Debug Automation for Synchronization Bugs at RTL

Mehdi Dehbashi*
*Institute of Computer Science, University of Bremen
28359 Bremen, Germany
Email: dehbashi @informatik.uni-bremen.de

Abstract—One major concern in the design of Very-Large-
Scale Integrated (VLSI) circuits is debugging as design size and
complexity increase. Automation of the debugging process helps
to decrease the development cycle of VLSI circuits and conse-
quently to achieve a higher productivity. This paper presents
an approach to automatically debug synchronization bugs due
to coding mistakes at RTL. In particular, we introduce an
appropriate bug model and show how synchronization bugs are
differentiated from other types of bugs by our approach. The
experimental results on LGsynth93 and ITC-99 benchmark suites
and RTL modules of OpenRISC and OpenSPARC CPUs show
diagnosis accuracy and efficiency of the approach.

Keywords—debug automation, synchronization bug, SAT-based
debugging

I. INTRODUCTION

Due to the increasing design size and complexity of VLSI
circuits, the cost of VLSI systems verification and debugging
has significantly increased. Verification tools check the cor-
rectness of a design against its specification. Upon detection
of a design error, the error is returned as a counterexample.
Having a counterexample, the debug process starts localizing
and rectifying the bug. But this process is often a manual task
which needs a large effort. Thus, automated approaches to
design debugging are necessary to decrease the development
cycle of VLSI products.

Design bugs at RTL are classified into three major classes:
logic bugs, algorithmic bugs and synchronization bugs [1].
There is a range of approaches to automate the debugging
process for logic bugs [2] [3] [4] [5]. Algorithmic bugs can
have a severe impact on the correctness of a design and
they usually require multiple major modifications to be fixed.
Synchronization bugs are related to synchronization of data
with respect to clock cycles in a design. For most of the
synchronization bugs, a signal requires to be latched a cycle
earlier or a cycle later in order to keep the correct timing
behavior of signals in the design [1]. The most common fix
for this class of design bugs is the manual addition or removal
of flipflops to satisfy the correct timing behavior of the circuit.
These bug models are called missing flipflop and extra flipflop.

In the pre-silicon stage, a design is verified against its
specification by verification tools. A specification describes the
correct timing behavior of a design. The work in [6] presents a
formal method to specify the relations between multiple clocks
and to model the possible behaviors. Then, a hardware design
is verified against the specified clock constraints. An efficient
clock modeling approach is presented in [7] to handle clock
related challenges uniformly. The approach converts multiple
clocks with arbitrary frequencies and ratios, gated clocks,
multiple phases, latches and flip-flops in multi-clock syn-
chronous system, into a single-clock model. Clock constraints
are automatically generated to avoid unnecessary unrolling and
loop-checks in Bounded Model Checking (BMC).

The work in [2] presents a model based on Boolean satis-
fiability to automate debugging of logic bugs. A circuit is en-
hanced with correction block in order to find the potential fault
candidates. Abstraction and refinement techniques are used in
[8] for handling the automated debugging of large designs

This work has been supported in part by the University of Bremen’s
Graduate School SyDe, funded by the German Excellence Initiative and in
part by the German Research Foundation (DFG, grant no. FE 797/6-1).

Gorschwin Fey*!
tInstitute of Space Systems, German Aerospace Center
28359 Bremen, Germany
Email: goerschwin.fey @dlr.de

with a better performance and reduced memory consumption.
The work in [3] uses randomly generated counterexamples
for debugging and applies automatic correction based on re-
synthesis. An exact debugging approach based on Quantified
Boolean Formulas (QBF) is proposed in [4], that creates high
quality counterexamples to find fault candidates fixing any
erroneous behavior. In [9], a pre-silicon debugging flow is
proposed for testbench-based verification environments. The
approach uses diagnostic traces to obtain more effective coun-
terexamples and to increase the diagnosis accuracy. All of the
mentioned works consider logic bugs in order to automatically
localize and to rectify an erroneous behavior at the pre-silicon
stage.

