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Abstract—Due to the fragility of quantum mechanical ef-
fects, real quantum computers are plagued by frequent
noise effects that cause errors during computations. Quantum
error-correcting codes address this problem by providing means
to identify and correct corresponding errors. However, most of
the research on quantum error correction is theoretical or has
been evaluated for specific hardware models only. Moreover,
the development of corresponding codes and the evaluation of
whether they indeed solve the problem for a particular hardware
model, still often rests on tedious trial-and-error thus far. In
this work, we propose an open-source framework that supports
engineers and researchers in these tasks by automatically ap-
plying error-correcting codes for a given application followed
by an automatic noise-aware quantum circuit simulation. Case
studies showcase that this allows for a substantially more efficient
implementation and evaluation of error-correcting codes.

I. INTRODUCTION

Quantum computers can solve specific problems substan-
tially faster than classical computers. Examples for such
problems include algorithms that have been found in the
areas of chemistry [1], machine learning [2], biology [3],
and finance [4]. They achieve this by exploiting quantum
mechanical effects during their computations, such as super-
position (i.e., a qubit can be in a combination of 0 and 1)
and entanglement (i.e., measurement outcomes of individual
qubits are correlated). However, the same properties that make
quantum computing so powerful also make it extremely prone
to errors. For example, while it is a key feature of quantum
bits that they can be in a superposition of 0 and 1, this also
makes them fragile against operational or environmental noise.
Accordingly, it is believed that (quantum) error correction is
going to be an essential part of future quantum hardware [5].

But error correction is not easy. That it is even possible in
the quantum realm is not straightforward. The first algorithm
demonstrating this was published in 1995 by Peter Shor [6].
Since then there have been considerable developments in the
research on quantum error correction. Today, there are multiple
types of quantum error-correcting schemes available such as
CSS codes [6]–[8], stabilizer codes [9], or surface codes [10],
[11]. Additionally, there have also been developments in
adaptive error-correcting codes optimized for specific quantum
hardware [12], [13].

However, despite this progress, most of the corresponding
work in this domain still heavily relies on manual labor
and/or is based on theoretical results only. To the best of
our knowledge, methods (or implementations thereof) that
take a quantum circuit and automatically extend it with a
correspondingly chosen error-correcting scheme (similar to
a compiler that translates a given quantum algorithm to a
corresponding hardware-applicable realization) do not exist,
yet. This may be caused by the fact that, thus far, the focus
clearly (and understandably) is on the development of concepts
for error-correcting codes and proof-of-concept implementa-
tions on selected hardware models only. Additionally, the
development of such a framework is not straightforward. For

example, the decoding and correction steps are exponentially
hard [14] and, while this is addressed in recent work (such
as [15]), still remain complex. Furthermore, applying quantum
operations to qubits protected by an error-correcting code is
often not directly possible but requires specific routines (as
shown by the no-go theorem [16]).

As a consequence, evaluations on whether an
error-correcting code is useful in different scenarios are
cumbersome and, hence, often done with rather selected use
cases only. Because of this, comprehensive case studies in
which the usefulness of error-correcting codes are evaluated
with respect to different circuits, how they are configured,
and on what hardware model they are applied, do not exist.

In this work we address this issue: We propose an
open-source framework1 that supports engineers and re-
searchers in the task of evaluating error-correcting codes.
The framework allows to automatically apply error correction
schemes to a given quantum circuit, followed by an auto-
matic noise-aware quantum circuit simulation. To this end,
we implemented different error-correcting codes and utilized
existing methods for quantum circuit simulation. In this way, a
framework is created that allows for error-correcting codes to
be easily analyzed—with minimal manual effort. The proposed
framework is implemented in such a modular way that it can
be readily extended for new error-correcting codes or different
simulation styles. Case studies showcase that the proposed
framework allows for efficient evaluations of error-correcting
codes depending on varying properties.

The remainder of the paper is organized as follows: In
Section II, we review the basics of quantum computing and
noise in quantum devices. Afterward, in Section III, we
motivate the proposed framework by revisiting the basics of
quantum error correction and illustrating the current problems.
Section IV presents the proposed framework, followed by
Section V demonstrating the application and usefulness of the
framework. Finally, Section VI concludes the paper.

