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Abstract—RePlAce is a state-of-the-art prototype of a flat,
analytic, and nonlinear global cell placement algorithm, which
models a placement instance as an electrostatic system with
positively charged objects. It can handle large-scale standard-cell
and mixed-cell placement, while achieving shorter wirelength and
similar or shorter runtimes than other state-of-the-art placers
on the ISPD-2005/2006 standard-cell benchmarks; however, the
runtime of RePlAce on these benchmarks ranges from 15
minutes to 5+ hours on a 2.6 GHz Intel Xeon server running
a single thread, rendering development cycles prohibitively long.
To address this concern, this paper introduces a multi-threaded
shared-memory implementation of RePlAce. The contributions
include techniques to reduce memory contention and to effec-
tively balance the workload among threads, targeting the most
substantial performance bottlenecks. With 2–12 threads, our
parallel RePlAce speeds up the bin density function by a factor of
4.2–10×, the wirelength function by a factor of 2.3–3×, and the
cost gradient function by a factor of 2.9–6.6× compared to the
single-threaded original RePlAce baseline. Moreover, our parallel
RePlAce is ≈3.5× faster than the state-of-the-art PyTorch-based
placer DREAMPlace, when both are running on 12 CPU cores.

Index Terms—VLSI placement, multithreading, parallelism

I. INTRODUCTION

Placement is an important step in VLSI design, directly
impacting timing closure, die utilization, routability, and de-
sign turnaround time [1]. Among all academic placers, recent
electrostatic-based global placers, such as ePlace and RePlAce,
achieve the best known results in terms of half-perimeter
wirelength [2], [3]. ePlace uses electrostatics-based global-
smooth density cost function, which is solved numerically by
a fast Fourier transform (FFT). The nonlinear optimization is
solved using Nesterov’s method [4], which provides faster con-
vergence, using the Lipschitz constant to dynamically predict
the step length. RePlAce extends ePlace with a fast nonlinear
engine for standard-cell, mixed-size, and 3D-IC mixed-size
placement, achieving superior results and a lower runtime
than ePlace; however, RePlAce still requires hours to legally
place industrial-grade circuits. Recent placer DREAMPlace
considerably reduces the runtime using PyTorch’s engine, but,
for the moment, it runs efficiently only on GPUs [5].

To address the runtime concern on generic and most widely
available CPU-based hardware platforms (multicore CPUs),
we propose and design an efficient parallel implementation
of RePlAce that uses the OpenMP shared memory parallel
programming library [6]. The contributions of the paper are
summarized as follows:

• The first detailed exploration of strategies to accelerate
RePlAce via shared memory parallelism.

• The acceleration of global placement by reducing mem-
ory traffic through cache-aware data structures, privatiza-
tion of the overlap sum in the bin density, loop fission in
the cost gradient function, and workload balancing in the
wirelength and wirelength gradient functions.

• At 12 CPU threads, ≈3× speedup over RePlAce [3] and
≈3.5× speedup over DREAMPlace [5] running on CPU.

The rest of the paper is organized as follows. Section II sum-
marizes related work. Section III-A formally introduces the
global placement (GP) in RePlAce. Section IV identifies the
phases in GP that dominate the execution time and describes
our approach to reduce memory traffic. Section V details our
parallel RePlAce implementation, while Section VI presents
experimental results. Section VII concludes the paper.

II. RELATED WORK

VLSI placers use analytical models, optimizing a global
convex wirelength function with multiple objectives, or
quadratic models. Due to high runtime, their acceleration is
an active research topic.

Even though RePlAce is an analytic placer [3], shared-
memory parallel implementations of quadratic placers are
relevant to our work. Parallel SimPL [7] optimizes throughput
by using compressed sparse row matrix multiplication and
by exploiting Intel x86 SSE vector instructions. It achieves
speedup of up to 2.4× with 8 threads for global placement on
the ISPD-2005 benchmarks [7], but fails to scale effectively
due to memory contention. POLAR 3.0, on the other hand,
is based on a divide-and-conquer cell partitioning scheme [8].
It reports speedup of up to 4.2× with 16 threads for global
placement on ISPD-2005 benchmarks.

