
Interfacing Synchronous and Asynchronous
Domains for Open Core Protocol

Vikas S. Vij1, Raghu Prasad Gudla2, Kenneth S. Stevens1
1University of Utah, 2Intel Corporation

Abstract—Intellectual property (IP) blocks are connected in
a system on chip using a bus or network-on-chip (NoC). IP
reuse is facilitated by the modularity that results when using
common interfaces between the IP cores and the bus or NoC.
This paper investigates and implements several versions of one
of the common interfaces, the open core protocol (OCP). The
paper addresses two new aspects of interface design. First, an
approach is developed to partition the common protocol portion
of the interface from the interface back-end which is specific to
the particular IP. This is achieved with a component we call a
domain interface at this boundary. Second, the domain interface
is enhanced to synchronize between IP blocks and busses that
use different clock frequencies or asynchronous (unclocked)
logic. As a result IP operating at unrelated frequency and fully
asynchronous (unclocked) blocks can more easily be integrated
into a system. Results are reported for power, performance and
area for these clocked and asynchronous implementations.

I. INTRODUCTION

The complexity of current integrated circuits have resulted
in a system-on-chip (SoC) revolution. Time to market, the need
to limit design engineering costs, as well as other factors have
resulted in the need for modularity and design reuse. Various
system building blocks, called intellectual property (IP) blocks,
are designed once and then used in multiple different systems.
System-on-chip designs contain IP blocks like memory, gen-
eral purpose processors, communication blocks such as busses
or network-on-chip (NoC), and other specific function units
and coprocessors.

There are a number of technical challenges to creating mod-
ular IP blocks that can be reliably and rapidly interconnected to
form SoC designs that span multiple applications and process
technology nodes. The size and diversity of operation of the
function blocks results in many of the IP blocks requiring in-
dependent operating frequencies. Traditional clocked method-
ologies encourage a single operating frequency for the entire
chip. Integrating many IP blocks into an SoC is efficiently
performed by interconnecting the design blocks with a bus or
network-on-chip. Due to design complexity and wire latencies,
modern bus and NoC interfaces result in nondeterministic
response delays. This often requires a complex interface to
clocked systems which traditionally require that events occur
on specific clock cycles.

Several common bus interface protocols have been created
to enhance modularity and composability of IP blocks. These
include protocols such as the the advanced microcontroller
bus architecture (AMBA), wishbone, and open core protocol
(OCP). If IP blocks and a bus (or NoC) have been enhanced
to support such a protocol, then they can be directly connected
to communicate across the bus (or NoC). Such designs can be
directly reused in any system that supports the protocol. This
paper implements a large subset of the full OCP protocol.
The implementation is enhanced to facilitate multiple timing
methodologies, simplify buffering, and to reduce the integra-
tion effort required to make an IP block OCP compliant.

This work assumes complete timing generality, including
the implementation of a globally asynchronous locally syn-
chronous (GALS) system, as well as the use of asynchronous
IP blocks. The choice of timing and functionality of each IP
block in an SoC needs to be carefully considered based on its
specific power and performance targets. Without a modular
design integration methodology this can lead to increased
redesign effort, particularly for clockless asynchronous design
or a new GALS architecture. Thus this method enables the use
of clocked or asynchronous IP blocks, including asynchronous
NoC designs.

The contributions of this work are as follows. The concept
of a domain interface (DI) is introduced. The domain interface
partitions the OCP protocol into two separate sections – a
front end that implements the OCP master or slave protocol,
and a back-end that interfaces with the specific IP block.
The domain interface also serves as a location for interfac-
ing different timing domains as well as providing buffering
if necessary between the back-end and the OCP interface.
The regions for clock domain crossing now become well
defined and constrained in such a way that eases the design
of systems with unrelated clock frequencies, asynchronous
(unclocked) modules, or both. Given such a design, modularity
is increased as the OCP master and slave front end blocks
can be reused across all designs, including the network-on-
chip. The design of specific IP back-ends is simplified. Both
clocked and asynchronous OCP front ends have been designed.
Domain interfaces with clock domain crossing and clocked to
asynchronous interfaces have been implemented, as well as
clocked and asynchronous front and back-ends.