II. PRELIMINARIES

In this section, we review the basics of quantum computing
as well as noise in quantum computing. We refer the interested
reader to [17] for a thorough introduction to this topic.

A. Quantum Computing
The basic unit of information in the quantum world is called

a quantum bit or qubit. Like a classical bit, a qubit can assume
the states 0 and 1, but, additionally, it can also assume an
arbitrary combination of those basis states. More generally—
using Dirac notation—the state of a qubit |ψ〉 can be written as
|ψ〉 = α0 · |0〉+ α1 · |1〉 with α0, α1 ∈ C and the normaliza-
tion constraint |α0|2 + |α1|2 = 1. The values α0, α1 are called
amplitudes and specify how strongly the qubit relates to each

1The framework is available at www.github.com/cda-tum/qecc
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Fig. 1. Quantum circuit constructing the maximally entangled state

of the basis state |0〉 and |1〉. Measuring a qubit collapses it to
a basis state. More precisely, with probability |α0|2 the state
|ψ〉 collapses to |0〉, and with probability |α1|2 it collapses to
|1〉. Only the basis state is returned by the measurement, the
amplitudes cannot be directly measured. The state description
can be extended for multi-qubit systems, e.g., a two-qubit state
|φ〉 is fully characterized by 22 = 4 amplitudes and, hence,
|φ〉 = α00 · |00〉+ α01 · |01〉+ α10 · |10〉+ α11 · |11〉.

Having this formalism to describe quantum states, the
next question becomes how to modify them. This is done
by using so-called quantum operations. Important single-
qubit operations are the Hadamard (H) operation, which
transforms a qubit from a basis state into a superpo-
sition (H |ψ〉 = α0/

√
2 · (|0〉+ |1〉) + α1/

√
2 · (|0〉 − |1〉)), the

X operation, which is the quantum equivalent of flip-
ping a bit (X |ψ〉 = α0 · |1〉+ α1 · |0〉), and the Z operation,
which flips the phase of a qubit (Z |ψ〉 = α0 · |0〉 − α1 · |1〉).
Two-qubit operations are also possible. An essential two-
qubit operation is the Controlled NOT (CX), which flips
the target qubit iff the control qubit is set to one
(CX |φ〉 = α00 · |00〉+ α01 · |01〉+ α10 · |11〉+ α11 · |10〉).

Quantum circuits are often illustrated as circuit diagrams.
Diagrams consist of one or more vertical lines which represent
qubits. Per convention, the top line represents qubit 0 and
the remaining qubits are labeled sequentially. The lines are
interrupted by operations that are applied to the respective
qubit, which is usually indicated by labeled rectangles. In a
quantum circuit, time flows from left to right, i.e., the leftmost
operation on a qubit wire is applied first, and then the second
left-most operation is applied, and so on.

Example 1. In Fig. 1, a quantum circuit is depicted that
constructs a maximally entangled state over three qubits. The
circuit consists of three qubits which are all initialized in
basis state |0〉. Thus, the initial state is |000〉. Applying the
H operation to qubit 0 (i.e., the topmost line) changes the state
to

H |000〉 = 1/
√
2 · (|000〉+ |100〉)

The next operations are two CX gates. The • symbol marks
the control qubit and the ⊕ specifies the target qubit. These
yield

CX 1/
√
2 · (|000〉+ |100〉) = 1/

√
2 · (|000〉+ |110〉) and

CX 1/
√
2 · (|000〉+ |110〉) = 1/

√
2 · (|000〉+ |111〉).

Finally, all qubits are measured, indicated by the last oper-
ation on each lane. After the measurement, the qubits only
contain classical information, which is indicated by the double
wire. The final state is either |000〉 or |111〉, each with a
probability of 1/2. Note that, in this case, measuring one qubit
affects the other qubits as well. This is an essential concept
of quantum computing called entanglement.

B. Noise and Errors in Quantum Computing
Example 1 illustrates how ideal quantum computers behave.

Unfortunately, real quantum computers are plagued by noise
effects, which degrade computations and introduce errors. Al-
though the error probability of quantum systems is constantly
reduced, noise will always be a part of quantum computing [5].