In this paper, we present an approach to automate the
debugging of synchronization bugs at RTL. This is a class
of bugs introduced while coding RTL. First, synchronization
bugs (extra/missing flipflop) are modeled and converted into a
Boolean satisfiability formula. Having a counterexample given
by a verification tool, our approach automatically extracts
potential fault candidates which explain the erroneous behavior
of the corresponding counterexample. The erroneous behavior
can be fixed by inserting or removing some flipflops in the
circuit. By this, the approach automatically investigates the
number of cycles that a signal needs to be latched earlier
or later fixing the erroneous behavior of the circuit. Our
approach utilizes a word-level model of the circuit which
may contain Boolean as well as word-level operations. In
this case, a flipflop and a signal can be a word with n bits.
In particular, our methodology distinguishes synchronization
bugs and logic/algorithmic bugs. The experimental results
show effectiveness and diagnosis accuracy of our approach
on LGsynth93 and ITC-99 benchmark suites and modules of
OpenRISC and OpenSPARC processors. For OpenSPARC we
show how our approach performs on a real synchronization
bug.

The remainder of this paper is organized as follows.
Section II introduces preliminary information on SAT-based
debugging. Bug models are explained in Section III. Our
debugging methodology is presented in Section IV. Section V
explains how to model the correction of synchronization
bugs in order to automatically debug a design using Boolean
satisfiability. Then, the debugging algorithm is demonstrated
in Section VI. Section VII presents experimental results on
benchmark circuits. The last section concludes the work.

II. BUG MODEL-FREE SAT-BASED DEBUGGING

When an implemented circuit fails verification, debugging
procedure starts to find root causes of the observed error.
Verification output is a set of counterexamples proving the
existence of a bug in the circuit. A circuit is composed of
components which specify the granularity of the debugging
result. Gates or modules are considered as typical components,
but also the hierarchical and structural information can be
taken into account [10], [11], [2]. In examples of this paper,
gates are considered as components for the sake of simplicity.

In [2], a SAT-based debugging approach is proposed. The
approach searches for all possible fault candidates in the faulty
circuit. To do debugging, first the faulty circuit is enhanced
with correction block. Correction block is a multiplexer which
is added at the output of each component. As Figure 1 shows,

-
S e

Fig. 1. Correction block
™=
k —>|
SL’
I L s, — 0,
Sv
1,— : s 0
" , s

Fig. 2. Combinational debugging

the original output function F. of component C' is replaced by
F!. The select line S, of the correction block controls F). such
that if S, is activated, F! = R., where R, is an unconstrained
variable and a value for correcting the erroneous behavior may
be injected, otherwise F. = F.. The select line is also called
correction predicate.

Given a faulty circuit and a set of counterexamples, one
copy of the circuit is created for each counterexample. All
copies are enhanced with correction blocks. Then the inputs
and outputs of each created instance is constrained to inputs
values and output value of the corresponding counterexample
(Figure 2). In Figure 2 and Figure 3 only the select lines of
the correction blocks are shown.

For debugging the SAT solver searches for a solution by
activating some of correction predicates. A fault cardinality
constraint controls number k of active correction predicates.
The debugging procedure increases number £ from 1 until a
solution is found. For sequential circuits, the faulty circuit is
unrolled as many time steps as the length of counterexample.
In Figure 3, the length of counterexample is two time steps
(two clock cycles). The correction block is added same as
the combinational case. For sequential debugging, usually the
same correction predicate is used for the same component in
all time steps and for all counterexamples.

III. SYNCHRONIZATION BUG MODEL

Synchronization bugs occur when a signal is latched a
cycle earlier or a cycle later in comparison to correct timing
constraints. When a signal needs to be latched a cycle later,
this behavior indicates lacking a flipflop on the corresponding
signal. This bug model is called missing flipflop. When a signal
requires to be latched a cycle earlier, this may be due to an
additional flipflop on the corresponding signal. This bug model
is called extra flipflop.

We denote a flipflop as b = F'F'(a, clk, init), where a is the
data input of the flipflop, clk indicates the clock frequency of
the corresponding flipflop, and ¢nit is the initial state of the
flipflop. The data output of the flipflop is denoted by b. When
a circuit has a single clock, and the initial states of flipflops
are 0, a flipflop is denoted as b = F'F'(a). In our framework,
a flipflop and a signal can be a word with n bits as we use a
word-level model of the circuit [12].

In the case of a missing flipflop on signal s, the correction
of this bug is adding one flipflop on the signal in order to
postpone the propagation of the corresponding signal one
clock cycle. The correction of this synchronization bug is
shown as s, =1! s;, where =T! is the correction flipflop,
and signal s is decomposed to signals s; and s in order to

]2
I s - s 0
S§p—> S, S —

i h o)
[”—> SX - S‘g — U,
8, S/, Sh —

=1 =2
Fig. 3. Sequential debugging

add a flipflop on the propagation path of the signal. If signal
s requires to be latched m clock cycles later, the correction is
denoted as s5 =1™ s, which indicates adding m consecutive
flipflops on the propagation path of signal s.