II. BACKGROUND

An overview of the OCP protocol and asynchronous bun-
dled data design is provided.

A. Open Core Protocol (OCP)

Open core protocol (OCP) is a non-proprietary, open stan-
dard, core-centric protocol addressing IP core system-level
integration requirements [1]. It is defined as a clocked system
with unidirectional data transfer which assists in simplified
core implementation, integration and timing analysis. OCP
enables the design of IP cores independent of the other cores,
thus enabling the reuse of IP. The goal of this protocol is to
enhance the modularity and composability of the IPs without
requiring redesign.

Fig. 1 shows a block diagram of the basic OCP imple-
mentation between a master IP core and a slave IP core
communicating across an NoC. The IP cores have a OCP
master/slave component directly integrated into their design.

The basic OCP implementation consists of two channels, a
request channel and a response channel, as shown in Fig. 2.
Any read command issued by the master IP core results in a



OCP
Master

Master IP Core

OCP
Slave NoC OCP

Master
OCP
Slave

Slave IP Core

Request Channel
Response Channel

Fig. 1. OCP Implementation Block Diagram with native OCP Master and
Slave

transfer on the request channel including the address associ-
ated with the read command. The slave IP core responds with
data on the response channel for the master IP core. Similarly,
write commands are issued across the request channel with the
associated data and address. Various extensions are added to
different versions of the OCP protocol such as the transfer
of a burst of data, out-of-order responses, data handshake
extensions, test control extension and a few more.

Some additional details of the OCP handshake protocol are
introduced to help understand how traditional asynchronous
handshakes can be mapped onto OCP1. The write command
generated by the master IP core results in the OCP master
interface defining a write command on the MCmd line, along
with the Data and the Address information. The OCP slave
block acknowledges the transaction by asserting the SCmd-
Accept signal on the request channel. Similarly for the read
command, the master IP core sets the MCmd line to a read
command and asserts the Address. The OCP slave acknowl-
edges this read command with SCmdAccept, thus completing
the handshake with the NoC slave interface. For a normal
read, the OCP master then waits for an acknowledgment on
the response channel before initiating a new command. If out-
of-order reads are employed, the OCP master does not need
to wait for responses and may immediately send the next
command.

The basic handshake protocol for any request on the OCP
channel involves an operation wherein the OCP master sets
the MCmd wires on a request which is acknowledged by the
SCmdAccept from the OCP slave. Similarly, there are other
optional handshake signals that are asserted based on which
OCP extensions being employed. For example, if the write data
handshake extension is enabled then an extra SDataAccept
handshake signal is used to indicate an acceptance of Data
by the OCP slave. Similarly for the response channel, there
is an optional MRespAccept signal generated by the OCP
master for any response acknowledgment. Thus, flow control
is implemented using OCP handshake protocols.

The asynchronous designs replace the clock by embedding
request / acknowledgment handshake signals across the OCP
master-slave interfaces. The OCP signals are considered bun-
dled data signals in relation to the request. The SCmdAccept
and MRespAccept signals can be entirely replaced with the
asynchronous acknowledgment signal.

B. Bundled Data Asynchronous Circuits
A general 4-stage “bundled data” asynchronous linear

pipeline design is shown in Fig. 3. It consists of a combi-
national logic datapath just as in a traditional clocked design,

1Refer to the OCP manuals for full protocol information [1].

OCP
Master

OCP
Slave

MCmd

SCmdAccept

MAddress

MData

SResp

SData

MRespAccept

Request

Channel

Response

Channel

Fig. 2. Basic OCP Master and Slave Interface

LC0 LC1 LC2 LC3

R0 R1 R2 R3

lr
la

rr
ra

Din DoutCL CL CL

delay delay delay

Fig. 3. Bundled data linear pipeline circuit with combinational logic datapath
(Here lr and la are the request and acknowledge signal on left hand channel
of a LC block and similarly rr and ra handshake on the right hand channel
of a LC block.)

and an asynchronous control path that controls sequencing and
pipeline frequency. The control path consists of linear control
blocks (LC), which perform via handshaking the role of the
clock. The datapath contains combinational logic (CL) and
Registers (R). Handshake clocking generates the appropriate
timing and sequencing for the design. It is elastic in nature
and can stall if required. The latency through the control logic
must be greater than the maximum delay of the combinational
logic to fulfill the setup and hold time constraints at the
register bank. Thus delay elements may be required between
LC blocks.