In the literature, errors resulting from these noise effects are
often distinguished between operational errors and coherence
errors [18].

Operational errors are introduced whenever an operation is
applied to a qubit [18]. They occur since quantum computers
are mechanical apparatuses, susceptible to (tiny) errors. Hence,
whenever an operation is applied to a qubit, it may be not
executed at all, or in a (slightly) modified fashion. Operational
errors are highly specific to each quantum computer, therefore
they are often simulated using a depolarization error [19]. This
error simulates that a qubit is set to a completely random
state [17].

Coherence errors occur because of the fragile nature of
qubits. This fragility leads to the problem that qubits can hold
information only for a limited amount of time. Two types of
coherence errors are usually distinguished [18]:
• Qubits can lose or gain energy from the environment,

i.e., a qubit in a high-energy state (|1〉) tends to relax
into a low-energy state (|0〉) and vice-versa. This is called
amplitude damping or T1 error.

• When qubits interact with the environment it can happen
that a phase flip effect occurs. This leads to a phase-flip
or T2 error.

III. GENERAL IDEA AND MOTIVATION

As reviewed in Section II-B, quantum computers are
plagued by noise, which drastically limits their usefulness in
the real world. Quantum error correction tackles this problem,
which makes it an essential part of building scalable and
resilient quantum hardware. This section reviews the main
ideas of the corresponding concepts and provides a motivation
why an easy-to-use framework for their evaluation is needed.

A. Quantum Error Correction
To illustrate quantum error correction, we first revisit clas-

sical error correction, as it serves the same purpose. In the
classical world, error correction is achieved by encoding
information beyond its theoretical minimum. The redundant
information is then used to identify and (if possible) correct
errors. To illustrate this, consider the following example:

Example 2. Suppose a sender wants to transfer a single
(classical) bit 0 to a receiver at a different location. The
transmission channel is prone to bit-flip errors, which is why
both sender and receiver agree to protect the bit, using the
three-bit repetition code. For this code, each bit of information
is encoded by tripling it, i.e., 0 → 000 and 1 → 111.
Hence, the one-bit message 0 is encoded into the codeword
‘000’ before being transmitted to the receiver. During the
transmission a bit-flip error occurs (distorting the message,
e.g., to 001), the receiver could, through majority voting, still
infer that the sent message most likely was 000 and could
therefore correctly restore the original message 0.

In the quantum world, error correction is done similarly,
but some properties of quantum mechanics make it more
complex: A key difference between the quantum and the
classical world is that measurements in the quantum world
affect the observed system. So, while the classical system
can be measured without risk of compromising the encoded
information, special care must be taken in quantum error
correction as to not destroy information by measuring it. This
is worsened by the no-cloning theorem [20], which asserts
that it is not possible to clone (i.e., copy) arbitrary quantum
states. It is therefore not possible to simply clone qubits before
measuring them to keep their information intact.

Instead, in order to add redundancy in the quantum world,
we expand the Hilbert space, in which the information is
encoded—effectively distributing the information of a single
qubit among more qubits [6]. We illustrate this using the three-
qubit bit-flip code, which allows detection and correction of
single-qubit bit-flip errors. Using this code, a single qubit is



encoded by entangling it with two ancillary qubits (this can be
achieved by two CX operations, similar to Example 1), i.e.,

|ψ〉 = α0 · |0〉+α1 · |1〉 → |ψL〉 = α0 · |000〉+α1 · |111〉 . (1)

After encoding the information of state |ψ〉, it is distributed
among the 3-qubit state |ψL〉.

More precisely, the information of |ψ〉 (encoded
into the 2-dimensional Hilbert space span{|0〉 , |1〉})
is now encoded into the 8-dimensional Hilbert space
span{|000〉 , |001〉 , . . . , |111〉}. This 8-dimensional Hilbert
space can be split into 4 subspaces C = span{|000〉 , |111〉},
F1 = span{|001〉 , |110〉}, F2 = span{|010〉 , |101〉}, and
F3 = span{|100〉 , |011〉}, where the subspace C represents
the logical code space (indicating that the system is in
a valid state) and the subspaces F1,F2, as well as F3
represent logical error spaces (indicating a bit-flip error).
That is, F1 indicates that a bit-flip error in the first qubit
occurred, F2 indicates a bit-flip at the second qubit, and
F3 indicates a bit-flip in the third qubit. By using a special
kind of measurement it is possible to infer which qubits are
equal (we provide an example realization of such an indirect
measurement later in Section IV-A). With this knowledge, it
is possible to infer in which of the subspace C,F1,F2,F3
|ψL〉 resides. Note that this measurement does not produce
any information whether the encoded qubit is 0 or 1 and,
therefore, does not change the encoded qubit.