Recent efforts to accelerate analytical placers focus on using
GPUs. For instance, Lin et al. [9] represent the circuit as a
sparse graph and employ five GPU kernels that convert the
wirelength gradient computation into a sequence of sparse ma-
trix multiplications and vector operations, achieving a speedup
of about 170×. In RePlAce, wirelength gradient accounts for
about one third of the runtime; hence, this speedup would
enable ≈1.5× faster placement. Their GPU-accelerated bin
density yields speedups from 4.3× to 7×. The most recent
GPU-placer is DREAMPlace [5]. It is built on the idea of
using features from machine learning frameworks (PyTorch



specifically), such as the nonlinear optimization engine. It
achieves speedup of up to 30× on global placement by casting
analytic placement into neural net training and implementing
the relevant custom CUDA operators. While its architecture
would allow to perform the forward and backward propaga-
tion in shared memory, a multithreaded implementation of
the operators is currently lacking and the performance of
DREAMPlace is not yet satisfactory on CPU nodes. While
GPUs have proven to be a fit architecture for accelerating
analytical placement, the off-the-shelf hardware needed to
obtain such speedups is typically more expensive than a
standard ≈8-cores CPU.

Other prior work includes GPU-based implementations of
TimberWolf [10] and quadratic placers [11], [12], and shared-
memory implementations of placement legalization [13].

III. BACKGROUND

A. Analytical Placement

A placement instance is a hyper-graph G = (V,E,R),
where V is a set of vertices (cells and macros), E a set of
hyper edges (nets), and R the placement region decomposed
into m×m rectangular grids (bins). A placement solution is a
pair of integer sets v = {x1, . . . , xn, y1, . . . , yn}, where (xi,
yi) is the placed location of the origin of the cell ci and n is
the total number of cells. A legal placement solution assigns
vertices to bins, horizontally aligned with the boundaries of a
placement row and without overlapping other cells.

Placement is typically performed in three steps: initial,
global, and detailed placement. The initial placement aims to
minimise the wirelength unconstrained by density and legality
concerns. The detailed placement legalises the design after
the global placement. RePlAce, the focus of this paper, is a
global placer and the most computationally intensive of the
three steps. Both RePlAce and our work use an established
quadratic placer [14] in the initial placement and a well-known
detailed placer [15], without modification.

B. Global Placement with RePlAce

The objective of global placement is to minimize the half-
perimeter wirelength (HPWL) of all nets e ∈ E:

HPWL(v) =
∑
e∈E

(
max
i,j∈e

|xi − xj |+max
i,j∈e

|yi − yj |
)
. (1)

Here, i and j are net pins, while x and y are pin coordi-
nates. Since HPWL is not differentiable, numerous smoothing
strategies have been proposed in the past [2]. RePlAce uses
weighted-average strategy [16], which approximates the wire-
length as

W̃x(e) =

∑
i∈e xi exp (xi/γ)∑
i∈e exp (xi/γ)

−
∑

i∈e xi exp (−xi/γ)∑
i∈e exp (−xi/γ)

, (2)

where parameter γ controls the smoothness and accuracy of
the approximation. The total wirelength W̃ (v) (the sum of
W̃x(v) and W̃y(v)) is smooth and differentiable.
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Fig. 1. GP breakdown, averaged over ISPD-2005/2006 benchmark circuits.

Given a placement instance v, its bin density ρb(v) equals

ρb(v) =
∑
i∈V

lx(b, i)ly(b, i), (3)

where lx(b, i) and ly(b, i) are the horizontal and vertical
area overlaps between bin b and cell ci. Besides minimizing
HPWL, global placement must achieve a density below a
user-specified target density. As a consequence, the global
placement objective can be defined as the cost function

min
v
f(v) = W̃ (v) + λN(v). (4)

Here, N is the density penalty and the penalty factor λ
balances the influence of wirelength and density on the cost
function. Unlike prior analytical placers [17], RePlAce models
the density penalty using an electrostatic analogy [2], in which
a cell ci is modeled as a positively charged particle whose
electric charge equals the cell area. To obtain the system
potential energy (density) and the electric field (density gra-
dient), RePlAce uses an FFT library that numerically solves a
Poisson’s equation [2], [3]. Finally, RePlAce adopts Nesterov’s
method to solve the cost optimization problem.

IV. REPLACE ALGORITHM AND ANALYSIS

We present here a detailed runtime analysis of RePlAce.
Then, we introduce new data structures to improve memory
access efficiency. Our parallel implementation of RePlAce, de-
scribed in the next section, employs these new data structures.

