the two operational 
modes. Figure 6 shows the logic structure between any two 
neighboring SR array elements, SR[i,j] and SR[i,j+1] (i=1..n 
and j=1..h-1). When the predictor is in the forwarding 
prediction mode, MUX1 selects the data from forward path 
L1. Otherwise, backward path L2 is chosen. The prediction 
result, either from the predictor or from the stack, is used to 
determine whether addition or subtraction is required. Since 
the backward calculation is opposite to the forward 
calculation, the prediction result from stack needs to be 
complemented.   

 
Figure 6 Modified ahead-pipeline supporting for backward 
calculation. Note that subtraction can be implemented by 
complementing the weight and setting the carry in port of the adder 
to one.  

The critical path for the forward calculation of the 
ahead-pipelined piecewise linear predictor is composed of a 
table lookup, a multiplexer, an adder, and a comparator. On 
the other hand, the critical path of the proposed recovery 
structure includes a table lookup, one inverter, two 
multiplexers, and an adder. Note that the access to stack can 
be hidden with the rest of recovery operations , and that the 
overall delay of one inverter and one multiplexer is less than 
a comparator. Therefore, the proposed recovery technique 
will not lead to performance degradation of the 
ahead-pipeline.  

3) Penalty of Stack Based Misprediction Recovery  

With stack based misprediction recovery, the number of 
recovery cycles dynamically depends on the number of 
in-flight branch instructions between instruction fetch and 

branch resolve. Therefore, it may take multiple cycles to 
restore the predictor to the latest non-speculative state, as 
opposed to one cycle with the recovery scheme in [1]. In 
other words, stack based misprediction recovery could 
increase the branch misprediction penalty and lead to 
degradation of instruction-per-cycle (IPC) rate. Fortunately, 
the IPC loss due to the increase of misprediction penalty is 
small considering the high prediction accuracy of piecewise 
linear predictor. Only less than 3% IPC loss is observed in 
the experiment.  

C. Combining Two Techniques 
While history skewed indexing reduces the number of 

forward pipeline paths on both SR and R arrays, the stack 
based misprediction recovery completely removes the 
pipeline of R. The combination of these two techniques can 
further reduce the area requirement of the predictor. In 
addition, the potential prediction accuracy improvement with 
history skewed indexing can help to alleviate the IPC loss 
caused by stack based misprediction recovery.  

IV. EXPERIMENTAL RESULTS 

This section describes the methods used to evaluate the 
proposed techniques. The analysis for the obtained data is 
presented as well.  

A. Experiment Setup 
The experiment is composed of two parts, i.e., 

architectural level simulation and hardware implementation. 
The former part is used to analyze the performance of the 
proposed techniques, and the latter is used to evaluate the 
effectiveness of area reduction.  

The simulation is based on SimpleScalar [10] configured 
to support Alpha ISA. The microarchicture parameters of the 
simulated microprocessor are listed in Table I. All 12 SPEC 
CPU2000 integer benchmarks are selected for simulation. 
Data are collected after running 100 million instructions for 
each benchmark.  

TABLE I 
MICROARCHITECTURAL CONFIGURATION OF THE PROCESSOR SIMULATED 

Parameter Configuration 
L1 I-Cache 16KB, 64Byte block, 2-way 

L1 D-Cache 16KB, 64Byte block, 4-way 

L2 Unified Cache 1MB, 64Byte block, 4-way 

Decode/Issue Width 8 

L2 hit latency 7 cycles 

L2 miss latency 200 cycles 

 
We also implemented piecewise linear predictors with 

Verilog HDL, and mapped them to TSMC 0.18µm standard 
cell library with Synopsys Design Compiler. The logic 
synthesis was performed in worst corner case with wireload 
model and 7ns clock timing constraint. The area data are 
collected according to the report of DesignCompiler. 
Although the area information reported in Design Compiler 
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Figure 7 (a) Average misprediction rate of ideal piecewise linear predictor with history skewed indexing . (b)Average misprediction rate of 
ahead-pipelined piecewise Linear Predicctor with History Skewed Indexing. In both (a) and (b), h=16, and m=8.  
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Figure 8. Misprediction rate per benchmark. The size of W array is     Figure 9. Normalized IPC rate. The size of W array is 10x212bit,  
10x212bit, and h=16 for all four configurations.          the number of ahead-pipeline path is 8, and h=16 for all cases

is only rough estimation of the final area in silicon, it 
provides enough precision for comparison between circuits 
with similar structures.  

