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Abstract—Quantum machine learning (QML) is promising for po-
tential speedups and improvements in conventional machine learning
(ML) tasks (e.g., classification/regression). The search for ideal QML
models is an active research field. This includes identification of efficient
classical-to-quantum data encoding scheme, construction of parametric
quantum circuits (PQC) with optimal expressivity and entanglement
capability, and efficient output decoding scheme to minimize the required
number of measurements, to name a few. However, most of the empiri-
cal/numerical studies lack a clear path towards scalability. Any potential
benefit observed in a simulated environment may diminish in practical
applications due to the limitations of noisy quantum hardware (e.g.,
under decoherence, gate-errors, and crosstalk). We present a scalable
quantum-classical hybrid deep neural network (DeepQMLP) architecture
inspired by classical deep neural network architectures. In DeepQMLP,
stacked shallow Quantum Neural Network (QNN) models mimic the
hidden layers of a classical feed-forward multi-layer perceptron network.
Each QNN layer produces a new and potentially rich representation of
the input data for the next layer. This new representation can be tuned
by the parameters of the circuit. Shallow QNN models experience less
decoherence, gate errors, etc. which make them (and the network) more
resilient to quantum noise. We present numerical studies on a variety
of classification problems to show the trainability of DeepQMLP. We
also show that DeepQMLP performs reasonably well on unseen data
and exhibits greater resilience to noise over QNN models that use a deep
quantum circuit. DeepQMLP provided up to 25.3% lower loss and 7.92%
higher accuracy during inference under noise than QMLP.

I. INTRODUCTION

Quantum computing is one of the major transformative tech-
nologies. Although quantum computing is still in a nascent stage,
the community is seeking computational advantages with quantum
computers (i.e., quantum supremacy) for practical applications. Re-
cently, Google claimed quantum supremacy with a 53-qubit quantum
processor to complete a computational task in 200 seconds that might
take 10K years [1] (later rectified to 2.5 days [2]) on the state-of-
the-art supercomputers. This experiment was a significant milestone
for quantum computing even though the computational task used for
this experiment had no practical value.

Quantum machine learning (QML) is a promising application
domain to archive quantum advantage with noisy quantum computers
in the near term. Numerous QML models built upon parametric
quantum circuits (PQC), also referred to as quantum neural networks
(QNN), are already available in the literature [3]–[5]. A PQC is a
quantum circuit with tunable parameterized gates as shown in Fig.
1(b) (w1,w2,... are the tunable parameters). A PQC may generate
various output states based on the values of these parameters. QNN
models are claimed to be more expressive compared to the classical
neural networks [6]–[8]. In other words, QNN models have a higher
capability to approximate the desired functionality (e.g., classifying
data samples) compared to the classical models of a similar scale
(e.g., with the same number of tunable parameters/weights). Deep
Neural Networks (DNN) have experienced huge success in machine
learning (ML) in the past decade (essentially superseding most other
models) because they are powerful function approximators. With

an even higher ability to approximate functions, QNN holds great
potential for the future.

A conventional QNN architecture is shown in Fig. 1(b). In a
typical QNN model, the input data is encoded into a quantum state
using a suitable encoding scheme (e.g., angle encoding, amplitude
encoding, etc.) [9]. The encoding is followed by layers of PQC
with tunable parameters (w1,w2,... in Fig. 1(b)). These parameters
are analogous to weights in a classical neural network. In the end,
the output quantum state of the PQC is measured (/sampled) on the
appropriate basis (e.g., the default Pauli-Z measurement basis in IBM
quantum computers [10]). The sampling process is repeated many
times with the same parameters. A cost function is derived from the
measurements. A classical optimizer (e.g., gradient-descent) updates
the parameter values to minimize the cost.

The choice of the PQC can have a significant impact on the
performance (e.g., trainability) of a QNN model. For instance, deep
PQC with lots of parameters may be desirable for learning but
may experience vanishing gradient problems (also referred to as
barren plateaus) making it harder for the gradient-based optimizers
to navigate through the solution space [11]. Moreover, quantum
computers are plagued with various noise sources such as gate error,
readout error, decoherence, and crosstalk [12]. The output quantum
state can be random (i.e., meaningless) if the noise accumulation is
high. A large amount of noise can also induce a barren plateau in
the QNN solution space [13].