A. Runtime Analysis

We ran RePlAce on the ISPD-2005/2006 benchmarks and
aggregated the runtime across all of them. According to the
results, global placement is the main bottleneck, accounting
for more than 80% (≈81.7%) of total runtime. Fig. 1 shows
that the most time-consuming global placement tasks are com-
puting the gradient of the cost function (≈45%), computing
the weighted average of the wirelength (≈21.2%), computing
the bin density and electric potential (≈26.3%). Updating the
placement, i.e., moving the cells and updating the step length,
takes the least amount of time (≈7.5%) and we will thus ignore
it. Bin density computation takes slightly longer (≈55%) than
solving the potentials and electric fields using an FFT.

Our work parallelizes 44.9% + 0.55 · 26.3% + 21.2% =
80.5% of the entire global placement flow or, alternatively,
80.5% · 81.7% = 65.7% of the total CPU time. According



TABLE I
OUR SLIM DATA TYPES, ALLOWING REDUCED MEMORY TRAFFIC. ALL STRUCTURES FIT INTO A STANDARD 64-BYTE WIDE CACHE LINE.

fpos2_t pin_t net_t cell_phy_t cell_den_t area_t bin_t
float x fpos2_t expL pin_t pinArray[] pin_t** pinArrayPtr pos2_t binStart pos2_t coord fpos2_t min
float y fpos2_t expR fpos2_t sumNumL int pinCNT pos2_t binEnd long int terminArea fpos2_t max
Size: 8 bytes fpos2_t coord fpos2_t sumNumR char type fpos2_t min float virtArea fpos2_t field

int pinID fpos2_t sumDenL Size: 16 bytes fpos2_t max float binDensity float cellArea
pos2_t int moduleID fpos2_t sumDenR fpos2_t size float fillerDensity float fillerArea
int x int netID fpos2_t min float scale Size: 32 bytes float potential
int y char metaData1 fpos2_t max char type Size: 36 bytes
Size: 8 bytes char metaData2 int pinCNT Size: 48 bytes

Size: 40 bytes Size: 64 bytes

to Amdahl’s law, the maximum achievable speedup is 2.91×.
For T threads, the ideal speedup is

S(T ) =

(
34.3% +

65.7%

T

)−1
. (5)

Consequently, the maximum speedup for 2–12 threads is 1.49–
2.51×. We, however, achieve even higher speedups, because
we first address high memory traffic and poor data locality.

B. Reducing Memory Traffic

Detailed profiling of the wirelength, bin density, and cost
gradient computations revealed that all three are memory-
bound. Hence, our first acceleration strategy, prior to paral-
lelization, is to reduce the memory traffic and increase data
locality. Our solution is to introduce new data structures (see
Table I) into RePlAce, which are subsets of the original data
structures and which can fit into a standard 64-byte cache line.
They are carefully designed to optimize for data locality in the
placement functions that access them frequently.

1) Pins in Placement Instance: Our first strategy towards
increasing data locality is to minimize the memory traffic
incurred while computing the wirelength W̃ (v), by defining
a new data structure pin_t, which holds the pin data close
to the wirelength-related data that would otherwise have to
be frequently recomputed. Therefore, pin_t fields are pin
IDs, the cells to which the pins belong (moduleID), and the
nets whose terminal the pins are (netID). In addition, pin_t
holds pin coordinates coord and the exponential denominators
expL and expR, required to efficiently compute W̃ (v). Here,
L and R stand for left and right, respectively, while coord are
instances of structure fpos2_t (floating point 2-D position).

2) Nets in Placement Instance: Nets are defined by the
number of pins pinCNT and the list of pin IDs pinArray .
Knowing that wirelength computation requires traversing all
nets and computing per-net wirelength, we keep all data that
is frequently accessed—the coordinates of the net’s furthest
pins (min and max ), and the per-net sums in numerators
and denominators of (2)—as part of the same data structure
net_t. This has another advantage: it allows computing the
final wirelength as a parallel sum of partial wirelengths.

3) Cells in Placement Instance: Another new slim data
type is cell_phy_t, containing only data required by the
wirelength gradient computation: the list of cell pins, the
number of cell pins, and the cell type (standard, macro, filler).