The LC blocks are sequential circuits that implement an
asynchronous handshake protocol. The LC design used for this
paper is shown in Fig. 5, although any implementation may be
used. Timing and sizing optimizations on these asynchronous
circuits is performed using clocked CAD tools by constraining
them using a flow based on Relative Timing [2].

III. DESIGNS

A subset of the OCP protocol was implemented from the
ground up to first develop a base synchronous implementation.
The OCP subset used implemented normal read and write with
extensions for burst mode as well as tags which enable out-of-
order responses. Hence there are four modes that are possible
for this OCP implementation which include normal read/write,
burst read/write, normal read/write with out-of-order responses
and burst read/write with out-of-order responses. By default,
we have enabled the data byte extension, which allows en-
abling the data path in 8-bit segments. All these modes and
selections are parameterized and can be changed easily during
synthesis of the circuits.

Fig. 1 shows a block level implementation showing the
communication network between a Master and a Slave IP
with a OCP Master, OCP Slave and NoC. This standard
implementation requires the OCP Master and Slave to integrate
the OCP protocol into the IP and does not offer clear regions



IP
Core1

System Initiator

Core1
BE

DI

OCP
Master

OCP
Slave

DI

NW
BE 1 NoC NW

BE 2

DI

OCP
Master

OCP
Slave

DI

Core2
BE

IP
Core2

System Target

BE = Back-end Request Channel
Response Channel

Fig. 4. OCP Implementation Block Diagram with Domain Interface (DI) and Back-end (BE) modules

for clock domain crossing (CDC). Hence, changes to an IP
block can lead to redesign of others, if the CDC is moved into
an adjacent block. To improve modularity, a Domain Interface
(DI) is introduced. This block contains a simplified handshake
protocol and confines clock domain crossings to this block.
It separates OCP design integration into a custom back-end
specific to the IP block, and an OCP master and slave block.
This results in full reuse of a single OCP master and slave
block for all IP designs. The DI also provides a good location
for synchronization and buffering, when needed.

Fig. 4 shows the explicit partition created by the domain
interface. Back-end modules interface between the cores or
NoCs and the domain interface. This architecture allows the
back-end (BE) blocks to take care of the interface between the
DI and the IP operation without worrying about clock domain
crossing. Thus back-end modules can be directly integrated
into the IP core if advantageous. The DI is where frequency
domains are synchronized. Any blocks, including IP cores
and NoC, can be now implemented independently and then
interfaced with this or any similar interface using a back-end
module. The correct clock domain crossings and buffering is
implemented directly into the DI.

A. Synchronous and Asynchronous OCP Implementation

The OCP protocol implements a handshake between the
OCP master and OCP slave blocks, which prevents overwriting
of the data and for flow control. Response times can arbitrarily
vary, e.g. while communicating across a NoC due to traffic
and congestion. Therefore, a stall capability needs to be
implemented into the OCP to IP back-end to enable pausing of
the cores to prevent overwriting of data when required by the
OCP interface. The stall operations may require data buffering.
This can result in significant complexity for traditional clocked
IP blocks. Alternatively, asynchronous handshake modules
natively allow for arbitrary stalls. Therefore the design of
asynchronous back-ends are normally much easier to build, are
smaller, and lower power than clocked back-ends. Further, cer-
tain OCP handshake signals, such as SCmdAccept are directly
implemented with the asynchronous handshake signals and,
thus, can be removed from the asynchronous implementation.