Shallow-depth circuits are preferred for QNN to avoid the afore-
mentioned issues [11], [14]. However, shallow-depth circuits may
often be unable to approximate complex functionality (similar to
shallow classical neural networks with small number of parameters).

In this article, we propose two new quantum-classical hybrid
deep neural network architectures: Quantum Multi-Layer Perceptrons
(QMLP) and DeepQMLP to partially address the aforementioned
issues. Both architectures are inspired by conventional Multi-Layer
Perceptron (MLP) networks used in deep learning. In MLP, multiple
layers of neurons are used to define and search through a solution
space for a given ML task (Fig. 1(a)). Neurons of successive layers
are connected through trainable weights. The first and the last layers
of MLP are commonly referred to as input and output layers. The
internal layers are referred to as hidden layers. Typically, MLP models
contain multiple hidden layers. In QMLP, the hidden layer of an MLP
is mimicked by a QNN layer as shown in Fig. 1(c). The QNN takes a
quantum encoded representation of the classical data and produces an
output representation (e.g., Pauli-Z expectation values of the qubits)
which is fed to the classical output layer. The network can be trained
with any conventional loss function. However, in this work, we only
use cross-entropy loss. In DeepQMLP, multiple shallow-depth QNN
models (two used in this work) are used as hidden layers of an MLP
(Fig. 1(d)). Each layer produces a new representation for the next
layer. For example, the qubit expectation values of the first hidden
layer in Fig. 1(d) are used as the inputs to the second hidden layer.
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Fig. 1. Conventional Multi-Layer Perceptron (MLP) and Quantum Neural Network (QNN) architectures (a)-(b), alongside the proposed Quantum Multi-Layer
Perceptrons (QMLP) and Deep Quantum Multi-Layer Perceptrons (DeepQMLP) architectures (c)-(d). While QMLP uses a deeper parameterized circuit to
accommodate larger search space, DeepQMLP uses multiple shallow-depth circuits. Shallower circuits provide greater robustness against quantum noises (less
accumulation of gate errors and decoherence over each circuits) to DeepQMLP over QMLP.

QMLP uses a deep QNN alongside a classical dense output layer
to exploit the higher expressive power of QNN. To accommodate a
larger search space, the quantum hidden layer in QMLP needs a deep
parameterized circuit. However, deep circuits are more error-prone.
DeepQMLP addresses the issue by using a series of shallow-depth
quantum circuits stacked one after another. The shallower circuits
require fewer number of gates and execution time which reduces the
accumulation of gate errors and decoherence. Thus, the architecture
shows more robustness against noise.

Contributions: We, (a) present two new quantum-classical hybrid
neural network architectures (QMLP and DeepQMLP) for classifi-
cation, (b) show the trainability of the proposed models through
numerical studies with 4 synthetic datasets and the ‘iris’ dataset
across 78 training runs with varying depth of the parametric quantum
circuits, and (c) present an empirical proof-of-concept study to exhibit
greater noise resilience of the DeepQMLP architecture.

II. PRELIMINARIES

Qubits and Quantum Gates: Qubit is analogous to classical bits
however, a qubit can be in a superposition state i.e., a combination
of |0〉 and |1〉 at the same time. Quantum gates such as single qubit
(e.g., Pauli-X (σx) gate) or multiple qubit (e.g., 2-qubit CNOT gate)
gates modulate the state of qubits. These gates can perform a fixed
computation (e.g. an X gate flips a qubit state) or a computation based
on a supplied parameter (e.g. the RY(θ) gate rotates the qubit along
the Y-axis by θ). A two-qubit gate changes the state of one qubit
(commonly referred to as the target qubit) based on the current state
of the other qubit (commonly referred to as the control qubit). For
example, The CNOT gate flips the target qubit if the control qubit is
in |1〉 state. Similarly, the CRZ(θ) gate rotates the target qubit along
Z-axis by θ if the control qubit is in |1〉 state.
Noise in Quantum Computation: Quantum gates are error-prone.
Besides, qubits suffer from decoherence i.e., they spontaneously
interact with the environment and lose states. Therefore, the output
of a quantum circuit is erroneous. The deeper quantum circuit needs
more time for execution and gets affected by decoherence. More gates
in the circuit also increase the accumulation of gate error. Thus, lower
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Fig. 2. (a) The Bloch sphere representation of a qubit. From any given point,
a qubit can be rotated along the X, Y, or Z-axis. In 2π intervals, the states
will repeat, (b) angle encoding used in this work, and (c) parametric layer
structure used in this work.