When there is an extra flipflop b = F'F(a) in the circuit,
deleting the corresponding flipflop causes the signal to be
latched a clock cycle earlier. In this case, the correction is
indicated as b ="' @, where =—! shows a correction by
removing the flipflop. Removing m consecutive flipflops in
order to latch a signal m clock cycles earlier is denoted by
b=""a.

IV. DEBUGGING METHODOLOGY

At the design step, verification tools check the correctness of
an implemented circuit according to the specification. If there
is a contradiction between the behavior of the implemented
circuit and the specification, this contradiction is returned as
a counterexample.

Our debugging methodology is shown in Figure 5. The first
step in Figure 5 shows the verification process. The outputs
of the circuit and the specification are denoted by O. and
Os, respectively. The input test vector is denoted by I. If
the circuit and the specification have different output values,
while the same test vector is applied on inputs, this difference
indicates a counterexample. A counterexample is shown by
CE(I, O, Oy). A specification can be a formal specification,
a simulation-based specification or golden data. We assume
that all inputs and initial states are constrained by parameter
I. Therefore there is no free input or free initial state in the
circuit. The verification function is written as follows:

CE = Verification (Circ, Spec) (1)

Having a counterexample CE(I, O, O,), debugging starts.
Here debugging uses the circuit and golden output values O,
in order to localize a bug.

In this case, first a new debugging instance is created
without considering any bug model. The approach in [10]
is utilized in order to localize a bug. In the approach, a
multiplexer is inserted at the output of each component. When
a multiplexer is activated, a new value is inserted at the output
of the corresponding component fixing the erroneous behavior.
This process is denoted as follows:

FCs = DBG (ModelFree, Circ, CE))

The inputs of DBG are a circuit, a counterexample C'E
and a parameter M odel F'ree which indicates bug model-free
debugging should be performed to extract the set of fault
candidates F'C's. Bug model-free debugging was explained in
Section II.

Given the set of potential fault candidates F'C's, we inves-
tigate whether a fault candidate F'C' € F'Cs can be a syn-
chronization fault candidate according to the synchronization
bug model. Synchronization correction block is inserted at the

ay by

Cycle 0 [0

Cycle 1 1]

Cycle 2]2 j> & {>—b: 1~ - {>ﬁ

Fig. 4. Unrolled Correct Circuit

output of each fault candidate F'C' € F'C's. Synchronization
correction block changes the behavior of a fault candidate
according to the synchronization bug model. Synchronization
correction blocks are explained in Section V in detail. If by
activating a synchronization correction block, the erroneous
behavior of the circuit is fixed, a synchronization fault candi-
date FC' is detected. This process is denoted as follows:

FCs' = DBG (Synch, Circ, CE, FCs) 3)

The inputs of DBG in this process are a circuit, coun-
terexample C'E, set of fault candidates F'C's and parameter
Synch which indicates the synchronization bug model is
used for debugging. The output of the process is the set of
synchronization fault candidates F'C's’ C FCs.

In the following steps of the debug flow, if the set of
synchronization fault candidates is not null, this set (F'C's’)
is returned as fault candidates for synchronization bugs.
Otherwise, the set of fault candidates F'Cs is returned as
fault candidates for other kinds of bugs, i.e., logic bugs and
algorithmic bugs.

In Figure 5, dashed lines show some additional processes
in order to increase diagnosis accuracy of debugging. Hav-
ing the set of logic/algorithmic fault candidates, diagnostic
traces can be generated (left dashed branch in Figure 5).
Diagnostic traces differentiate the behavior of fault candidates
and help to create high quality counterexamples. High quality
counterexamples help debugging to decrease the number of
fault candidates. One approach to generate diagnostic traces
is presented in [9]. The approach does not need a bug model
to generate diagnostic traces. Counterexamples obtained by
diagnostic traces are used to iterate debugging and to increase
the diagnosis accuracy.

In the case of synchronization fault candidates (right dashed
branch in Figure 5), synchronization diagnostic traces can be
generated to distinguish the behavior of synchronization fault
candidates. Synchronization diagnostic traces can be generated
according to the synchronization bug model. Counterexamples
obtained by synchronization diagnostic traces help debugging
to decrease the number of synchronization fault candidates.
Diagnostic traces can be generated similar to other fault
models [13]. In this work we focus only on the synchronization
bug model and debugging algorithm without using diagnostic
traces.