The initial clocked OCP master, OCP slave, and domain
interface designs were converted into fully asynchronous
designs. This resulted in an asynchronous implementation
similar to the synchronous designs. These independent clocked
and asynchronous blocks resulted in various configurations
which can be evaluated for power, performance, area and
flexibility of choosing the IPs as well as the NoC. This enables

lc0

lc1 lc2

lc7

lc5

lc6

lc3 lc4

y

y

lr

ra ra

rst

rr

la
la

rr

ck

A Y

A Y

A

B
Y

A Y

A Y

C1

C0

B1

B0

A1

A0

Y

A2
A1
A0

B1

B0

Y

A2
A1
A0

B1

B0

Y

Fig. 5. LC circuit implementation

using either a synchronous or asynchronous component at
any side of the DI and hence opening up many architectural
options.

There are five different implementations which are investi-
gated in this paper. First is a purely synchronous design with a
single clock frequency controlling the operation of the IPs and
the NoCs. Second is also a purely synchronous design but with
IPs and NoCs operating at different frequencies. Third design
is an unclocked asynchronous design. The fourth design has
IPs which are synchronous while the OCP implementation and
the NoCs are unclocked. The last design has a synchronous
OCP implementation with the NoC operating at a fixed fre-
quency combined with asynchronous IP blocks.

B. Domain Interface Designs

Five different domain interface designs are required to
implement the five different implementations evaluated in this
paper. The DI for the purely synchronous and asynchronous
design is just combinational. (If needed, FIFO buffering can
be added at the DI boundaries in these cases.) For the
synchronous design, the DI steers the data forward without
storing it. In case of the asynchronous design, the DI also
needs to forward the request and acknowledge signal with the
datapath signals. The complexity of the DI increases for the
three other cases where different timing domains interact.

The domain interface when clock domain crossing occurs
is defined in terms of an OCP request and response channel



Dual Port
SRAM

Gray
Counter

Gray
Counter

wData rData

Full EmptySync Sync

wCLK rCLK
wEnable rEnable

Full Flag Empty Flag

wrptr rdptr

Fig. 6. sync-sync Domain Interface FIFO

(Fig. 2). Hence for every DI implementation there are two
places where clock domain crossing can occur, once for the
request channel and the other for the response channel. We
use sync for synchronous or clocked interface and async for
the asynchronous or unclocked interface. Thus synchronization
uses the naming convention of a timing domain pair to identify
the two synchronized domains.

There are three different cases for the DI design where
different timing domains interact. They are the sync-sync,
async-sync and sync-async domain interfaces. The sync-async
DI requires a clocked to asynchronous request channel syn-
chronization and a asynchronous to clocked response channel
synchronization. The async-sync is its dual, having the clocked
and asynchronous interfaces reversed.

Timing domain crossings which occur in the Domain In-
terfaces are now confined to three different designs: the sync-
sync, sync-async and async-sync DI interfaces.

1) sync-sync DI FIFO: The core of this interface is a head
and tail pointer FIFO that interfaces between two different
clock domains. Fig. 6 shows an implementation of this design
which is similar to the one described in [3], [4]. The benefit of
this design is the easy synchronization and the generation of
the full and empty status information before the arrival of the
next rising edge of its domain CLK signal. Latency through
this FIFO is dependent on the synchronizers which sample
the empty and full status based on the read pointer (rdptr) and
write pointer (wrptr). Reading and writing the FIFO can be
done at each clock edge of their respective domain until the
Empty or Full flag is set. A two flop synchronizer is used for
the Sync block in Fig. 6. Therefore, it takes approximately two
clock cycles after the next write or read to update the Empty
or Full flag status respectively.

The domain interfaces specify Stall and Valid signals in
order to indicate data validity (Stall and Valid signals are not
shown but can be directly derived). Their behavior is similar
to elastic systems [5]. The Stall signal on the write port is
derived from the FIFO Full flag and the write Valid signal.
Similarly, the Valid signal on the DI read port is derived from
the FIFO Empty flag and the Stall signal on the read port.
The wEnable signal is used to control the writing in the FIFO

and the incrementing of the gray counter. It is derived from
the write port Valid and stall signals. The rEnable signal is
similarly derived from the Empty flag and the read port Stall
signal.