depth and the number of gates in the circuit improve noise resiliency.
Parallel gate operations on different qubits can affect each other’s
performance which is known as crosstalk.
Expectation Value of an Operator: Expectation value is the average
of the eigenvalues, weighted by the probabilities that the state is
measured to be in the corresponding eigenstate. Mathematically,
expectation value of an operator (σ) is defined as 〈ψ|σ|ψ〉 where
|ψ〉 is the qubit state vector. For example, the expectation value of
the Pauli-Z operator (σz) is 〈ψ|σz|ψ〉. If a qubit yields more |0〉
(|1〉) than |1〉 (|0〉), its Pauli-Z expectation value will be positive
(negative). This value will vary in the range [-1, 1].
Quantum Neural Network: QNN involves parameter optimization
of PQC to obtain a desired input-output relationship. The PQC
generally consists of three segments: (i) a classical to quantum data
encoding (also referred to as embedding in the literature) circuit, (ii)
parameterized circuit, and (iii) measurement operations. A variety of
encoding methods are available in the literature [15]. For continuous
variables, the most widely used encoding scheme is angle encoding
[8], [9], [15], [16] where a continuous variable input classical feature
is encoded as a rotation of a qubit along the desired axis (X/Y/Z).
For ‘n’ classical features, we require ‘n’ qubits. In this work, we use
RZ(X1) on a qubit in superposition to encode any classical feature
‘X1’ as shown in Fig. 2(b). The H (Hadamard) gate is used to put
a qubit in superposition. As the states produced by a qubit rotation
along any axis will repeat in 2π intervals (Fig. 2(a)), features are
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Fig. 3. Performance (loss and accuracy) of QMLP on the ’Iris’ dataset over
50 epochs with 1, 2, 3, and 4 parametric layers. Performance improves with
added layers (lower loss/higher accuracy after the same number of epochs).

generally scaled within 0 to 2π in a data pre-processing step. One
can restrict the values between -π to π to accommodate features with
both negative and positive values.

The parametric circuit has two components: entangling operations
and parameterized single-qubit rotations. The entanglement opera-
tions are a set of two-qubit (or more) operations between pairs of
qubits to generate correlated states [16]. The following parametric
single-qubit operations are used to define and search through the
solution space. Note that, one can also use parametric two-qubit oper-
ations in entanglement to expand the search space. This combination
of entangling and single-qubit rotation operations is referred to as
a parametric layer in QNN. We use the parametric layer shown in
Fig. 2(c) throughout this work. Here, we use qubit pair-wise CRZ(θ)
gates to create the entanglement followed by rotations along Y-axis
using RY(θ) operations. Normally, these layers are repeated multiple
times to extend the search space of QNN [8], [9]. The measurement
operations are chosen to accommodate the desired cost function.

III. PROPOSED ARCHITECTURES

A. QMLP

QMLP has two major components: (i) Hidden Quantum Layer
and (ii) Classical Dense Output Layer. Structurally, the hidden
quantum layer is similar to the conventional QNN. However, unlike
conventional QNN, which uses the measurement operations as a
direct component of the cost function, this hidden quantum layer
produces a representation of the data which is used as an input to the
classical dense layer. The hidden layer outputs and the classical layers
are connected by trainable weights that further expand the search
space. QMLP utilizes the higher expressive power of the hidden
quantum layer to build powerful hybrid classification models.
Hidden Quantum Layer: The hidden quantum layer starts with
angle encoding of the classical feature variables. Each feature is
scaled within 0 to 2π (/-π to π). We use rotation along the Z-axis
on a qubit which is in a superposition state (created using Hadamard
gate prior to the rotation) as our preferred angle encoding method
[8]. Note that one can use other encoding methods in QMLP as well.
The encoding is followed by a multi-layer parametric circuit. We use
pairwise CRZ(θ) operations to create the entanglement followed by
parameterized rotations of the qubits along the Y-axis using RY(θ)
operations. Again, any suitable parametric circuit structure may be
used. The output from the hidden quantum layer is taken as the Pauli-
Z expectation values of all the qubits. This hidden layer requires
‘n’ qubits for a classification problem with ‘n’ continuous feature
variables. It also produces ‘n’ output features which are fed to the
densely connected output layer. The number of trainable parameters