Example 3. Suppose a sender wants to transfer the single
qubit |ψ′〉 =

√
1/3 · |0〉+

√
2/3 · |1〉 to a receiver at a different

location. The transmission channel is prone to bit-flip errors,
so sender and receiver agree to protect the qubit using the
three-qubit bit-flip code (presented above). The sender encodes
the qubit |ψ′〉 =

√
1/3·|0〉+

√
2/3·|1〉 → |ψ′L〉 =

√
1/3·|000〉+√

2/3 · |111〉 and sends |ψ′L〉 to the receiver.
During the transmission the first qubit flips—leaving it in

state
√

1/3 · |100〉+
√

2/3 · |011〉. Before using the qubit, the
receiver measures if all physical qubits making up |ψ′L〉 are
equal. The measurement shows that the first qubit is different
from the other two qubits and, hence, the receiver infers that
|ψ′L〉 resides in the subspace F3, indicating that a bit-flip error
has occurred in the first qubit. The receiver therefore applies
an X operation to the first qubit of |ψ′L〉—restoring it back to
|ψL〉 =

√
1/3 · |000〉 +

√
2/3 · |111〉. Afterwards, the receiver

can decode |ψ′L〉 to |ψ′〉 and use it for future computations.

While the concepts from above allow handling bit-flip errors
(something that might have been sufficient in the classical
world), the quantum world allows for a substantially larger
continuum of errors. For example, recall the depolarization
error introduced in Section II-B, which sets a qubit to a
completely random state—this cannot be corrected using bit-
flip correction only. Even worse, qubits also contain phase
information, which has no classical counterpart at all and
which must also be protected. Fortunately, it turns out that it is
sufficient to correct only a subset of errors to correct all possi-
ble (unitary) errors that can occur in quantum computers [21].
In practice, it suffices to consider bit-flip and phase-flip errors
only to have a universal error-correcting code [22]. In 1995
Peter Shor developed the first quantum error-correcting code
that accomplished just that [6]. Since then, multiple types
of quantum error-correcting schemes have been developed
such as CSS codes ([6]–[8]), stabilizer codes ([9]), surface
codes [10], [11], and adaptive error-correcting codes optimized
for specific quantum hardware [12], [13].

B. Motivation
As shown above, quantum error correction addresses the

problem of errors within quantum computations and there is
a multitude of error correction schemes available. However,
using these schemes is not as straightforward as Example 3
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Fig. 2. State fidelity with increasing error probability

suggests. Noisiness is not restricted to specific erroneous
quantum channels but affects all operations (including the
operations necessary for error correction itself).

Example 4. The effects of noise are different depending on
the simulated hardware model. To illustrate this, in Fig. 2, we
plotted the fidelity2 of state |0〉 depending on the probability
of a bit-flip error in three different scenarios—without any
kind of error protection (red curve), with the ideal bit-flip
error protection presented in Example 3 (blue curve), and
with a more realistic bit-flip error protection (brown curve). In
the latter case, we assumed that the operations necessary to
realize the bit-flip error correction are also affected by noise
(this is reasonable to assume, as discussed in Section II-B).
Without any kind of error correction, the fidelity of the encoded
state more or less linearly declines with increasing error
probability. Using the ideal bit-flip error protection increases
the fidelity, as long as the error probability stays below
50 %. Finally, in the realistic case the fidelity severely drops
compared to the case where no error correction is applied at
all.

As illustrated by the example, naively applying error cor-
rection schemes to quantum circuits may even lower the
fidelity (as proven by the threshold theorem [24]–[26]). The
optimal error correction scheme depends on the properties
of the simulated circuit as well as the considered quantum
computer. Additionally, it is necessary to optimally tailor
the error correction scheme to the specific use case. Thus a
thorough evaluation is needed.

