
TO APPEAR IN VLSID 2021

An Investigation on Inherent Robustness of Posit
Data Representation

Ihsen Alouani∗, Anouar BEN KHALIFA†, Farhad Merchant‡, Rainer Leupers‡
∗IEMN Lab CNRS UMR 8520, INSA Hauts-De-France

†National Engineering School of Sousse, University of Sousse, Tunisia
‡Institute for Communication Technologies and Embedded Systems, RWTH Aachen University, Germany
Ihsen.Alouani@uphf.fr, anouar.benkhalifa@eniso.rnu.tn {farhad.merchant, leupers}@ice.rwth-aachen.de

Abstract—As the dimensions and operating voltages of com-
puter electronics shrink to cope with consumers’ demand for
higher performance and lower power consumption, circuit sensi-
tivity to soft errors increases dramatically. Recently, a new data-
type is proposed in the literature called posit data type. Posit
arithmetic has absolute advantages such as higher numerical
accuracy, speed, and simpler hardware design than IEEE 754-
2008 technical standard-compliant arithmetic. In this paper, we
propose a comparative robustness study between 32-bit posit
and 32-bit IEEE 754-2008 compliant representations. At first, we
propose a theoretical analysis for IEEE 754 compliant numbers
and posit numbers for single bit flip and double bit flips. Then,
we conduct exhaustive fault injection experiments that show a
considerable inherent resilience in posit format compared to
classical IEEE 754 compliant representation. To show a relevant
use-case of fault-tolerant applications, we perform experiments
on a set of machine-learning applications. In more than 95% of
the exhaustive fault injection exploration, posit representation is
less impacted by faults than the IEEE 754 compliant floating-
point representation. Moreover, in 100% of the tested machine-
learning applications, the accuracy of posit-implemented systems
is higher than the classical floating-point-based ones.

Index Terms—Computer Arithmetic, Posit Arithmetic, Ma-
chine Learning, Reliability

I. INTRODUCTION

As sub-micron technology dimensions sharply decrease to
a few nanometer ranges in commercialized integrated circuits,
the sensitivity of electronic circuits increases drastically [1].
Hence, embedded microprocessors are becoming more vul-
nerable to soft errors, and designing dependable systems is a
challenging task for chip designers. In fact, these systems have
to operate reliably even in the presence of faults, to sustain
the present growth rate of device count and clock frequency
with continuously growing reliability issues. Moreover, the
sensitivity of chips is also intensified by voltage scaling [2].
Undesirable and accidental faults become more frequent in
new generation computing systems where the systems are
running heavy-duty numerical computations. A single-event
upset (SEU) or multi-bit upset (MBU) could bring a catas-
trophic outcome in mission-critical applications such as space
and missile-navigation applications. Hence, having reliable
arithmetic that is resilient to errors is a primary requirement
for mission-critical computing systems.

Posit is a new data type that is capable of storing more
information-per-bit compared to its IEEE 754 compliant coun-

terparts [3]. For example, a 32-bit posit number can have
a similar dynamic range and better accuracy at the same
time compared to the 32-bit IEEE 754 compliant number. In
general, m-bit posit has a higher dynamic range and better
numerical accuracy properties compared to n-bit IEEE 754
compliant number where m = n. It is shown in the litera-
ture that for computing systems, n-bit IEEE 754 compliant
numbers can be replaced by m-bit posit numbers where
m < n since the posit number system exhibits a trade-off
between accuracy and dynamic range [4] [5]. These trade-offs
allow the selection of the desired posit format that is suitable
for computing systems without compromising accuracy and
performance [6] [7]. Further details of the number system and
the formats are discussed in Section II-A. Reliability aspects
of posit arithmetic are yet to be explored by the research
community.

To the best of our knowledge, this is the first comparative
study on the inherent fault tolerance of posit arithmetic vis-à-
vis its IEEE counterpart. We carry out an extensive investiga-
tion of reliability through an exhaustive fault injection scheme.
The major contributions of the paper are as follows:

• We propose a theoretical analysis and an exhaustive
reliability exploration of posit arithmetic vis-à-vis its
IEEE-754 compliant counterparts.

• We conduct exhaustive reliability exploration as well as
machine-learning (ML) benchmarks under fault injection.

• We show promising results in posit arithmetic that may
encourage its utilization in safety-critical applications, as
well as approximate computing.