in our chosen hidden layer is ‘2*n*L’ where L is the number of
parametric circuit layers.
Classical Dense Output Layer: The output layer is a classical dense
layer. The number of neurons is equal to the number of classes in the
given problem. These neurons are densely connected with the hidden
quantum layer outputs. For a classification problem with ‘n’ features
and ‘m’ classes, there are ‘n*m’ trainable weights between the hidden
layer and the output layer. The output neurons use SoftMax activation
to produce the class probabilities.
Training QMLP: The network can be trained using a conventional
mini-batch gradient descent approach with any suitable optimizer
(e.g., Adam, Adagrad, etc.). The output of the dense layer is used to
calculate the loss of the network for a batch of samples using any
suitable loss function (e.g., MSE, MAE, Cross-entropy Loss, etc.).
The loss can be backpropagated using the backpropagation algorithm
to compute gradients and update the trainable weights/parameters in
the network using gradient-based optimization algorithms. Multiple
methods exist to calculate the gradient of a quantum circuit output
with respect to the parameters such as parameter-shift rule, finite
difference, adjoint, backprop, etc. [17]. Parameter-shift rule or finite
difference methods rely upon repeated evaluation of the outputs with
slightly altered parameters. Although adjoint, backprop, etc. methods
are much faster than finite difference/parameter-shift rule, they are not
suitable for hardware as they require the knowledge of intermediate
states of the circuit which is only accessible during simulation. In
this work, we use the adjoint method [17].

Example 1: An example of the QMLP architecture (with two
parametric layers) is shown in Fig. 4 to classify the ‘Iris’ dataset
which contains 150 samples that belong to 3 different classes. The
dataset has 4 features. These features are continuous variables that are
scaled within 0 to 2π. The hidden quantum layer uses 4 qubits. The
output dense layer has 3 neurons. Overall, the network has (2x4x2 +
4x3) or 28 trainable parameters/weights (16 circuit parameters and 12
classical weights). In Fig. 3, we show the training loss and accuracy
of the dataset over 50 epochs of training using a different number of
circuit layers (referred to as 1L, 2L, 3L, and 4L; 1L corresponds
to 1 parametric circuit layer). Cross-entropy loss is used for the
loss function, Adagrad with a learning rate of 0.5 is used as an
optimizer. Quantum noise is not considered. Note that the learning
improved with an increasing number of layers as evident from Fig. 3
(achieving lower loss/higher accuracy at the same number of epochs).
For example, the loss was 56.3% lower and the accuracy was 1.35%
higher with 4L compared to 1L after 20 epochs. However, increasing
the number of layers beyond 4 yielded diminishing returns as evident
from Fig. 6(a).

B. DeepQMLP

Note that the performance improvement with an increasing number
of layers in QMLP may not hold true under noise. In reality, deeper
circuits are more susceptible to quantum noise due to higher gate error
accumulation and decoherence. A circuit with 4 layers has twice as
many gates and requires twice as much execution time as a 2L circuit.
Therefore, the output state will be considerably more erroneous in a
4L circuit compared to a 2L circuit.

For further illustration, we took the trained QMLP models for ‘Iris’
classification with 1, 2, 3, and 4 layers (Fig. 3) and measured the
loss and accuracy over the entire training dataset using the noise
parameters of IBM Melbourne device (simulated using Qiskit [10]).
The results are shown in Fig. 5(a)-(b). Note that, even though, the
training produced a lower loss and higher accuracy with an increasing
number of layers (from 1 to 4 in Fig. 3), during inference under noise



RZ( )

RZ( )

RZ( ) RY( )

RY( )

RY( )

RY( )

- - 7.3 f1

- - 2.9 f2

- - 6.30 f3

- - 1.80 f4

- - 2.90 f1

- - 2.07 f2

- - 2.87 f3

- - 2.26 f4

RZ( )H

RZ( )H

RZ( )H

RZ( )H

RZ( )