However, while there exists a lot of research on quantum
error correction (e.g., [6]–[13]), the focus clearly (and under-
standably) is on the development of corresponding concepts
for error-correcting codes and proof-of-concept implemen-
tations on selected quantum circuits. As illustrated above,
however, evaluating error-correcting codes requires a broader
consideration—thus far, involving extensive research and te-
dious manual implementation of said schemes. To address this
problem, we propose a framework that automates the process
of applying error correction to circuits and also allows for
noise-aware quantum circuit simulation.

IV. PROPOSED FRAMEWORK

The proposed framework is supposed to support the process
of evaluating error correction schemes. To this end, it does
not only allows to apply error-correcting codes to a given
quantum circuit but also supports the entire process of circuit
preparation and simulation. More precisely, the framework
(1) automates the circuit compilation flow (including the appli-
cation of error-correcting codes), (2) provides quantum circuit
simulation with noise-aware quantum circuit simulators, and
(3) is flexible and easily extensible for new use cases.

2The fidelity is a metric that expresses the overlap between two states [23].
Here we use it to express the overlap between the state with and without
errors.
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Fig. 3. Applying the bit-flip error-correcting code to a circuit.

Note that, while circuit compilation and simulation are
necessary parts of such a framework, there already exist avail-
able solutions (e.g., [19], [27]–[30]). Therefore, the proposed
framework is realized in such a manner that it can be coupled
with these solutions. In the remainder of this section, the
proposed framework is presented.

A. Compiler
During the compilation process, the quantum circuit is

prepared for the circuit simulation or execution on a real
quantum computer. Here, we focus on the main functionality
that is provided by the framework, namely the automatic
application of error-correcting codes to the quantum circuit.
For this, we exploit the fact that, while there exist many
different error correction schemes, all of them must in practice
realize the same steps when applied to a quantum circuit.
These steps are:

1. Qubit Encoding: The basic idea of all error-correcting
codes is that information is encoded in such a way that it
allows detection and correction of occurring errors. While
encoding depends on the respective approach, all schemes
have in common that information is distributed among multiple
qubits. At the end of this step, all qubits within the logical
circuit are encoded into logical qubits consisting of multiple
physical qubits.

2. Operation Encoding: Having a quantum circuit with en-
coded qubits, the next step accordingly adjusts the operations.
More precisely, the originally intended operations are mapped
to logical operations, i.e., operations that are functionally
equivalent but consider the applied qubit encoding. How each
operation is mapped is not always trivial [16] and depends on
the used error correction scheme, which is why only specific
quantum operations are supported for each error-correcting
code.

3. Error Correction: The error detection and correction
routines are added to the circuit. This consists of syndrome
extraction followed by some corrective operations on the
logical qubits—depending on the extracted syndrome. The
optimal frequency of executing the detection and correction
routine, i.e., after how many quantum operations this routine is
applied to a logical qubit, depends on several factors, e.g., the
hardware specifications of the designated quantum computer
or the error-proneness of the application. To accommodate this,
the frequency of the detection and correction step can be freely
adjusted.

4. Qubit Decoding: Finally, in the last step, the logical qubit
is decoded back to a single physical qubit, so that it can be
measured. For convenience, this is realized in such a way, that
the ordering of the output qubits is equal to the order of the
qubits in the original circuit.

The following example illustrates the process of applying
an error-correcting code using the bit-flip code presented in
Example 3.

Example 5. In Fig. 3, a circuit without (Fig. 3a) and with
(Fig. 3b) bit-flip error correction is presented. The color-
coding in the circuit with error correction represents during
which step the respective parts are generated. During the
encoding, each qubit of the original circuit is encoded into
a logical qubit by entangling it with two ancillary qubits.
Next, each quantum operation is copied for each qubit making
up the logical qubit, e.g., an X operation in the original
circuit is mapped to an X operation onto each qubit making
up the respective logical qubit. Afterwards, error detection
and correction is added. For the error detection, a projective
measurement is added, which is realized by two ancillary
qubits and four controlled Z operations. The ancillary qubits
then contain the syndrome, which indicates whether a bit-flip
error has occurred. If that is the case, the flipped qubit is
corrected by applying an X operation to it. Finally, the qubit
is decoded so that it can be measured.