Our approach can also be used for circuits with multiple
clock domains. In this case, first multiple clocks are converted
into a single-clock model [7]. Having a single-clock model,
our approach is utilized to localize the root cause of an error.

V. SYNCHRONIZATION CORRECTION BLOCK

For debugging, first the circuit is unrolled as many times
as the number of clock cycles constituting the corresponding

CE = Verification (Circ, Spec)

Circ O
I*[E@
Spec

[eX

CE (L, O, Oy

\4

FCs = DBG (Model-Free, Circ, CE)

I
)
J —o

)

il
= 9
El

FCs' = DBG (Synch, Circ, CE, FCs)

1
1
1
1
1
1
1
1
1
1
1
1
1
i
1
: v
1
|
1
1
1
1
1
1
1
1
1
1
1
1
1

18 §

T

Diagnostic Trace for

Logic/Algorith. Bug FCs'

Synch Bug

Diagnostic Trace for

X 7y
i i
i :

FCs' as
Synch Bug

FCs as
Logic/Algorith. Bug

Fig. 5. Debugging Methodology

counterexample. For example, if the length of the counterex-
ample is three clock cycles, the circuit C' is unrolled three
times: Cy, C7 and Cs. In this case, the input of a flipflop
from clock cycle ¢ is connected to the appropriate gates in
clock cycle ¢+ 1. In the example of Figure 4, there is a circuit
including two flipflops A and D. To do debugging, the circuit
is unrolled three times. Flipflops A and D are removed. The
input wire of flipflop D at cycles 0 and 1, by and by, are
connected to the output wire of the corresponding flipflop at
cycles 1 and 2, ¢; and cs, respectively.

In the example circuit of Figure 6, there is a missing flipflop
bug. The location of the bug is shown by a red circle. To
debug the circuit, it is copied three times. The input of flipflop
A at cycle i is connected to the appropriate signal at cycle
i + 1. For debugging, we investigate at which wire of the
circuit a flipflop is missing. Therefore, we need correction
block at each wire of the circuit which is able to model the
behavior of a flipflop at the corresponding wire. The green
part in Figure 6 shows this model. Multiplexers are utilized to
model a flipflop behavior at every wire of the circuit. When
there is a set of fault candidates /'C's given by bug model-free
SAT-based debugging, correction blocks are inserted only on
each fault candidate F'C € F'C's. To model correction block
for m consecutive missing flipflops, m consecutive correction
blocks can be inserted on each wire.

If select line s at wire p is active (s = 1), a flipflop behavior
at wire p is activated. Therefore, the output of the activated
flipflop at cycle 7 is connected to the input of the corresponding

Cycle0 1

Cycle 1 Il

Cycle2 1,

Cycle 0

Cycle 1

Cycle 2

Fig. 7.

Debugging Instance for Extra FF Bug

flipflop at cycle ¢—1. If the correction block is inactive (s = 0),
the circuit at wire p has the behavior of a normal wire.

Having correction block at every wire of the circuit, the
inputs and outputs of the model are constrained according to
the input and output values of the corresponding counterex-
ample. Then debugging answers the following question by
activating the select lines: If a flipflop is added at wire p, can
the erroneous behavior of the corresponding counterexample
be fixed? In this case, a SAT solver is utilized to extract all
possible fault candidates.

Figure 7 shows the model for the extra flipflop bug. In case,
correction block is applied at the location of every flipflop
in the circuit. Correction block for the extra flipflop bug has
the reverse behavior in comparison to correction block for
the missing flipflop bug. For this kind of bug, debugging
investigates if a flipflop is removed, can the erroneous behavior
of the corresponding counterexample be fixed? If there is a set
of fault candidates F'C's given by bug model-free SAT-based
debugging, correction blocks are inserted only on flipflops
which are fault candidates in set F'C's.

When there is both a missing flipflop bug and an extra
flipflop bug in a design, correction blocks for both kinds
of bugs are required simultaneously. In this case, missing
flipflop correction block is inserted on every wire of the
circuit, while extra flipflop correction blocks are inserted only
at existing flipflops. The whole timing variation is controlled
by constraining the select lines of correction blocks.