For the reproducibility, we make our framework open
source [8]. The rest of the paper is organized as follows: In
Section II we present a background on posit arithmetic and
soft errors followed by related work in Section III. Section IV
describes the analysis and the proposed methodology for error
resilience using posit arithmetic. In section V, experimental
setup and results are discussed. We summarize our work in
Section VI.

II. BACKGROUND AND RELATED WORKS

A. IEEE 754 Compliant and Posit Number Systems
The IEEE 754-2008 compliant floating-point format binary

numbers are composed of three parts: a sign, an exponent and

ar
X

iv
:2

10
1.

01
41

6v
1

 [
cs

.A
R

]
 5

 J
an

 2
02

1

Fig. 1. Description of the IEEE 754 single-precision floating-point and posit
formats

a fraction part (see Fig. 1). The sign is the most significant
bit indicating whether the number is positive or negative. In
a single-precision format, the following 8 bits represent the
exponent of the binary number ranging from −126 to 127. The
remaining 23 bits represent the fractional part. The normalized
format of floating-point numbers is:

val = (−1)sign × 2exp−bias × (1.fraction) (1)

Posit arithmetic is proposed as a drop-in replacement for
IEEE 754 compliant arithmetic in 2017 [3]. The posit num-
ber format has several absolute advantages over IEEE 754
compliant arithmetic such as higher accuracy, higher dynamic
range, simpler hardware implementation for arithmetic oper-
ations, lower area and energy footprints [9]. Besides, it is
shown in the literature that m-bit posit adders/multipliers can
safely replace n-bit IEEE 754 compliant adders/multipliers
where m < n [4]. Hence, posit representation confirms more
information-per-bit compared to its IEEE 754 counterpart
representation. Furthermore, with posit representation, there
are no redundant representations and the overflow/underflow
in the computations is nonexistent with posit arithmetic. The
subnormal numbers are handled in a normal way with posit
representation unlike IEEE 754 representation and there are
only two exception cases: zero and not-a-real (NaR). For all
other cases, the value val of a posit is given by

val =(−1)sign × useedk × 2exp × (1 +

fn−1∑
i=1

bfn−1−i2
−i) (2)

The regime indicates a scale factor of useedk where useed =
22

es
and es is the exponent size. The numerical value of k

is determined by the run length of 0 or 1 bits in the string
of regime bits. The use of run-length encoding of the regime
automatically allows more fraction bits for the more common
values for which magnitudes are closer to 1, and thus provides
tapered accuracy in a bit-efficient way. Further details about
the posit number format and posit arithmetic can be found
in [3]. The posit format and IEEE 754-2008 compliant number
formats are depicted in Fig. 1.

In our experiments, we have used IEEE 754 compliant 32-
bit (single precision) floating-point numbers and 32-bit posit
numbers with es = 2 that are commonly used.
B. Soft Errors

The sharp technology scaling in new generation integrated
circuits accentuates the sensitivity of electronic circuits. As a
matter of fact, embedded systems are becoming remarkably
sensitive to soft errors. These errors result from a voltage
transient event induced by alpha particles from packaging
material or neutron particles from cosmic rays [10]. This
event is created due to the collection of charge at a p-n

junction after a track of electron-hole pairs is generated. In
past technologies, this issue was considered in a limited range
of applications in which the circuits are operating under ag-
gressive environmental conditions like aerospace applications.
Nevertheless, shrinking transistor size and reducing supply
voltages in new hardware platforms bring soft errors to ground
level mainstream applications [11] [12].

III. RELATED WORK

Since soft errors became a challenging threat to reliability,
numerous published work proposes error-resilient memories.
Architecture level error resilience techniques such as single
error correction double error detection (SECDED) have been
proposed and widely used for memory protection [13]. The
main drawback of SECDED is its area overhead and the
supplementary latency leading to performance loss. A fault-
tolerant architecture presented in [14] combines both parity
and single redundancy to enhance memories’ reliability. The
weakness of these techniques is their area, power and delay
overheads due to the additional memory cells and supporting
circuits required for error detection and correction.