While computing bin density, cell size and location (de-
termined by the coordinates of two extreme corners of the
cell rectangle, min and max) are frequently accessed val-
ues. Hence, we choose to create a dedicated data structure
cell_den_t, to keep close the data required for computing
bin density: the location, the size (size), the type (type) and
scale factor1 of the cell. Additionally, cell_den_t caches
the indices of two bins, binStart and binEnd, allowing the
density computation function to traverse only those bins in
the placement region that overlap with the given cell.

4) Bins in Placement Instance: The placement region is
decomposed into an m×m grid where m = dlog2

√
ne for n

cells. This decomposition is tailored so that, on average, one
cell occupies one bin and the total number of bins is a power
of 2, which facilitates efficient FFT transpositions.

In RePlAce, a bin in the placement region is characterized
by its position (coord), electric field (field), electric potential
(potential), and area overlap with different types of objects
(standard cells, fillers, terminals, virtual nodes etc.). Some of
this information is loop-invariant or accessed by particular
functions only. To address that, we introduce two new data
structures: area_t and bin_t. The former keeps the loop-
invariant information consumed by the FFT solver, while the
latter keeps bin location data near to its electrical properties.

C. Original Multithreaded RePlAce

A straightforward OpenMP multithreaded implementation
of RePlAce is provided by its authors [3]. It accelerates
global placement by ≈2× on average, but suffers heavily
from congestion. For the wirelength, it allocates one thread
per each net. For the cost gradient, it forks one thread per cell,
computes the preconditioned cost for that cell, and then joins.
In the sections that follow, we describe our new approach to
parallelizing RePlAce.

V. PARALLEL IMPLEMENTATION

A. Wirelength

Algorithm 1 shows the most computationally intensive
subroutine of the wirelength computation (after rewriting the
original RePlAce code to use our new slim data structures
net_t and pin_t); it is the computation of the left and right
exponential terms in (2), which enumerates each net in the

1RePlAce periodically updates the cell size by a scale factor [3]; the details
and rationale for doing so are beyond the scope of this paper.



Algorithm 1 Our parallel wirelength computation. Inputs:
Nets E, pins P, T threads, workload distribution w[].

1: #pragma omp parallel num_threads(T) {
2: t = omp get thread num()
3: start = (t ≥ 1) ? w[t− 1] : 0
4: end = (t < T − 1) ? w[t] : netCNT
5: for all nets e ∈ E, start ≤ i < end do
6: numL, numR, denL, denR = 0
7: for all pins p ∈ e do
8: Compute and update p.expL
9: numL += p.coord · p.expL

10: denL += p.expL
11: Compute and update p.expR
12: numR += p.coord · p.expR
13: denR += p.expR
14: end for
15: e.sumNumL = numL, e.sumNumR = numR
16: e.sumDenL = denL, e.sumDenR = denR
17: end for
18: }
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Fig. 2. The execution times of the wirelength function on the BIGBLUE4
benchmark, for our static workload balancing, default static scheduling, and
dynamic scheduling with granularity equal to 1 (one net per thread).

placement instance along with all of the pins in each net. To
parallelize this computation, we employ OpenMP parallel-for
loop constructs and start with two extreme scheduling strate-
gies: a default static scheduler that assigns an approximately
equal number of nets to each thread, and a dynamic scheduler
that assigns one net per thread at a time. Detailed profiling
shows that the the static scheduler suffers from workload
imbalance because nets have variable number of pins, while
the dynamic scheduler, which exhibits better workload bal-
ance, suffers from synchronization overhead. To address this
concern, we reimplemented the static scheduler to estimate the
per-thread workload by the total number of pins across all nets,
1
T

∑
e∈E

e.pinCNT , as opposed to the total number of nets; here,

T is the number of threads. Fig. 2 compares the performance
of these strategies and shows that the updated static scheduler
yields the shortest execution times. Fig. 3 provides a detailed
breakdown of the per-thread workload: in most cases, it is less
than 0.6% away from the mean.