2) async-sync DI FIFO: The FIFO for the async-sync FIFO
is illustrated in Fig. 7. The clocked read port in this design
is identical to that of the sync-sync FIFO. The write domain
interface Valid signal is directly mapped to the asynchronous
request signal (lr), and the Stall signal is directly mapped to
the acknowledge (la) signal. (The Valid and Stall signals are
not shown but can be directly derived.) The FIFO write port
has been modified to generate the write clock wCLK from the
write port Valid (lr) signal, and to directly generate the Stall
(la) handshake signal.

The FIFO Full flag is causally generated from the assertion
of the lr signal. A relative timing constraint is required to
ensure proper operation. For this design to work correctly, the
minimum delay between adjacent rising edges of the lr signal
must be greater than the maximum delay from the rising of
the lr signal to the assertion of the Full flag. The Full flag
update time is the sum of the delay to shift the gray counter,
which updates the write pointer wrptr and propagates its value
through the Full flag logic.

No synchronization is required from the clocked port to the
asynchronous port. Write operations to the FIFO are deferred
while the FIFO is full by blocking the assertion of the wCLK
signal with the SR Latch. If the FIFO is full and a pending data
request exists, the lr signal will not propagate to the write clock
signal wCLK so long as the full flag is asserted. As soon as data
is read from a memory slot, the read pointer rdptr will update
its value. This will result in the Full flag becoming unasserted.
The SR Latch will then be released, allowing the lr signal to
generate the write clock signal wCLK and acknowledge data
write on la.

3) sync-async DI FIFO: The sync-async FIFO is similar to
the asyc-sync FIFO. The design uses a SR Latch on the read
port to generate the domain interface Valid signal. There is no
synchronization that is needed to generate the read port Valid
signal. Thus, asynchronous implementations will have half
of the synchronization delay overhead compared to clocked



Dual Port
SRAM

Gray
Counter

Gray
Counter

wData rData

Full EmptySync

SR Latch

QS
QbR

wEnable rCLK
wCLK rEnable

Full Flag Empty Flag

wrptr rdptr

lr

la

Fig. 7. async-sync Domain Interface FIFO

designs.

IV. RESULTS

Fig. 4 shows the top level implementation for the test setup
used to generate the various designs explained in this paper.
The IP cores are abstracted out from the test setup. The
test simulation directly drives signals into the IP back-end
as though an IP were designed and directly connected. The
NoC in the evaluation performed here is simply a point-to-
point connection. It is implemented with nothing more than
wires between NW BE1 and NW BE2. This was done to
provide better area and power comparisons of the OCP blocks
themselves by not adding in extra IP logic. All blocks are
placed in close proximity for this evaluation. The IPs were
considered to be on the same domain, i.e. either clocked at
the same frequency, or unclocked asynchronous IP. For all the
designs with multiple domains, the leftmost and rightmost DI
in Fig. 4 were the domain crossing blocks.

There are five different cases implemented, which include:
a clocked system with a single clock domain (sync), clocked
circuit with a different clock frequency used for the NoC (sync-
sync-sync), asynchronous unclocked circuit (async), and mixed
clocked and asynchronous designs async-sync-async and sync-
async-sync (a GALS architecture). For each individual case,
the operation of the design was validated for four OCP design
modes: normal read/write, burst read/write, read/write with
out-of-order response and burst read/write with out-of-order
response.

The reported results use the Artisan library for the IBM
65nm 10sf process using full layout and parasitic extraction.
Design Compiler was used for synthesis, Modelsim was used
for simulation, and SoC Encounter was used for place, route,
and parasitic extraction. The power and delay numbers used
SDF (standard delay format) parasitic back annotation into
the Modelsim. The power numbers were generated using
parasitic extraction and activity factors from a simulation run
by importing a VCD (value change dump) file from Modelsim
into SoC Encounter. The simulation runs a set of read and
write commands to validate the functioning of the design. Post

layout timing was validated using PrimeTime with extracted
parasitics.