B. Experimental Result Analysis 
Figure 7 shows the average misprediction rate of 

piecewise linear predictor with history skewed indexing. As 
the history bit increases, the misprediction rate of idealized 
one decreases, which means history skewed indexing helps 
improve prediction accuracy. However, the misprediction 
rate of ahead-pipelined predictor increases as the history bit 
in index increases. A total 8.6% misprediction rate 
degradation is observed as the history index bit number 
goes from zero to five. The reason for this is that the history 
bits in index are speculative in ahead-pipelined predictor, as 
opposed to non-speculative in idealized one.  

Figure 8 shows the misprediction rate of ahead-pipelined 
piecewise linear predictor across different benchmarks. The 

hardware budget, including the size of W array and the 
number of paths in ahead-pipeline ( 8 in this case ), is the 
same in all configurations. On average, the misprediction 
rate decreases by 5.3% as the number of history bits in 
index increases from 0 to 3.  That means the benefit from 
balancing m and n removes the prediction accuracy 
degradation caused by speculative history bits in index.  

Figure 9 highlights the effect of the proposed techniques 
on normalized IPC rate. Stack based misprediction recovery 
alone leads to 2% IPC loss compared with the original 
predictor. The IPC loss is reduced to 1.4% when both of the 
proposed techniques are employed. The reason is that with 
history skewed indexing, the predictor is tuned to be more 
accurate with the same hardware cost.   

Table II summarizes the circuit area of piecewise linear 
predictor after logic synthesis. The data are normalized to 
the area of original piecewise linear predictor with the 



configuration of h=7,m=4,n=3. It should be noted that the 
percentage of area reduction depends on the ratio of the area 
dedicated for the ahead-pipeline versus the area for the W 
array. Since both of them are linearly proportional to h, the 
increase of h has no effect on the percentage of area 
reduction. However, as m increases, the size of W would 
increase exponentially and the size of SR remains the same. 
Therefore, the percentage of area reduction will decrease.  

TABLE II 
NORMALIZED AREA OF PIECEWISE LINEAR PREDICTOR 

Normalized Area 
Configuration 

Original 
Stack 
Only

Stack and 
History* 

Max. area 
Reduction

h=7,m=4,n=3 1 0.79 0.68 32.0% 

h=10,m=4,n=3 1.38 1.10 0.93 32.6% 

h=7,m=5,n=3 1.72 1.37 1.28 25.6% 

h=10,m=5,n=3 2.43 1.95 1.84 24.3% 

*Note that only 1 history bit is included in the index.  

TABLE III 
NORMALIZED AVERAGE IPC RATE 

Normalized IPC 
Configuration 

Original 
Stack 
Only

Stack and 
History* 

Max.IPC 
Reduction

h=10,m=4,n=3 0.992 0.967 0.963 2.9% 

h=10,m=5,n=3 1 0.976 0.975 2.5% 

*Note that only 1 history bit is included in the index.  

Table III shows the normalized average IPC rate for the 
hardware implemented predictors. Due to the small value of 
h and m, the prediction accuracy of these predictors is not as 
high as those in Figure 8. Therefore, the IPC degradation 
caused by the introduction of stack would be higher. 
However, the IPC rate decreases only by about 3%. In 
particular, for a piecewise linear predictor with h=10, m=4 
and n=3, the combination of the two techniques proposed in 
the paper achieves about 30% area reduction with 2.9% IPC 
loss.  

V. CONCLUSION 

This paper presents two techniques that can make the 
piecewise linear branch predictor hardware efficient in 
VLSI design, meanwhile maintaining its prediction 
accuracy.  History skewed indexing is designed to reduce 
the number of ahead-pipelined paths by introducing the 
history bits in the index of weight table. It decouples the 
number of ahead-pipeline paths from the number of index 
bits, and opens the possibility to tune the width of the 
weight table indices for higher accuracy without additional 
hardware cost. Stack based misprediction recovery employs 
stacks to restore the predictor from misprediction. It 
completely removes the inefficient pipeline used for 
misprediction recovery without losing prediction accuracy. 
Experimental results show that history skewed indexing is 

able to improve the prediction accuracy by 5.8% without 
additional hardware cost. For a particular configuration, the 
combination of these techniques can achieve about 30% area 
reduction with less than 3% IPC loss compared with the 
original piecewise linear predictor.  
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