B. Bin Density

Bin density is computed as the sum of the overlap surface
areas between the bins and the placed cells. This necessitates a
doubly-nested loop that traverses each cell and its overlapping

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

ADAPTEC1 ADAPTEC2 ADAPTEC3 ADAPTEC4 BIGBLUE1 BIGBLUE2 BIGBLUE4

D
is

ta
n

ce
 f

ro
m

th
e 

m
ea

n
 w

o
rk

lo
ad

Benchmarks

T=2 T=4 T=8 T=12

Fig. 3. The workload balance overview for ISPD-2005 benchmarks. On
average, workloads are within 0.4% from the mean.
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Fig. 4. The execution times of bin density computation on the ADAPTEC1
benchmark, when atomic variables or private overflow sums are used to avoid
data race. Clearly, the latter yields better performance and scaling.

bins. This subroutine is memory bound, as cell-bin overlap
is computed efficiently. One naive acceleration strategy is to
allocate a subset of cells to each thread; however, doing so
induces a data race when adding overlapping area to each
bin’s running sum, as two cells being processed concurrently
may overlap the same bin. On the other hand, iterating
over bins first would eliminate the data race, but increases
synchronization overhead because the number of cells is far
larger than the number of bins.

Initially, we tried to eliminate the data race using synchro-
nization primitives: we wrapped the area sum in std-C++11
atomic variables and computed the sum using a compare-
and-swap instruction2. Unfortunately, profiling revealed that
synchronization scales poorly for more than four threads due
to an increased likelihood of collisions. Instead, we privatized
the computation of the overlap sum, shown in Algorithm 2.
We allocate local copies of the overflow sum matrices to each
worker thread. When the threads finish computation, we fork
and aggregate the private results in parallel, thus eliminating
data races. Fig. 4 quantifies the benefit of privatization.

To find the best scheduling strategy, we compared two
approaches: naive static OpenMP scheduling and our static
workload assignment. To estimate the workload per thread,
we computed the average number of overlaps between cells
and bins after the initial placement. However, detailed profiling
revealed that, since the cells move as the algorithm advances,
the workload estimated this way does not remain well balanced
for long. Hence, we opted for naive static scheduling.

C. Cost Gradient

After wirelength and density computation, RePlAce runs an
FFT solver to find the bin potential and electric field; the only
remaining step is cost gradient computation. This task can be

2Ideally, we would have used a fetch add but std-c++11 does not support
floating-point fetch add; it has been proposed for std-C++20.



Algorithm 2 Our parallel bin density computation. Inputs:
Cells V, bins B, T threads, the origin of the placement
instance (ORIGIN) and bins per unit of length (STEP).

1: #pragma omp parallel num_threads(T) {
2: t = omp get thread num()
3: Allocate and clear two per-thread matrices of partial

bin-overlap sums: binOverFiller, binOverCell = 0
4: for all cells c ∈ V do
5: c.binStart = (c.min− ORIGIN)/STEP
6: c.binEnd = (c.max− ORIGIN)/STEP
7: for all bins bi ∈ B, c.binStart ≤ i ≤ c.binEnd do
8: minCorner = max(bi.min, c.min),
9: maxCorner = min(bi.max , c.max)

10: overlap = RectArea(minCorner,maxCorner)
11: if c ∈ FillerCells,FillerCells ⊂ V then
12: binOverFiller[t][i] += overlap · c.scale
13: else
14: binOverCell[t][i] += overlap · c.scale
15: end if
16: end for
17: end for
18: }
19: #pragma omp parallel num_threads(T) {
20: for all bins bi ∈ B do
21: for all t, 1 ≤ t ≤ T do
22: bi.fillerArea += binOverFiller[t][i]
23: bi.cellArea += binOverCell[t][i]
24: end for
25: end for
26: }

decomposed into three subroutines, carried out independently
for all cells. First, the wirelength gradient is obtained from the
precomputed exponential terms and pin coordinates cached in
pin_t. Then, the density penalty is obtained similarly as in
the bin density computation, but weighing the overlap area by
the bin electric field. Lastly, the cost is preconditioned; this
step contributes to at most 5% of total runtime, which is why
we chose to leave it as-is.

The original RePlAce sequential implementation called all
three subroutines in the same loop, which iterated over all
cells. This call sequence could not be accelerated efficiently
due to poor data locality and high memory bandwidth require-
ments. Our implementation uses the more efficient data struc-
tures, discussed earlier, and performs three independent loops
over all cells. We parallelized the wirelength- and potential-
gradient loops (Fig. 5). Similar to the wirelength function,
we observed performance improvement in parallel wirelength
gradient when the workload is statically balanced according
to the number of cell pins. However, when computing the
potential gradient, naive static scheduling worked best (Fig. 6).