RZ( )

RZ( ) RY( )

RY( )

RY( )

RY( )

E1

RZ( ) RZ( )

RZ( )

RZ( )

RZ( ) RY( )

RY( )

RY( )

RY( )

RZ( )H

RZ( )H

RZ( )H

RZ( )H RZ( )

H

H

H

H

RZ( )

RZ( )

RZ( ) RY( )

RY( )

RY( )

RY( )RZ( )

RZ(E1)

RZ(E2)

RZ(E3)

RZ(E4)

E2

E3

E4

E3

E1

E2

E4

E5

E6

E7

E8

Features of ‘Iris’ Dataset

Scaled Features (0-2

E: Pauli-Z 
Expectation 

Value 
of the qubit

Parametric Layer-1 Parametric Layer-2

Parametric Layer-1 Parametric Layer-2Encoding

Encoding

Encoding

Dense
Output
Layer

Dense
Output
Layer

QMLP

DeepQMLP

Fig. 4. The QMLP and DeepQMLP network architectures used in this work (with 2 parametric layers) for ’Iris’ dataset classification. (f1, f2, f3, f4) are the
4 features of the dataset. Both these networks require 4 qubits. The number of trainable parameters i.e., θ1, ..., θ16 in these two networks are identical. The
final layer is a classical dense layer (3 neurons) with SoftMax activation.

Loss may increase 
with added layers

Accuracy may decrease 
with added layers

(a) (b)

Fig. 5. (a) Loss and (b) accuracy of the trained QMLP models (’Iris’
dataset with 1, 2, 3, and 4 parametric layers) on the training data during
inference under noise (using noise parameters of IBM Melbourne device).
The performance may decrease (higher loss/lower accuracy) with added layers
under noise. A larger accumulation of noise in deeper circuits corrupts the
output quantum state significantly which causes performance degradation.

(which is a reasonable use case since the models are expected to
be used in actual noisy quantum hardware) QMLP with a higher
number of layers performed poorly. For example, QMLP with 4
layers showed 8.99% higher loss and 4.62% lower accuracy than the
1 layer model. As a potential solution to address this limitation of
QMLP, we propose DeepQMLP where we use multiple shallow-depth
quantum circuits stacked one after another instead of a deeper circuit.
This architecture is analogous to classical MLP with multiple hidden
layers. Here, the classical hidden layers are mimicked by shallow-
depth PQC.
Hidden Layers in DeepQMLP: Each hidden layer of DeepQMLP
produces a representation of the data that is fed to the next layer
in the network. The first hidden layer in DeepQMLP is identical
to the hidden layer in QMLP. However, instead of feeding the
output expectation values to a densely connected classical layer, these
outputs are again encoded as a quantum state in a subsequent PQC
using angle encoding. This PQC produces another set of outputs that
are encoded as the quantum state of the next PQC (if there are more
than two hidden quantum layers). The last hidden quantum layer is
connected to a densely connected classical layer similar to QMLP.
The circuit structure of these hidden layers can be different from each
other. However, in this work, we use identical circuit structures for
all the hidden layers. The training procedure is similar to QMLP.

Example 2: An example of the DeepQMLP architecture is shown
in Fig. 4 to classify the ‘Iris’ dataset. The 4 input classical features
are encoded into the qubits of the first hidden layer using angle
encoding. The four expectation values of the qubits from the output
of the first hidden layer (E1, E2, E3, and E4) are encoded as a
quantum state in the next hidden layer using angle encoding. The

output of the second hidden layer feeds the classical dense layer
with 3 neurons. Overall, the network has (2*4*1*2 + 4*3) or 28
parameters (16 circuit parameters and 12 classical weights). In Fig.
6(b), we show the training loss and accuracy of DeepQMLP over 50
epochs of training (with 4, 6, and 8 cumulative circuit layers). We
show the performance of QMLP with a similar number of circuit
parameters in Fig. 6(a). Note that, the performance (noiseless) of
the DeepQMLP models stayed close to the QMLP models with the
same number of parameters (except the 4 layer one). For example, the
difference in training loss and accuracy between 8 layer QMLP and
DeepQMLP models was below 1%. This empirical study shows that
both QMLP and DeepQMLP architectures are trainable and under
ideal scenarios (noiseless), the DeepQMLP model performance is at
par with the QMLP models. In the following section, we show that
the DeepQMLP models may show greater noise resilience during
inference due to shallower circuits.