Circuit-level techniques have been proposed to overcome
architecture-level overheads. These techniques enhance error
resilience at circuit level either by slowing down the response
of the circuit to transient events or by increasing its critical
charge. Methods such as [15] suggest to harden the cell using
a pass transistor that is controlled by a refreshing signal.
Hardened memory cells were proposed in [16], [17] and [18]
that add redundant transistors to the 6T-SRAM to increase
the cell critical charge. A Schmitt trigger-based technique
[19] proposes a hardened 13-T memory cell. However, this
technique slows down memory due to a Schmitt trigger’s
hysteresis temporal characteristics. In the context of emerging
approximate computing applications, recent works like [20]
proposed a trade-off between reliability and computing pre-
cision. To assess the reliability level at an early stage, fault
injection can be performed in simulation. All these techniques
do not take into account the actual data representation that
is stored within the protected memories, especially numerical
values.

A number of researchers have approached the reliability
issue in numerical algorithms. The vast majority of them
treat an algorithm as a black-box and track the behavior of
these applications when running with injected soft errors.
In [21], a study on soft error propagation in floating-point
programs is presented. In [22], the behavior of various Krylov
methods is analysed. The authors track the variance in iteration
count based on the data structure that experiences the bit flip.
Authors in [23] analyzed the impact of bit flips in a sparse
matrix-vector multiply (SpMV). Exemplifying the concept
of black-box analysis of bit flips, [24] presents BIFIT for
characterizing applications based on their vulnerability to bit
flips.

While these techniques study the reliability of applications
based on floating-point formats, none of them study the
inherent sensitivity level of floating-point representations. This

Fig. 2. Fraction bits in IEEE 754-2008 compliant number and posit compliant
number

paper proposes a comparative study of the inherent sensitivity
to errors in IEEE-754 compliant floating-point and posit
representations.

IV. PROPOSED METHODOLOGY

We cover analyses for SEU and MBU considering different
aspects. Since float and posit have different data formats as
shown in Fig. 1, a single or multiple bit flip event in a 32-bit
number results in a new different number for both formats. In
our analyses, we consider bit flips in fraction, and exponent
for both formats as well as regime bits for posit numbers. For
our theoretical analyses, we use numbers f1, p1 ∈ R, where
f1 is compliant to IEEE 754-2008 and p1 is a posit number,
and 1 ≤ s1, s2 ≤ 32, s1 ∈ N. s1,s2 are the positions of the bit
flips in f1 and p1, s1 6= s2. For both the number formats, we
assume that the SEU and MBU occur at the same position.

A. Fraction bits

The total number of fractional bits are 23 in IEEE 754-
2008 and 23 +m in posit compliant number respectively. m-
bits are appended in the fraction part in a posit compliant
numbers to the left of the fraction bits. Let be b22b21b20, ...b0
and a22+m, a21+m, ...a0, two binary numbers that represent
fraction parts of an IEEE 754 compliant number and a posit
compliant number respectively. A representative diagram to
understand the bit flip phenomena in the fraction part is shown
in Fig. 2.

The largest error that can occur in IEEE 754-2008 compliant
number due to a bit flip in the fraction part is the bit flip of
b22 (s1 = 23). A flip from 1 to 0 or vice-versa would result
in subtraction or addition of 0.5 in the decimal value of the
fraction part. On the other hand, in posit to have the similar
impact, s1 has to be at 23 +m bit position. In general, a bit
flip in the fraction part of IEEE 754-2008 compliant number is
s1 then similar impact in the fraction part of a posit compliant
number can be observed if there is a bit flip in the position
s1 +m. The value of m depends on the configuration of the
posit number. For example, a 32-bit posit number can have k
= −31 to 30 regime bits since regime bits are calculated based
on run-length of ’0’ or ’1’ from the most significant bits after
the sign bit (refer equation 2. In practical scenarios the run-
length of ’0’ or ’1’ is not expected to be very large since a
large k results in a very high dynamic range for the numbers.
k = 5 and es = 2 configuration results in the dynamic range
that is similar to the IEEE 754 compliant number. In general,
m = exp size−k−es where exp size is the exponent size in
IEEE 754 compliant number and es is the posit exponent size.
Since, in the most realistic scenarios exp size > (k+es), the

Fig. 3. Toolflow of fault injection process in both posit (32,2) configuration
and IEEE-754 compliant single-precision floating-point formats (open-source
available in [8]

bit flip in the position s1 in IEEE 754 compliant number and
posit number would result in smaller error in the posit number.