VI. EXPERIMENTAL RESULTS

We implemented our parallel RePlAce in C++ and built it
with g++ version 7.3.0 and -O3 optimization. We benchmark
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placement without dynamic step size adaptation or local den-
sity, to enable a direct comparison to DREAMPlace [5]. The
initial placement uses the Eigen library with multithreading
enabled; detailed placement is performed using the NTU-
Place3 binary. At the time of writing, RePlAce can only place
circuits without movable macros. Hence, we use all ISPD-2005
benchmarks [7] except BIGBLUE3. Our experiments are ran
on an AMD Ryzen Threadripper 1920X 12-Core CPU with
64GB of DRAM@2134MHz and 32MB of LL cache.

Table II reports results for our sequential implementation
of RePlACe using our proposed efficient data structures and
our multithreaded parallel implementation with 1, 2, 4, 8, and
12 threads. We compare directly to RePlAce, a multithreaded
version of RePlAce (12 threads) [3], and DREAMPlace (12
threads, no GPU) [5]. As an example, we reduced the time
to place BIGBLUE4 benchmark by a factor of 2.36×, which
amounts to 33 minutes saved. The last row indicates the
difference in HPWL averaged across all benchmarks. Our
results are not numerically identical due to code refactoring
and reorganization, which altered the order of certain floating-
point operations, along with our choice to use single-precision
floating-point values in our efficient data structures; that said,
the difference in observed HPWL never exceeds 0.1%.

Table III shows the speedups obtained with the same number
of threads for the three subroutines that we accelerated, along
with the overall speedup obtained for global placement. The
introduction of slimmer data structures yields speedups of
at least 1.5× for every affected function with no multi-
threading enabled. Two particularly successful techniques are
privatization for the bin density, allowing for speedups as high
as 11.99× and loop fission of the gradient function allowing
for overall cost speedups as high as 7.17×.

While our proposed data structures improve memory access
overhead, they do not fully eliminate the memory wall; as a



TABLE II
RUNTIME (IN SECONDS) OF THE GLOBAL PLACEMENT (GP) PHASE AND THE TOTAL TIME TO PLACE ISPD-2005 BENCHMARKS. RESULTS ARE REPORTED

FOR REPLACE, REPLACE MODIFIED TO USE OUR SLIM DATA TYPES, OUR PARALLEL IMPLEMENTATIONS USING 1, 2, 4, 8, AND 12 THREADS, THE
MULTITHREADED ORIGINAL VERSION OF REPLACE (12 THREADS), AND DREAMPLACE RUNNING ON A CPU WITH 12 THREADS. THE LAST TWO ROWS

REPORT THE GEOMETRIC MEAN OF THE SPEEDUP COMPARED TO THE ORIGINAL SEQUENTIAL REPLACE AND THE MEAN RELATIVE ERROR OF HPWL.

RePlAce Sequential T=1 T=2 T=4 T=8 T=12 RePlAce (T=12) DREAMPlace (T=12)
GP TOTAL GP TOTAL GP TOTAL GP TOTAL GP TOTAL GP TOTAL GP TOTAL GP TOTAL GP TOTAL

ADAPTEC1 108.68 189.30 59.60 140.21 58.68 137.97 47.57 117.91 39.43 103.64 35.59 94.64 35.22 93.33 46.45 104.07 171.13 198.63
ADAPTEC2 210.07 309.29 134.40 234.44 134.16 232.65 113.82 202.51 93.54 172.15 83.54 157.52 82.77 154.99 107.52 179.21 275.01 308.98
ADAPTEC3 443.67 628.37 294.82 481.08 298.33 484.75 231.02 395.15 179.49 328.32 151.36 290.37 144.50 282.42 215.93 352.01 457.26 520.85
ADAPTEC4 497.98 691.84 346.26 537.55 350.52 539.44 268.59 441.89 202.76 358.27 165.36 312.01 156.04 299.48 270.93 413.08 515.88 588.46
BIGBLUE1 205.09 308.17 106.40 209.47 107.72 209.15 84.17 174.03 69.56 150.98 62.83 137.58 60.88 133.85 89.25 161.91 238.53 275.14
BIGBLUE2 376.93 607.11 257.62 490.28 258.59 487.34 202.43 409.36 154.68 347.26 132.42 314.88 125.73 306.18 199.54 378.20 438.05 535.23
BIGBLUE3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1178.98 1331.79
BIGBLUE4 2461.81 3478.51 1571.31 2580.64 1675.59 2678.92 1335.57 2212.92 1003.35 1781.11 821.90 1548.15 763.90 1472.50 1073.69 1777.88 2264.48 2610.96
geomean 1.00 1.00 1.60 1.33 1.58 1.33 1.99 1.59 2.53 1.88 2.94 2.10 3.06 2.17 2.09 1.78 0.87 1.13
∆HPWL(%) 0.00% -0.08% -0.09% -0.10% -0.10% -0.10% -0.09% -0.32% -0.15%