For single bugs, the following constraint is added to the
created debugging instance to control the select lines of

multiplexers:
D si<1 “)
i=1

Parameter n is the total number of correction blocks in
the debugging instance. For multiple bugs, k£ bugs may be
activated at a same time. In this case, the following constraint
controls the behavior of multiplexers (correction blocks):

n

S s <k 5)

=1
VI. ALGORITHM

Figure 8 shows the algorithm of our synchronization de-
bugging in pseudocode. The inputs of function debugging are
a circuit, a counterexample C'E' and a set of fault candidates
FC's given by bug model-free SAT-based debugging. The out-
put of the function is a set of synchronization fault candidates
FCs'. Set FCs' is a union of three sets Fr,4,.0> Firissing 2nd

Vizeq (ine 2). Set Fr, ., represents the set of extra flipflop
fault candidates. Set Fj/,,.;,, represents the set of missing
flipflop fault candidates. When a fault candidate is composed
of multiple components such that some components of the
fault candidate are missing flipflops while other components
of the fault candidate are extra flipflops, this fault candidate
is included in set Fj,, .., In the algorithm, the maximum
number of synchronization bugs is given by parameter k.,
(line 3) which limits variable k£ in Equation 5.

At the first step of the algorithm, correction blocks (CL)
for extra flipflop and missing flipflop models are inserted at
the locations of fault candidates FFC € FCs (line 5). Set
SE denotes the set of select lines for extra flipflop correction
blocks. Set Sj; denotes the set of select lines for missing
flipflop correction blocks. The whole set of select lines is
stored in set S (lines 6-7). Line 8 constrains the inputs and
the output of the created instance to the values given by the
counterexample C'E. In line 10, sets Fr,400 Firissing and

Mimeq are initialized. In line 11, variable k is initialized to
1. Variable k indicates the number of bugs in the design. First
the algorithm starts with the assumption of single bug (k = 1).
The select lines of multiplexers are controlled by the constraint
line 14. Then a SAT solver is called to find a solution (line
15). If there is any solution, all solutions will be extracted (line
17). The solutions are saved in set Solutions. Otherwise, the
previous constraint of select lines is removed (line 22) and &
increases (line 23). If variable % is less equal than parameter
kmaz (line 25), the algorithm iterates until finding a solution
or reaching K.,qq-

After finding solutions, the solutions are categorized into
three sets Fryp00 Firissing @4 Firipeq (lines 27-35). If all
components of a solution Sol are included in set Sy (line
29), the fault candidate is considered as extra flipflop fault
candidate (line 30). If all components of a solution Sol are
included in set S, (line 31), the fault candidate is considered
as missing flipflop fault candidate (line 32). Otherwise, the
fault candidate has some extra flipflop components and some
missing flipflop components and is added to set F} ;.4 (lines
33-34).

VII. EXPERIMENTAL RESULTS

In this section, we demonstrate the effects of our debugging
approach experimentally on sequential circuits of LGsynth93
and ITC-99 benchmark suites and RTL modules of OpenRISC
and OpenSPARC CPUs. The single synchronization bugs are
randomly injected by removing a flipflop (Missing FF) or
by adding a flipflop (Extra FF). The single logic bugs are
randomly injected by replacing gates. For example an AND
gate is replaced by an OR gate. For bounded sequential
debugging, the circuits are unrolled up to thirty time steps.

function DBG (Synch,Circ,CE, FCs)
j— U ! !
Output FCs' ‘FEactra U]:]\/Iiss.ing L_Jfklized
Maximum Number of Synchronization Bugs: kmaax
gSE S’M} = Insert_Extra_Missing_CLs(Circ, FC's)
SpUSu
s; €8,1=1,2,.
Insert Constramt(CE)
]E‘]:/E:i:tra’ ‘7:1/\/1issing’ fll\lized} = {@, w’ (Z’}
do
{
Insert_Constraint(>__; s; < k)
if Solve() == SAT then
{

Solutions = Extract_All_Solutions()

O J U G G U U U N Y
OOV NEWN— OV AW~

break

1

else
21 {
22 Remove_Constraint(3 74 s; < k)
23 k=k+
24 }
25 |} while k< kmax
26
27 | foreach Sol € Solutions do
28 | {
29 if Vs; € Sol sz € Sg then
30]7 U Sol
31 else 1f Vsl €§of s; € Sy then
32 flvlqung f]\xfle%ng U Sol
33 else
34 ‘T-Jlﬂiaced = ‘T-Jl\liaced U Sol
35 |}
36

37 return {‘r/Emt'r‘a U F]’VIissing U fl/\/fized}
38 lend function ‘

Fig. 8.
The number of unrolling steps for verification, model-free
debugging and synchronization debugging is same for a given
circuit.

The experiments are carried out on a Dual-Core AMD
Opteron(tm) Processor 2220 SE (2.8 GHz, 32 GB main mem-
ory) running Linux. The techniques described in this paper are
implemented using C++ in the WoLFram environment [12].
MiniSAT is used as underlying SAT solver [14]. Run time is
measured in CPU seconds, and the memory consumption is
measured in MB.