In case of double bit-flip, the second bit flip position being
s2, assuming that the second bit flip occurs in the same
locations in an IEEE 754 compliant number and a posit
number, the error due to the second bit flip is higher in the
IEEE 754 compliant number. The higher error is due the the
higher weight associated with the bit position in IEEE 754
compliant number compared to the posit number.
B. Exponent and regime bits

A single bit flip in the exponent of IEEE 754 compliant
numbers and posit numbers injects a higher error impact in the
IEEE 754 compliant number due to the phenomena explained
in Section IV-A is applicable to exponent bits as well. Due to
more weight associated with the position in the exponent part
of the IEEE 754 compliant number compared to the exponent
part of the posit number, the error incurred is higher in the
IEEE 754 compliant number. A bit flip in the regime part of
posit incurs higher error compared to the bit flip in the bits 3
to 8 of the float section due to higher weight associated with
the posit number. Similarly, second bit flip in the exponent
incurs lower error in posit compared to an IEEE 754 compliant
number while the second bit flip in regime section of posit
number results in higher error. In the subsequent section, we
present toolflow to validate our claims.

C. Toolflow

To assess the impact of errors on both posit and IEEE 754-
2008 compliant representations, we proceed to an exhaustive
fault injection exploration process. We modified the posit
public implementation [25] to support our fault injection
mechanism. Besides, we built an exhaustive exploration plat-
form shown in Fig. 3. The idea is to focus on the actual
arithmetic representation of the data instead of a coarse grain
probabilistic study or a very fine grain circuit simulation.

Fig. 3 explains the followed methodology to assess the
inherent reliability of the two tested representations. Since we
are considering reliability from a hardware perspective, we are
sticking to the actual bit-level data representation. In this pa-
per, we focus on IEEE 754 single precision floating point and
(N, es) = (32, 2) (where N is width of the representation and
es is exponent size) posit representations for our experiments.

(a) (b)

Fig. 4. (a) Mean Relative Error distance comparison between posit and IEEE 754 compliant float under single event upset injection (b) Error distance
comparison between posit and IEEE-754 compliant float under double event upset injection

Hence, from a raw 32-bit word, we generate the corresponding
floating-point and posit numbers. For a fair comparison, the
errors are injected exactly in the same respective bit of the
two tested representations. For double bit upsets as well, we
choose the same locations for bitflips in both representations.
The inherent reliability of the two representations is assessed
by quantifying the mean relative error distance (MRED) of a
corrupted value from a golden (non-corrupted) value as shown
in Equation 3.

MRED =
1

32
∗

31∑
i=0

|Vi − V ∗
i |

Vi
(3)

Where Vi and V ∗
i are the golden and the corrupted value

respectively when a fault is injected in a bit i. MRED gives
an insight on the mean impact of bit flips that are injected in
all words’ 32 bits exhaustively.

V. EXPERIMENTAL SETUP AND RESULTS

The experiments are divided into two categories:
• The first is a comparative application-agnostic exploration

of the fault injection impact on reliability of posit and
IEE-754 compliant representations.

• The second is a comparative reliability study on a set of
ML systems on two different applications tested under
fault injection.

This section details the experimental setup and discusses the
results.

A. Exhaustive comparative reliability exploration

This set of experiments follow the methodology presented
in Section IV. The toolflow is implemented in C using the
SoftPosit platform [25] for posit and a developed bit-wise
fault injection platform for IEEE 754 compliant numbers.
The experiments are run on a 3 GHz Intel Core i7 processor
running the OS X 10.9.5 operating system.

1) Single Event Upset: The above-explained experimental
setup aims at exploring the impact of bit flips on a given
numerical data representation in an exhaustive manner. The
results shown in Fig. 4(a) expose in a logarithmic scale the
comparison between posit and IEEE 754 compliant floating-
point representations’ inherent resiliency to bit flips. The
comparison is performed based on the MRED between the
golden value (without fault injection) and the corrupted one
in both posit and IEEE 754 floats. The results shown in Fig.
4(a) represent a geometric superposition where the IEEE 754
compliant floating-point graph is in most of the cases above
the posit graph. This indicates that the posit representation
is globally more error resilient than IEEE 754 compliant
representation. In fact, in more than 95% of the explored
cases, a bit flip in an IEEE 754 compliant number deviates
from the golden data more than the posit number. Moreover,
we registered only 31 cases of not a real (NaR) with posit,
which represents 0.7E-6% of the fault injections. On the other
hand, for IEEE compliant floating-point, more than 4% of
the fault injections resulted in not a number (NaN). These
cases correspond to non-representable data in the IEEE 754
compliant floating-point graph of Fig. 4(a).