The operating frequency of all the designs with single clock
domain, i.e. sync, async-sync-async and sync-async-sync was
667MHz. For the multiply clock domain design, i.e. sync-sync-
sync, the operating frequency of the OCP and NoC domain
was 570MHz while each IP back-end operated at 667MHz.
For the asynchronous blocks the constraints for the handshake
controllers were specified based on the amount of logic in each
pipeline stage as described in [2]. The simulation testbench
performs 22 transactions consisting of 12 writes and 10 reads.

Tab. I and II show the results for designs with and without
clock domain crossing in the domain interfaces. Performance
is based on the simulation time for the testbench. Energy is
the average per transaction.

Designs which did not include extended capability did not
have those features compiled into the logic. It can be seen that
the addition of extra logic for the burst, tag or both burst and
tag, results in an increase in the area and power consumed
by each design with respect to the base design without any
extensions. Respective areas and power in Tab. II are over 3×
larger than those in Tab. I. The overhead of domain crossing
is also increased due to the addition of extra buffering using
FIFO structures. These DI FIFOs are all 8 words deep.

Tab. I allows us to compare purely clocked and asyn-
chronous designs. Designs that only use asynchronous com-
ponents, are substantially better than those which use only
clocked components in terms of area, performance and power.
Results in the table are all relative to the purely clocked design.
The async design shows up to a 8.9× improvement in power,
3.1× improvement in performance, and 1.4× improvement in
area over the sync design.

Tab. II compares designs with clock domain crossings. The
bulk of the OCP logic lies in the network domain, since the
clock domain crossing boundaries are in the far left and right
domain interfaces. Therefore, these result are largely domi-
nated by the network clocking methodology. As one would
expect, the GALS design, the sync-async-sync design, is far
superior to the clocked design operating at multiple frequen-



TABLE I
ENERGY, PERFORMANCE AND AREA COMPARISON FOR DESIGN WITH NO

DOMAIN CROSSING

Area Simulation Energy/trans. Area Performance Energy

(um2) Time (ns) (pJ) Benefit Benefit Benefit

sync Design

Normal 15,822.0 309.75 94.43 1.00× 1.00× 1.00×

Burst 17,422.8 210.75 74.84 1.00× 1.00× 1.00×

Normal + Tag 16,432.8 144.75 52.40 1.00× 1.00× 1.00×

Burst + Tag 18,337.8 144.75 58.06 1.00× 1.00× 1.00×

async Design

Normal 11,572.2 100.65 10.63 1.37× 3.08× 8.88×

Burst 14,218.8 81.36 13.09 1.23× 2.59× 5.72×

Normal + Tag 11,955.0 53.56 11.04 1.37× 2.70× 4.74×

Burst + Tag 13,518.0 52.62 12.49 1.36× 2.75× 4.65×

cies and the LAGS (async-sync-async – locally asynchronous
globally synchronous) design. One of the primary benefit of
asynchronous design is that it does not require synchronization
when signals move into an asynchronous domain.

The performance penalty for the synchronous system in this
work is due to the necessity to synchronize when moving into
a new clock domain. However, it is also partly due to the
implementation of elasticity and its stall mechanism. Hence
analysis of better stall protocols might make the results better
for designs that are partly or fully synchronous, but that is left
for future work.

V. CONCLUSION

This paper reports on the design and implementation of
OCP sockets for modular integration of IP blocks. The work
implements four OCP operational modes including standard
read write operation, burst transactions of up to eight words,
bus transactions with out-of-order responses, and burst transac-
tions with out-of-order responses. Additional bus byte enable
commands are included.

A novel domain interface (DI) is introduced, which acts as
a clear boundary for different clocked and unclocked domains
and also to create more modularity when interfacing new IP
cores to the OCP protocol. This DI concept enhances the
modularity of the design by requiring only a single OCP
master and slave front end to be shared between all IP
components in a system-on-chip (SoC).