Having a buggy circuit, the debugging methodology of
Figure 5 is called. The verification process returns an initial
counterexample. Then, bug model-free SAT-based debugging
searches for the potential fault candidates F'C's. The set F'C's
is given to the synchronization debugging in order to find
the synchronization fault candidates F'Cs’. If set FCs’
null, there are no single synchronization bugs according to
the synchronization bug model.

Figure 9 shows a real synchronization bug reported in the
Verilog code of the OpenSPARC processor [1]. The upper
rectangle in Figure 9 indicates the correct code while the lower
rectangle (the commented lines) indicates the buggy code.
In the buggy code, the value of the 48-bit tlb_st_data_dl
bus is assigned to the Isu_ifu_stxa_data bus in the same
cycle. However, in the correct code, the data requires to
be latched for one clock cycke between the two buses [1].
To evaluate our approach, first we activate the bug in the
Verilog file lsu_qdpl.v. The buggy Verilog file is given to
our debugging approach to find fault candidates. Having one
counterexample given by verification, bug model-free debug-
ging finds three fault candidates in the buggy circuit. These
three fault candidates are given to synchronization debugging.
Synchronization debugging proves that all of these three fault
candidates can be synchronization fault candidates (Figure
10). The synchronization fault candidates correspond to the
buggy line in the Verilog code. Totally the approach spends
340.4 seconds and consumes 78.1 MB memory. Note that the

Synchronization Debugging Algorithm

dff s #(48) ifu_std_d1 (
.din (tlb_st data[47:0])
.q (lsu ifu stxa data[47 a])
.clk (a51 data clk],
.se (1'b0), .si(),
)i
“endif

// select is now a stage earlier, which should be

J// Tine as selects stay constant.

//assign lsu_ifu_stxa data[47:0] = tlb_st data_d1[47:0] ;
// End - Bug3487.
Fig. 9. Synchronization bug in OpenSPARC processor, Verilog file
lsu_gdpl.v
Schem | one| src| source | @ o etus(oa) t s data 3L
s LA =
‘ dﬂ S(S\ZE =9)
ex_xmit_ff
ﬂ_% > spe_pox_data_pa
ke s 1 j(swzs 124)
- - _st_data_d1
L oR_s(SIZE=64) E;Isu_dlagnslc_wr_dala_e
i147
D £ [Isu_diagnste_wr_data_b0
BUF
~~ uf_13f
I < > o [lsu_ifu_stxa_data
</liso W
@ . buf_148
gt {>“ [lsu_mmu_rs3_data_g
MUX buf_64
buf_149
s {lsu_tiu_rs3_data_g
buf_64
buf_81 I
1ag_stgm I mz‘g O lsu_error_pa_m
s [{ > dtag wdata m -
Fig. 10. Synchronization fault candidates in the circuit lsu_gdpl

visualized schema of the design is not a synthesized gate-
level circuit. It is an intermediate representaion of the Verilog
design which is used to convert a Verilog design to CNF (SAT
formula) at word level [12]. We do not synthesize the Verilog
designs to debug them.

Table I presents the experimental results for single faults
which have been injected randomly. There are four sections
in Table I. Section Benchmarks shows the characteristics of
the benchmarks (columns 1-3). Other sections show the exper-
imental results when a missing flipflop, an extra flipflop or a
logic bug is injected. Each section shows the final number of
fault candidates (#F'C), the final number of synchronization
fault candidates (#FC"), the required run time (T2me) and the
maximum memory consumption (Mem). The time includes
the verification time (Ver.), the time for bug model-free
debugging (DbgM), the time for synchronization debugging
(DbgS) and the total time (T'otal).

Consider the greatest common divider ged in table; when
there is a missing flipflop in circuit gcd, bug model-free
debugging finds ten fault candidates (#FC = 10). These
ten fault candidates are given to synchronization debugging.
Then synchronization debugging investigates whether a fault
candidate F'C' € F'(C's can be a synchronization fault candidate
according to the synchronization fault model. The output of
synchronization debugging is a set of synchronization fault
candidates F'C's’ C FC's. For circuit gcd, synchronization
debugging finds six synchronization fault candidates (#FC’ =
6). The number of fault candidates (#F'C') is by definition
always larger equal than the number of synchronization fault
candidates (#FC"). This is one reason that causes the debug-
ging time to extract set F'C's (column DbgM) to be longer
than the time to extract set F'C's’ (column DbgS).