2) Double Event Upset: Starting from 40nm technology,
more than 35% of bit upsets are MBUs. Therefore, it is im-
portant to consider this phenomenon in reliability assessment
processes. In this section, we track the impact of double bit
upsets on the data representation for both posit and IEEE 754
compliant floating-point representations.

Following the same fault injection exploration mechanism
as shown in Fig. 3, we evaluate the impact of two-bit flips on
the MRED between posit and IEEE-compliant floating point.
We inject two bit flips at every iteration: the first is injected
exhaustively bit-wise, and the second location is randomly
selected following a normal distribution among the remaining
bits. Fig. 4(b) shows the MRED caused by two-bit upsets in
both representations. Injecting 2 bit flips results globally in
higher error magnitudes. However, the results still confirm the

0.
84

0.
84

0.
78

0.
63 0.

84

0.
79 0.
84

0.
76

0.
76 0.

85

0.
77

0.
72

0.
70

0.
50 0.

75

0.
55 0.

77

0.
63

0.
62 0.

79

0.
31

0.
29

0.
27

0.
27 0.
30

0.
31

0.
27

0.
29

0.
28

0.
29

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

SVM (linear
Kernel)

SVM (Gaussian
Kernel)

SVM (Cubic
Kernel)

Decision Trees Discriminant
analysis

classifiers

Naive Bayes
classifiers

KNN classifiers
(K=1)

AdaBoost
classifier

Random forest Neural network
classifiers (MLP)

Accuracy Without Error Accuracy Posit Error Accuracy Floatting point Error

Fig. 5. Human action recognition rates using statistical features

0.
86

0.
85

0.
80

0.
57 0.

83

0.
79 0.
84

0.
72 0.
78 0.
85

0.
80

0.
74

0.
73

0.
51 0.

75

0.
58 0.

79

0.
62 0.
65 0.

77

0.
32

0.
29

0.
28

0.
27

0.
31

0.
32

0.
29

0.
28

0.
29

0.
29

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

SVM (linear
Kernel)

SVM (Gaussian
Kernel)

SVM (Cubic
Kernel)

Decision Trees Discriminant
analysis

classifiers

Naive Bayes
classifiers

KNN classifiers
(K=1)

AdaBoost
classifier

Random forest Neural network
classifiers (MLP)

Accuracy Without Error Accuracy Posit Error Accuracy Floatting point Error

Fig. 6. Human action recognition rates using wavelet features.

0.
55

3

0.
62

0

0.
64

0

0.
47

1 0.
71

5

0.
47

3 0.
61

5

0.
59

5

0.
60

5

0.
65

8

0.
50

4

0.
57

6

0.
57

3

0.
45

8 0.
61

2

0.
44

3 0.
64

3

0.
55

2

0.
57

4

0.
57

6

0.
44

5

0.
51

5

0.
52

0

0.
42

0

0.
51

9

0.
41

7

0.
51

7

0.
51

8

0.
52

1

0.
50

3

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

SVM (linear
Kernel)

SVM (Gaussian
Kernel)

SVM (Cubic
Kernel)

Decision Trees Discriminant
analysis

classifiers

Naive Bayes
classifiers

KNN classifiers
(K=1)

AdaBoost
classifier

Random forest Neural network
classifiers (MLP)

Accuracy Without Error Accuracy Posit Error Accuracy Floatting point Error

Fig. 7. Biometric ECG authentication rates using statistical features.

0.
59

0

0.
55

0

0.
65

4

0.
47

9 0.
73

3

0.
47

7

0.
62

4

0.
60

5

0.
61

0

0.
67

0

0.
57

7

0.
55

0

0.
58

8

0.
45

4

0.
62

5

0.
45

8

0.
61

5

0.
58

3

0.
57

8

0.
59

4

0.
46

9

0.
48

0

0.
50

6

0.
41

0

0.
51

2

0.
41

3

0.
53

8

0.
51

8

0.
51

0

0.
51

5

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800

SVM (linear
Kernel)

SVM (Gaussian
Kernel)

SVM (Cubic
Kernel)

Decision Trees Discriminant
analysis

classifiers

Naive Bayes
classifiers

KNN classifiers
(K=1)

AdaBoost
classifier

Random forest Neural network
classifiers

(MLP)

Accuracy Without Error Accuracy Posit Error Accuracy Floatting point Error

Fig. 8. Biometric ECG authentication rates using wavelet features.

higher inherent error resilience of posit shown with the single
bit upset experiments.