IV. EVALUATION

In this section, we evaluate the trainability of the proposed models
through empirical studies on various datasets. We train models with a
varying number of parametric circuit layers to investigate their impact
on performance. Additionally, we compare the performance of QMLP
and DeepQMLP during inference under varying degrees of noise and
demonstrate that DeepQMLP is more noise resilient.
Datasets: Apart from the ‘Iris’ dataset, we use four other synthetic
datasets - R1 sq, P1 sq, R2 sq, and P2 sq with non-linear decision
boundaries for classification as shown in Fig. 8. All these synthetic
datasets have 2 features (both features are continuous variables
varying between -1 and +1). R1 sq and P1 sq data samples are
divided into two classes while R2 sq and P2 sq datasets have 3
classes each (denoted by different colors in Fig. 8). A total of 180
samples from each dataset are randomly picked for the training
purpose. To keep the datasets balanced, we choose 90 samples/class
for R1 sq and P1 sq and 60 samples/class for R2 sq and P2 sq.
Framework and Setup: We develop a Python framework to imple-
ment the networks in this study using Pennylane, Pytorch, and Qiskit
frameworks [10], [17], [18]. We use the Pennylane framework to
model the quantum circuits and Pytorch to model and train the hybrid
network. Qiskit is used to perform all the simulations of quantum
circuits under noise. In all the training runs, we use an initial learning
rate of 0.5 and train the models using mini-batch gradient descent
with a batch size of 30. We use the Adagrad optimizer which updates
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Fig. 6. Loss and accuracy over 50 epochs of training (’Iris’ dataset) with 4, 6, and 8 parametric layers with the (a) QMLP, and (b) DeepQMLP architectures;
(c) loss and (d) accuracy - at the end of the 36 training runs on the synthetic datasets with the QMLP and DeepQMLP architectures with 4, 6, and 8 parametric
layers. In all the training runs, both QMLP and DeepQMLP networks achieved a small cross-entropy loss and high accuracy over the training dataset which
indicates that these networks are trainable. DeepQMLP performance is mostly at the same level with QMLP (training under zero noise).
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Fig. 7. (a) Loss and (b) accuracy of the trained QMLP and DeepQMLP
models (4, 6, and 8 parametric layers) on test data (synthetic datasets).

the learning rate for each trainable parameter across multiple epochs
based on their update rates in the previous epochs. This enables us
to start all the training with a relatively higher learning rate of 0.5.
We restrict the training to 50 epochs.

We use the noisy device emulator in Qiskit (FakeMelbourne) to
gauge the impact of various noise sources (gate errors, decoherence,
and measurement errors) on the performance of trained QML models.
We also use depolarizing noise channels to simulate gate errors
in isolation for one of the studies [19]. The Pauli-Z expectation
values at the output of the PQC are calculated analytically in noise-
less simulation. Noisy expectation values are calculated from 10000
samples. Interested readers can look into the noise simulation of the
Qiskit framework for further details [10].
Trainability of QMLP and DeepQMLP: In the previous section,
we have shown the training cost/accuracy curves of QMLP and
DeepQMLP with varying number of layers to classify the ‘Iris’
dataset. Here, we pick the synthetic datasets and train them using
QMLP and DeepQMLP architectures with 4, 6, and 8 parametric
layers. Note that, a 4 Layer QMLP model has the same number of
trainable parameters as a 4 Layer DeepQMLP model (2 parametric
layers per hidden quantum layer) in this work. A total of 4x3x2
or 24 models are picked to further study the trainability of QMLP
and DeepQMLP. Each model is trained separately from 3 different
random initializations of the parameters/weights. A total of 24x3 or
72 training runs are performed on the synthetic datasets. The cross-
entropy loss and accuracy over the entire datasets after 50 epochs of
training are shown in Fig. 6(c) and (d). The first 24 (12 for QMLP
and 12 for DeepQMLP) data points (from left to right) are for 4 layer
models. The next 24 data points are for the 6 layer models, and the
last 24 data points are for the 8 layer models. Note that, apart from 3
different runs (DeepQMLP models with 4 layers - 2 in each hidden
layers), all the remaining training runs ended with cross-entropy loss
less than 0.2 and accuracy close to 100%. These results indicate that
the proposed QMLP and DeepQMLP models are trainable. The 3
outliers in the study may be the result of poor initialization of the
parameters.
Generalization of the training: To investigate the generalization
capability of the trained models, we pick a further 180 samples from