The domain interface supports SoC designs with IP blocks
operating with independent frequencies. The IP blocks are
implemented with either clocked or asynchronous circuit
design timing methodologies. Clocked and asynchronous OCP
master and slave components were designed and implemented.
Five different domain interface blocks were implemented in
order to enable all possible multi-synchronous clocked and
asynchronous SoC designs, including globally asynchronous
locally synchronous (GALS) implementations. The DI block
enables the rapid design and evaluation of complete SoC
designs, consisting of arbitrary timing methodologies within
each IP block.

Five different designs were evaluated under a uniform test
bench. These included designs with a single global clock, fully
asynchronous, and multi-synchronous designs. Designs with
substantial asynchronous components produced the best results
in terms of area, performance, and energy per transfer. The

TABLE II
ENERGY, PERFORMANCE AND AREA COMPARISON FOR DESIGN WITH

DOMAIN CROSSING

Area Simulation Energy/trans. Area Performance Energy

(um2) Time (ns) (pJ) Benefit Benefit Benefit

sync-sync-sync Design

Normal 59,419.8 401.25 414.02 1.00× 1.00× 1.00×

Burst 63,574.8 242.25 275.28 1.00× 1.00× 1.00×

Normal + Tag 61,737.6 138.75 160.19 1.00× 1.00× 1.00×

Burst + Tag 66,683.4 138.75 182.27 1.00× 1.00× 1.00×

sync-async-sync Design

Normal 50,866.2 102.75 75.19 1.17× 3.91× 5.51×

Burst 55,956.0 98.25 79.05 1.14× 2.47× 3.48×

Normal + Tag 53,438.4 78.75 71.59 1.16× 1.76× 2.24×

Burst + Tag 57,557.4 78.75 81.97 1.16× 1.76× 2.22×

async-sync-async Design

Normal 51,586.8 332.70 226.84 1.15× 1.21× 1.83×

Burst 55,584.0 235.58 186.32 1.14× 1.03× 1.48×

Normal + Tag 54,436.8 178.58 144.49 1.13× 0.78× 1.11×

Burst + Tag 58,363.8 178.59 155.96 1.14× 0.78× 1.17×

purely asynchronous design has three times the performance
and approximately one-ninth the energy of the clocked design.
The GALS design also demonstrated almost four times the
throughput at less than one-fifth the energy per transaction.
Much of the performance is due to the decreased area and
performance penalty for synchronization as well as the lower
latency for asynchronous designs.

The presence of non-deterministic delays and any associated
data-validity scheme that interfaces to clocked designs comes
with a significant overhead. These costs are highlighted in the
results. The impact on clocked IP blocks was not investigated
in this study, but is left to future work. Likewise, the impact on
design time and the ability for the domain interface to simplify
back end integration will also be addressed in future work.

VI. ACKNOWLEDGMENTS

This material is based upon work supported by Semiconduc-
tor Research Corporation under task number 2235.001 and the
National Science Foundation under Grant Number 0810408.

REFERENCES

[1] Open Core Protocol Specification Ver.3, Open Core Protocol,
http://www.ocpip.org/.

[2] K. S. Stevens, Y. Xu, and V. Vij, “Characterization of Asynchronous
Templates for Integration into Clocked CAD Flows,” in 15th International
Symposium on Asynchronous Circuits and Systems. IEEE, May 2009,
pp. 151–161.

[3] C. E. Cummings, “Synthesis and Scripting Techniques for
Designing Multi-Asynchronous Clock Designs,” in SNUG
2001 (Synopsys Users Group Conference, San Jose, CA,
2001) User Papers, 2001, URL - http://www.sunburst-
design.com/papers/CummingsSNUG2001SJ AsyncClk.pdf.

[4] ——, “Simulation and Synthesis Techniques for Asynchronous FIFO
Design,” in SNUG 2002 (Synopsys Users Group Conference, San
Jose, CA, 2002) User Papers, 2002, URL - http://www.sunburst-
design.com/papers/CummingsSNUG2002SJ FIFO2.pdf.

[5] J. Cortadella, M. Kishinevsky, and B. Grundmann, “Synthesis of syn-
chronous elastic architectures,” in Proceedings of the Digital Automation
Conference (DAC06). IEEE, July 2006, pp. 657–662.