Since these steps are necessary for all error-correcting
codes, the framework provides templates for realizing them.
Due to this modular design, the framework can easily be ex-
tended, either by modifying already available error-correcting
codes or by adding new ones. Currently the framework sup-
ports four error-correcting codes ranging in size to different
error correction types, namely the Shor Code [6] (as this is
the first code that corrects arbitrary single-qubit errors), the
Laflamme Code [31] (as this is the smallest possible code
protecting against arbitrary single-qubit errors), the Steane
code [7] (as it is a well-studied code used in other experiments
such as [13]), and a surface code [32], [33] (due to their
popularity in the current research on error-correcting codes).

B. Simulator
An essential part of the framework is the ability to di-

rectly simulate circuits with (and without) error correction
and different hardware models. To this end, several simu-
lation approaches have recently been introduced in the lit-
erature (e.g., [19], [27]–[30]). Some of these are available
as open-source, and hence can be readily integrated into the
proposed framework. By this, we gain access to multiple sim-
ulation styles, which come with their advantages/drawbacks
and the most appropriate simulator can be selected for each
use case.

To illustrate these differences, we simulated the entangle-
ment circuits (which construct the GHZ state over all qubits)
with an increasing number of qubits. During all simulations,



10 20 30

0

100

200

300

number of simulated qubits

ru
nt

im
e

in
se

co
nd

s

density matrix simulator
stochastic array-based simulator

stabilizer-based simulator

Fig. 4. Runtime of noise-aware quantum circuit simulation depending on the
simulation style

we applied depolarization noise with 0.001 % probability to
the qubit whenever it has been used. We ran this experiment
with Qiskit [19] using three different simulation styles, namely,
a density matrix simulator, a stochastic array-based simulator
(with 2000 shots), and a stabilizer-based simulator (with 2000
shots). In Fig. 4 the simulation times are plotted as a function
of the number of simulated qubits. The plot shows that the run-
time of the density matrix simulator and the stochastic array-
based simulator grows exponentially with increasing qubits,
while the stabilizer-based simulator exhibits a polynomial
runtime. However, while the density matrix simulator performs
worst in runtime, it allows to simulate arbitrary quantum
operations and gives a full description of the final state.
The stochastic array-based simulator also allows to simulate
arbitrary quantum operations but only approximates the final
quantum state. In contrast, the stabilizer-based simulator is
restricted to a non-universal gate set of quantum operations
(i.e., the Clifford gate set).

This small experiment shows the advantage of having a
variety of different quantum circuit simulators available for
experiments. Currently Qiskit [19] is used for quantum circuit
simulation. We chose Qiskit as it offers not only different
noise-aware quantum circuit simulators but also access to real
quantum hardware. Naturally, the quantum circuit simulator
can easily be switched to different software.

V. APPLICATION AND DEMONSTRATION

We demonstrate the usefulness of the proposed framework
by considering the Steane code [7] as a well-known represen-
tative of an error-correcting code. For this code, we evaluated
in which scenarios the error correction actually improves the
reliability and in which it does not3. To this end, we evaluated
the effects of three different properties:

1) Size of the considered circuit: error correction is a
costly procedure (see Fig. 3). Whether error correction
improves the reliability of a circuit substantially depends
on its size.

2) Frequency of error correction: Detecting and correcting
errors is a costly operation. The proper frequency with
which this routine is performed is critical when applying
an error-correcting code.

3) Assumed hardware model: The considered hardware
model (i.e., error types and error probability) also effects
the usefulness of the quantum circuit. For example, if the
error probability is too high, the additional operations
introduced by error correction may actually degrade the
quality of the results.

For the evaluation, we considered a benchmark that creates
the GHZ state between all qubits (taken from [34]). We
chose this benchmark because its simplicity makes it the ideal

3Using the proposed framework, similar considerations can be done with
other codes as well.

candidate to test the Steane code in different scenarios, without
having to account for fragments within the data. Besides that,
the benchmark can be easily varied in size, and the created
states are strongly correlated thereby making (uncorrected)
errors easily noticeable. If not stated otherwise, the following
default parameters have been used in the evaluation:
• Depolarization noise (applied whenever a qubit is used)

has been considered with an error probability of 0.001 %.
• Error correction and detection has been applied to a

logical qubit prior to the measurement and whenever it
has been used 500 times.