For extra flipflop bugs, in most of the cases, there are fewer
synchronization fault candidates in comparison to the cases of
missing flipflop bugs (comparison of column 5 and column
12). The reason is that flipflops may only be removed at
places where they are located in the design. But adding of
flipflops is possible at any signal. So the number of flipflops
that can potentially be added is much larger than the number
of flipflops that can potentially be removed.

TABLE I
EXPERIMENTAL RESULTS

Benchmarks Missing FF Extra FF LogicBug

Circuit #Gates | #FF | #FC [#FC' Time Mem | #FC [#FC' Time Mem | #FC | #FC' Time Mem
Ver. | DbgM | DbgS | Total Ver. | DbgM | DbgS | Total Ver. | DbgM | DbgS | Total

bo1 49 5 8 3 0.0 0.2 0.0 0.2 155 | 8 1 0.1 0.2 0.0 0.3 156 | 7 0 0.0 0.1 0.0 0.1 154
b02 25 4 13 | 3 0.0 0.2 0.1 0.3 156 | 6 1 0.0 0.1 0.0 0.2 155 | 16 0 0.0 0.2 0.0 0.3 15.6
bo4 707 | 66 | 26 | 9 24 11.1 1.0 144 | 176 | 36 | 12 25 20.2 1.2 238 | 176 | 18 0 147 | 35.7 25 528 | 19.3
b05 1054 | 34 | 22 7 0.7 6.7 0.5 79 16510 | 2 0.7 43 0.3 5.3 164 | 2 0 0.7 23 0.2 32 16.3
b08 177 | 21 | 39 | 11 1.2 79 1.3 105 | 18.0 | 13 2 0.4 1.6 0.2 22 163 | 6 0 0.1 04 0.1 0.5 15.9
b10 211 | 17 | 55 5 0.5 11.1 0.6 123 | 173 | 4 1 0.1 04 0.1 0.6 158 | 3 0 0.1 0.6 0.1 0.7 15.8
b1l 790 | 31 | 43 | 10 | 21.3 70.0 5.0 964 | 19.6 | 49 9 3.0 594 1.3 638 | 175 | 8 0 29 7.3 0.5 106 | 17.0
b12 1062 | 121 | 68 | 11 74 92.1 21 1016 | 193 | 61 7 8.8 828 1.7 933 | 192 |114] O 42.3 | 4889 8.7 5399 | 24.1
ged 1012 | 59 | 10 | 6 0.7 6.4 0.5 75 164 | 3 1 8.1 16.5 0.9 256 | 179] 6 0 17.0 | 36.0 28 55.7 | 19.1
phase_de. 1672 | 55 | 20 | 10 | 185 | 418 4.5 64.7 | 193 (115 | 24 | 61.6 | 9043 | 17.7 | 983.6 | 219 | 29 0 155 | 86.5 24 1044 | 189
0r1200_ctrl 5093 | 198 (7 3 502 | 2229 | 141 | 2872|393 | 6 1 70.7 | 1918 | 6.2 268.7 | 320 | 7 0 16.6 | 107.2 21 1259 | 26.0
or1200_if 2029 | 69 | 7 4 29 19.5 1.0 234 | 206 | 8 3 33 245 1.1 288 | 227] 6 0 5.3 274 0.7 334 | 227
0r1200_lsu 1777 | 8 6 3 252 76.1 6.1 1074 | 266 | 21 5 395 | 1704 | 125 | 2224 | 30.2 | 10 0 225 | 833 5.5 1113 | 26.2
0r1200_operand. | 1485 | 66 | 13 | 6 09 134 08 150 | 20.1 | 14 7 1.0 12.8 0.9 147 | 199 | 12 0 0.6 94 0.3 102 | 186

m #FC'
m#FC

5 6 7
CE Length

Fig. 11. Effect of CE length on distinguishing logic bug and synchronization
bug (circuit bO1)

When there is a logic bug in circuit 01, the number of
fault candidates is seven (#FC = 7), while the number of
synchronization fault candidates is zero (#FC’ = 0). When
there is no synchronization fault candidate, our algorithm can
distinguish a logic bug from a synchronization bug. We detect
that there is no synchronization bug in the circuit according
to the synchronization bug model. In this case, the fault
candidates F'C's are returned as logic fault candidates as shown
in Figure 5.