the synthetic datasets (none of them were in the training set) and
perform inference with all 72 trained models. The results are shown
in Fig. 7. Note that, the loss remained smaller than 0.25, and the
accuracy remained over 90% (except three).
QMLP vs. DeepQMLP: We perform inference of the trained models
with the training data under simulated noise. For a fair comparison,
we pick 34 models (17 for QMLP and 17 for DeepQMLP) from the
72 trained models discussed above. In these 34 models, the difference
in loss and accuracy between the QMLP and the corresponding
DeepQMLP model (with the same dataset, the same number of
trainable parameters) were on the lower side at the end of the training.

We model the single-qubit and two-qubit gate errors using depo-
larizing noise channels [19]. Note that, in this simulation, all the
single-qubit gates in the circuit have a constant error probability
(nominal value assumed to be 0.1%). Similarly, all the two-qubit gates
have a nominal error probability of 1%. Later we swept these error
probability values with the following scaling factors: 0.25, 0.5, 1.0,
2.0, and 4.0. Note that, the nominal 0.1% and 1% error probabilities
of the single-qubit and two-qubit gate errors are at par with the
reported noise levels of the current generation of IBM quantum
computers. We avoided other quantum device architectural constraints
(e.g., limited connectivity [19]) to avoid unnecessary complexity in
the comparison. The results are shown in Fig. 9(a)-(e).

For lower error values, both QMLP and DeepQMLP models
showed similar loss and accuracy over the training data (for scaling
factors of 0.25, 0.5, and 1.0 in Fig. 9(a)-(c)). This is expected because,
at lower noise levels, the output states of the quantum circuits (both
in QMLP and DeepQMLP) are not far from the ideal. However, at a
higher noise level (scaling factor 2), the DeepQMLP model showed
lower loss and higher accuracy over the QMLP models as shown
in Fig. 9(d) (indicated by the yellow double arrows). At these noise
levels, both QMLP and DeepQMLP hidden quantum layers produce
erroneous output states that are far from the ideal. However, the
shallow-depth DeepQMLP hidden layer outputs are less erroneous
compared to the QMLP hidden layers because of a smaller number
of gates per hidden layer. Therefore, the overall network performance
is less affected by gate noises in DeepQMLP models. On average,
DeepQMLP showed 20.86% lower loss and 1.12%, higher accuracy
over the QMLP models at 2x scaling of the noise. The gap increased
further at 4x scaling of the noise as evident in Fig. 9(e). On average,
DeepQMLP models showed 25.3% lower loss and 7.93% higher
accuracy over the QMLP models at 4x noise scaling. This study
indicates a greater noise resilience of DeepQMLP over QMLP.

V. CONCLUSION

We present two new quantum-classical hybrid neural network
architectures QMLP and DeepQMLP for classical data classification.
We show the trainability of these models through empirical studies
on 5 different datasets and 78 training runs. We also show that the
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Fig. 8. Four synthetic datasets used in this work. The colors denote association to different classes. R1 sq and P1 sq datasets have 2 classes. R2 sq and
P2 sq datasets contain 3 classes.
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Fig. 9. Loss and accuracy of the trained QMLP and DeepQMLP models on the synthetic training datasets under varying levels of gate noises (a)-(e) (1q
and 2q denote single-qubit and two-qubit gates, respectively). Under lower noise levels, both QMLP and DeepQMLP provide similar loss and accuracy in
inference. At larger noise levels, DeepQMLP models show better loss and accuracy over QMLP models. The gap increases at even higher noise levels which
indicate greater robustness of DeepQMLP over QMLP.

trained models generalize well. The DeepQMLP model shows greater
noise resilience over the QMLP models (up to 25.3% lower loss and
7.93% higher accuracy). These architectures provide new directions
to develop large-scale machine learning applications.
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