The error resilience in posit is due to two main reasons:
the variable size of the scale factor (regime bits) and a larger
number of bits in the fractional part for the vast majority of
cases. The larger number bits in the fractional part is due to
variable-sized regime bits. An SEU or MBU in the fractional

part results in a lower error compared to an SEU or MBU in
the regime bits or exponent bits in posit. Since the IEEE 754-
compliant representation has more exponent bits compared to
the regime bits and the exponent bits in the posits, the resulting
error is higher in IEEE 754 compliant floating-point numbers
compared to posits. Better error resilience of posit data-type
makes it the right choice for mission-critical next-generation

systems. Moreover, the absence of redundant representations
such as NaNs is a supplementary factor that enhances posit
robustness to errors.

B. Machine-learning applications

Recent attacks on ML applications are based on deliberate
fault-injection techniques [26]. In this subsection, we show the
results of fault injection experiments applied in a set of ML
applications. We evaluate two computer-vision systems. The
first is a biometric authentication system using Electrocardio-
gram (ECG) signals based on LATIS ECG Database [27]. The
second is a human action recognition (HAR) system using
kinematic accelerometer signals trained with Berkley MHAD
dataset [28]. For the features extraction phase, two types of
features were chosen:

• Temporal features such as the mean, the standard devia-
tion, the quadratic mean, and the covariance.

• Time-frequency type characteristics resulting from the
Wavelet transformation.

We used the sliding window method to extract the character-
istics of each window. These characteristics are subsequently
concatenated in a descriptor vector.

For the classification phase, we evaluate a set of most widely
used classifiers in the literature. These ML techniques are:
the Support Vector Machines (SVM) with linear, Gaussian
and Cubic kernels, Decision Trees, Discriminant analysis
classifiers, Naive Bayes classifiers, KNN classifiers (K =
1), AdaBoost classifier, Random forest and Neural network
classifiers. Figures 5, 6, 7 and 8 show the recognition rate
of the different techniques and settings with and without
fault injection. These figures show the impact of single fault
injection in the input of the different classifiers for both
IEEE floating point and posit data representation. In all these
cases with varying features and classifiers, the fault injection
impact is significantly lower on the posit implementation
which confirms the findings in Section V-A. In fact, while the
overall accuracy drop in posit under fault injection varies from
0% and 30%, the accuracy drop in IEEE-compliant floating
point varies between 10% and 67%.

VI. CONCLUSION

This paper investigates the reliability of two prominent
data representations, namely IEEE 754 compliant single pre-
cision and (32,2) posit representation. Firstly, we presented
a brief theoretical analysis of both the number formats for
a single bit flip and double bit flip. An exhaustive fault
injection platform is implemented, and the exploration led to
a promising conclusion for posit arithmetic that corroborated
to our theoretical analysis. To further illustrate this finding,
we conduct a benchmark of several ML techniques under
fault injection. The experiments demonstrate higher inherent
robustness of posit compared to the classical IEEE 754 repre-
sentation. These findings are useful for safety-critical systems
design. They can also be exploited for limiting imprecision in
approximate computing designs. Future work will tackle the
implementation of a full posit-based processor architecture.

REFERENCES

[1] I. C. et al., “Impact of technology scaling on sram soft error rates,”
IEEE Trans. Nucl. Sci., vol. 61, no. 6, pp. 3512–3518, Dec. 2014.

[2] B. P. Sanches et al., “J-swfit: A java software fault injection tool,” in
2011 5th Latin-American Symposium on Dependable Computing, April
2011, pp. 106–115.

[3] Gustafson et al., “Beating floating point at its own game: Posit
arithmetic,” Supercomput. Front. Innov.: Int. J., vol. 4, no. 2, p. 71–86,
Jun. 2017. [Online]. Available: https://doi.org/10.14529/jsfi170206

[4] R. Chaurasiya et al., “Parameterized posit arithmetic hardware genera-
tor,” in ICCD 2018, Oct 2018, pp. 334–341.

[5] S. Nambi et al., “Expan(n)d: Exploring posits for efficient artificial
neural network design in fpga-based systems,” arXiv 2020.

[6] R. Jain et al., “CLARINET: A RISC-V Based Framework for Posit
Arithmetic Empiricism,” arXiv.org 2020.

[7] V. Saxena et al., “Brightening the optical flow through posit arithmetic,”
in International Symposium on Quality Electronic Design (ISQED), Apr.
2021.