In principle, a logic bug may be correctable by a synchro-
nization correction block with respect to the given counterex-
ample. But in the examples of Table I, this case does not
occur because of the length of counterexamples. The accuracy
of distinguishing between a logic bug and a synchronization
bug depends on the length of the counterexample, i.e., the
number of clock cycles relevant to the counterexample. In
Figure 11, we show the relation of counterexample length
and distinguishing logic bugs versus synchronization bugs
for circuit b01. When there is a logic bug in circuit 001,
some random counterexamples with different lengths are gen-
erated. The diagram shows the number of synchronization
fault candidates is zero when a counterexample is longer
(CE length = 7). Therefore in this case, we can distinguish
a logic bug from a synchronization bug. Figure 12 shows
the effect of counterexample length on distinguishing logic
bugs versus synchronization bugs for circuit 510. In this
case when the length of the counterexample is 10, we can
distinguish a logic bug from a synchronization bug. Not only
the length of a counterexample but also the number and the
quality of counterexamples can influence the accuracy of the
classification.

VIII. CONCLUSION

We introduced an approach to automate debugging for
synchronization bugs at Register Transfer Level (RTL). The
correction for synchronization bugs is modeled in order to
automatically debug a design using Boolean satisfiability

80
70

60
m#FC
W #FC

50
40
30
20
10

6 7 8 9 10

CE Length

Fig. 12. Effect of CE length on distinguishing logic bug and synchronization
bug (circuit b10)

(SAT). The approach automatically investigates the number
of cycles that a signal needs to be latched earlier or later
fixing the erroneous behavior of the circuit. Our methodology
distinguishes synchronization bugs and logic/algorithmic bugs.

REFERENCES

[1] K. Constantinides, O. Mutlu, and T. M. Austin, “Online design bug
detection: RTL analysis, flexible mechanisms, and evaluation,” in Inter-
national Symposium on Microarchitecture, 2008, pp. 282-293.

[2] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using Boolean satisfiability,” IEEE Trans. on CAD, vol. 24,
no. 10, pp. 1606-1621, 2005.

[3] K. Chang, I. Markov, and V. Bertacco, “Fixing design errors with
counterexamples and resynthesis,” in ASP Design Automation Conf.,
2007, pp. 944-949.

[4] A. Siilflow, G. Fey, and R. Drechsler, “Using QBF to increase accuracy
of SAT-based debugging,” in [EEE International Symposium on Circuits
and Systems, 2010, pp. 641-644.

[5]1 A. Silflow, G. Fey, C. Braunstein, U. Kiihne, and R. Drechsler, “In-
creasing the accuracy of SAT-based debugging,” in Design, Automation
and Test in Europe, 2009, pp. 1326-1332.

[6] E. M. Clarke, D. Kroening, and K. Yorav, “Specifying and verifying
systems with multiple clocks,” in Int’l Conf. on Comp. Design, 2003,
pp. 48-55.

[71 M. K. Ganai and A. Gupta, “Efficient BMC for multi-clock systems
with clocked specifications,” in ASP Design Automation Conf., 2007,
pp- 310-315.

[8] S. Safarpour and A. Veneris, “Abstraction and refinement techniques in
automated design debugging,” in Design, Automation and Test in Europe,
2007, pp. 1182-1187.

[9] M. Dehbashi, A. Siilflow, and G. Fey, “Automated design debugging

in a testbench-based verification environment,” Microprocessors and

Microsystems, vol. 37, no. 2, pp. 206-217, 2013.

M. Ali, S. Safarpour, A. Veneris, M. Abadir, and R. Drechsler, “Post-

verification debugging of hierarchical designs,” in Int’l Conf. on CAD,

2005, pp. 871-876.

G. Fey, S. Staber, R. Bloem, and R. Drechsler, “Automatic fault

localization for property checking,” IEEE Trans. on CAD, vol. 27, no. 6,

pp- 1138-1149, 2008.

A. Siilflow, U. Kiihne, G. Fey, D. Grofe, and R. Drechsler, “WoLFram

— a word level framework for formal verification,” in IEEE/IFIP Int’l

Symposium on Rapid System Prototyping, 2009, pp. 11-17.

Y.-C. Lin, F. Lu, and K.-T. Cheng, “Multiple-fault diagnosis based on

adaptive diagnostic test pattern generation,” IEEE Trans. on CAD of

Integrated Circuits and Systems, vol. 26, no. 5, pp. 932-942, 2007.

N. Eén and N. Sorensson, “An extensible SAT solver,” in SAT 2003, ser.

LNCS, vol. 2919, 2004, pp. 502-518.

[10]

[11]

[12]

[13]

[14]