TABLE III
INDIVIDUAL SPEEDUPS OF GP, BIN DENSITY, WIRELENGTH, AND COST GRADIENT FUNCTION, VERSUS THEIR ORIGINAL REPLACE IMPLEMENTATIONS.

Global placement Wirelength Bin density Cost gradient
SEQ T=1 T=2 T=4 T=8 T=12 SEQ T=1 T=2 T=4 T=8 T=12 SEQ T=1 T=2 T=4 T=8 T=12 SEQ T=1 T=2 T=4 T=8 T=12

ADAPTEC1 1.82 1.85 2.28 2.76 3.05 3.09 1.76 1.87 2.53 3.01 3.26 3.34 5.39 4.48 5.33 7.31 9.27 9.21 2.22 2.39 3.58 5.10 6.58 7.17
ADAPTEC2 1.56 1.57 1.85 2.25 2.51 2.54 1.67 1.78 2.41 2.78 3.14 3.13 4.36 3.56 4.29 6.65 8.67 8.41 1.96 2.11 2.97 4.53 6.11 6.73
ADAPTEC3 1.50 1.49 1.92 2.47 2.93 3.07 1.63 1.74 2.27 2.60 2.83 2.86 3.19 2.74 3.88 6.63 9.45 9.99 1.73 1.85 2.63 3.85 5.46 6.44
ADAPTEC4 1.44 1.42 1.85 2.46 3.01 3.19 1.51 1.61 1.95 2.23 2.40 2.44 2.88 2.50 3.75 6.50 9.73 10.68 1.64 1.76 2.51 3.70 5.52 6.53
BIGBLUE1 1.93 1.90 2.44 2.95 3.26 3.37 1.64 1.72 2.27 2.63 2.92 3.06 5.56 4.48 5.93 9.42 11.50 11.99 2.37 2.50 3.76 5.35 6.61 7.08
BIGBLUE2 1.46 1.46 1.86 2.44 2.85 3.00 1.54 1.64 2.17 2.52 2.70 2.75 3.01 2.63 3.60 6.16 9.07 9.76 1.73 1.85 2.61 3.91 5.18 6.08
BIGBLUE4 1.57 1.47 1.84 2.45 3.00 3.22 1.81 1.79 2.50 3.07 3.41 3.45 3.16 2.53 3.26 5.71 8.72 9.96 1.81 1.82 2.45 3.61 5.26 6.42
geomean 1.60 1.58 1.99 2.53 2.94 3.06 1.65 1.73 2.29 2.68 2.93 2.99 3.80 3.18 4.20 6.83 9.45 9.95 1.91 2.02 2.89 4.25 5.79 6.63

result, sublinear performance improvements are reported as the
number of threads increases.

The original multithreaded RePlAce achieves speedups on
average ≈50% lower than ours. Multithreaded DREAMPlace
is slower than single-threaded RePlAce as it currently lacks
a multithreaded implementation of its forward and backward
propagation passes [5].

VII. CONCLUSION

This paper proposes strategies to accelerate the RePlAce
VLSI placer using off-the-shelf multi-core CPU hardware. We
introduce cache-fitting data structures and explore variable
privatization, loop fission, and per-thread workload balanc-
ing. When using 2–12 threads, these techniques accelerate
bin density calculation by a factor of 4.2–10×, wirelength
computation by a factor of 2.3–3×, and cost gradient cal-
culation by a factor of 2.9–6.6×. As all these functions are
inherently memory bound, sublinear speedups were expected.
Future work will aim to improve data locality further and to
investigate numerical stability issues.
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