• The entanglement benchmark is used with five qubits and
10.000 dummy operations added to the end of the circuit
(the dummy operations do not change the result but are
affected by noise).

For each property discussed above, this default use-case is
adapted to evaluate the respective property. That is, for (1) we
simulated entanglement circuits with an increasing number of
dummy operations, for (2) we simulated entanglement circuits
with a decreasing rate of error correction steps, and, finally,
for (3) we simulated the benchmark with increasing error
probability not only with depolarization noise (mimicking gate
errors) but also with amplitude damping errors (mimicking
coherence errors). In the latter case we used the entanglement
benchmark with two qubits (instead of five), as we had to use
a stochastic array-based simulator for simulating the amplitude
damping noise.

We used the proposed framework to implement the Steane
code to the circuits for all runs and simulated the circuits
using Qiskit [19]—which, as described in Section IV-B, has
been integrated into the framework. More precisely, we used
the stabilizer-based simulator when considering depolarization
errors and the state vector simulator when considering ampli-
tude damping errors (as these cannot be simulated with the
stabilizer simulator). We simulated all experiments stochasti-
cally with 2000 shots. The simulations yield a probability dis-
tribution for measuring specific basis states, which we use to
calculate the “classical” fidelity (also known as the Hellinger
coefficient [35]) between the expected probability distribution
(i.e, the received probability distribution when no errors occur
during the computation) and the actual distribution received
by the noise-aware quantum circuit simulation. We chose this
distance measure over others, such as the fidelity between
the quantum states [23] or the average fidelity (as used for
example in [36]), as we want to evaluate how a noisy quantum
computer affects the “correctness” of the measured final states
for specific quantum algorithms. For these evaluations, we
conducted 285 simulations and applied error correction to the
quantum circuits 137 times.

Fig. 5 summarizes the results of the experiments. Fig 5a
depicts the fidelity with increasing depth of the entanglement
circuits. It shows that the usefulness of error correction in-
creases with the gate depth. Conducting error correction only
pays off when the circuit is of sufficient depth. Next, in
Fig. 5b the fidelity is plotted with decreasing error correction
frequency. Contrary to intuition, it is not advantageous to
correct errors as often as possible during the computation.
This can be explained by the fact that, as discussed above,
error correction is expensive and adds a substantial amount
of extra operations. Hence, it has a positive effect if error
correction application and resulting overhead is traded-off (a
task for which the proposed framework offers a very helpful
tool). Finally, Fig. 5c depicts the fidelity with increasing
(physical) error probability and simulated error type. The plot
shows that error correction is only useful, as long as the
error probability stays low. Additionally, the simulated noise
type noticeably affects the effectiveness of the error correction
scheme. Thus, depolarization errors could be handled more
effectively compared to amplitude damping errors.

Obviously, these demonstrations only provide a snippet of
what kind of evaluations can be conducted with the proposed
framework. But it clearly demonstrates the usefulness of the
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Fig. 5. Experiments

approach. While, until now, it required a lot of tedious manual
work to apply error correction to circuits and evaluate the
corresponding effects, now the proposed framework automates
the task—making quantum error correction more broadly
applicable and easier to analyze.

VI. CONCLUSIONS

Quantum error-correcting codes are an essential part of
building scalable and resilient quantum hardware. However,
currently most of the corresponding work in this domain
heavily relies on manual labor and/or is based on theoreti-
cal results only. We address this problem by proposing an
open-source framework that automates the process of applying
error correction and also allows noise-aware simulation of
the protected circuits. We demonstrate the advantages and
usefulness of the proposed framework by evaluating the re-
liability of the Steane error-correcting code with respect to
different parameters. The proposed framework is published as
open-source (available at www.github.com/cda-tum/qecc) and
implemented in a modular fashion, so that it can be easily
configured and extended for new error-correcting codes and
to make quantum error correction broadly applicable.
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