[8] Github repository for posit and IEEE 754 compliant fault injection plat-
form. [Online]. Available: https://github.com/ihstein/posit FP reliability

[9] A. Guntoro et al., “Next generation arithmetic for edge computing,” in
2020 DATE, 2020, pp. 1357–1365.

[10] J. Ziegler et al., “Ibm experiments in soft fails in computer electronics,”
IBM Journal of Research and Development, vol. 40, no. 1, 1996.

[11] H. Quinn et al., “Terrestrial-based radiation upsets: a cautionary tale,”
in FCCM 2005, April 2005, pp. 193–202.

[12] G. Just et al., “Soft errors induced by natural radiation at ground level
in floating gate flash memories,” in IRPS 2013, April 2013, pp. 3D.4.1–
3D.4.8.

[13] P. Reviriego et al., “Error detection in majority logic decoding of
euclidean geometry low density parity check (eg-ldpc) codes,” IEEE
Trans. VLSI Syst., vol. 21, no. 1, Jan 2013.

[14] I. Alouani et al., “Parity-based mono-copy cache for low power con-
sumption and high reliability,” RSP 2012, Oct 2012.

[15] B. S. Gill et al., “A new asymmetric sram cell to reduce soft errors and
leakage power in fpga,” in DATE 2007, ser. DATE’07, Apr 2007.

[16] X. Liu et al., “A novel soft error immunity sram cell,” in IRW 2013,
ser. IRW ’13, Oct 2013.

[17] J. Guo et al., “Novel low-power and highly reliable radiation hardened
memory cell for 65 nm cmos technology,” Circuits and Systems I:
Regular Papers, IEEE Transactions on, vol. 61, no. 7, pp. 1994–2001,
July 2014.

[18] I. Alouani et al., “As8-static random access memory (sram): asymmetric
sram architecture for soft error hardening enhancement,” IET Circuits,
Devices Systems, vol. 11, no. 1, pp. 89–94, 2017.

[19] S. Lin et al., “Analysis and design of nanoscale cmos storage elements
for single-event hardening with multiple-node upset,” Device and Mate-
rials Reliability, IEEE Transactions on, vol. 12, no. 1, pp. 68–77, March
2012.

[20] D. Shin et al., “Approximate logic synthesis for error tolerant applica-
tions,” in DATE 2010, March 2010, pp. 957–960.

[21] S. Li et al., “Soft error propagation in floating-point programs,” in
International Performance Computing and Communications Conference,
Dec 2010, pp. 239–246.

[22] V. Howle et al., “The effects of soft errors on krylov methods,” SIAM
Parallel Processing, Feb. 2017.

[23] M. Shantharam et al., “Characterizing the impact of soft errors on
iterative methods in scientific computing,” in ICS 2011, ser. ICS ’11.
New York, NY, USA: ACM, 2011, pp. 152–161. [Online]. Available:
http://doi.acm.org/10.1145/1995896.1995922

[24] D. Li et al., “Classifying soft error vulnerabilities in extreme-scale
scientific applications using a binary instrumentation tool,” in SC ’12:
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, Nov 2012, pp. 1–11.

[25] C. Leong. (2018, Nov.) Softposit version 0.4.1rc. [Online]. Available:
https://gitlab.com/cerlane/SoftPosit

[26] V. Venceslai et al., “Neuroattack: Undermining spiking neural networks
security through externally triggered bit-flips,” 2020.

[27] T. Hamdi et al., “A novel feature extraction method in ecg biometrics,” in
International Image Processing, Applications and Systems Conference,
Nov 2014, pp. 1–5.

[28] F. Ofli et al., “Berkeley mhad: A comprehensive multimodal human
action database,” in WACV 2013, Jan 2013, pp. 53–60.

https://doi.org/10.14529/jsfi170206
https://github.com/ihstein/posit_FP_reliability
http://doi.acm.org/10.1145/1995896.1995922
https://gitlab.com/cerlane/SoftPosit

	I Introduction
	II Background and Related Works
	II-A IEEE 754 Compliant and Posit Number Systems
	II-B Soft Errors

	III Related Work
	IV Proposed Methodology
	IV-A Fraction bits
	IV-B Exponent and regime bits
	IV-C Toolflow

	V Experimental Setup and Results
	V-A Exhaustive comparative reliability exploration
	V-A1 Single Event Upset
	V-A2 Double Event Upset

	V-B Machine-learning applications

	VI Conclusion
	References

