
Stealthy SWAPs: Adversarial SWAP Injection in
Multi-Tenant Quantum Computing

Suryansh Upadhyay
The Pennsylvania State University

University Park, PA, USA
sju5079@psu.edu

Swaroop Ghosh
The Pennsylvania State University

University Park, PA, USA
szg212@psu.edu

Abstract—Quantum computing (QC) holds tremendous
promise in revolutionizing problem-solving across various do-
mains. It has been suggested in literature that 50+ qubits are
sufficient to achieve quantum advantage (i.e., to surpass super-
computers in solving certain class of optimization problems).
The hardware size of existing Noisy Intermediate-Scale Quantum
(NISQ) computers have been ever increasing over the years.
Therefore, Multi-tenant computing (MTC) has emerged as a po-
tential solution for efficient hardware utilization, enabling shared
resource access among multiple quantum programs. However,
MTC can also bring new security concerns. This paper proposes
one such threat for MTC in superconducting quantum hardware
i.e., adversarial SWAP gate injection in victim’s program during
compilation for MTC. We present a representative scheduler
designed for optimal resource allocation. To demonstrate the
impact of this attack model, we conduct a detailed case study
using a sample scheduler. Exhaustive experiments on circuits
with varying depths and qubits offer valuable insights into
the repercussions of these attacks. We report a max of ≈55%
and a median increase of ≈25% in SWAP overhead. As a
countermeasure, we also propose a sample machine learning
model for detecting any abnormal user behavior and priority
adjustment.

Index Terms—Quantum Computing, Multi-tenant computing
, SWAPs, Quantum Computing Security, Scheduler

I. INTRODUCTION

Quantum computing (QC) has garnered considerable at-
tention due to its potential to revolutionize problem-solving
across various domains. Leveraging quantum-mechanical phe-
nomena, such as superposition and entanglement, quantum
computers offer exponential speed-ups over classical counter-
parts in solving combinatorial problems. The applications of
quantum computing extend to machine learning [1], security
[2], drug discovery [3], and optimization [4], making it a
highly sought-after technology in the scientific and commer-
cial communities. However, practical implementation of quan-
tum computing faces formidable challenges, including qubit
decoherence, measurement errors, gate errors, and temporal
variations. Quantum error correction (QEC) codes [5] provide
a solution for reliable quantum operations, but their current
resource-intensive requirements render them impractical for
widespread use in the near future. The emergence of Noisy
Intermediate-Scale Quantum (NISQ) computers, which have
a limited number of qubits and operate in the presence of
noise, offer a potential solution to important problems such as
discrete optimization and quantum chemical simulations.

Fig. 1. The number of extra SWAPs introduced on the victim circuit when
an adversary (1 qubit program) and a victim (4 qubit program) are run on
a 5 qubit hardware with the connectivity graph (top left). The graph depicts
the results of ten different programs with similar depth but different two-
qubit gate permutations. We compare two cases: Adversarial attack: The
victim program is allocated qubits 0, 1, 3, and 4, while the adversary program
strategically occupies qubit 2. Baseline: The victim program is allocated
qubits 0, 1, 2, and 3, while the adversary program is allocated qubit 4.

Quantum computers are typically accessed via cloud ser-
vices, which offer users convenience and scalability. How-
ever, the increasing number of quantum computer users has
resulted in a demand-supply imbalance, leading to significant
wait times for accessing quantum computing resources. This
situation highlights a pressing concern: how can we utilize
quantum hardware more efficiently? To address this challenge,
the concept of multi-tenant computing (MTC) has emerged
[6] [7], gaining prominence with the rise in hardware qubit
numbers and improved qubit error rates. The MTC paradigm
seems to be a necessary solution to optimize quantum hard-
ware utilization and meet the growing demands of quantum
computing efficiently.

Motivation: In NISQ computers, resource sharing presents
significant challenges compared to conventional computers.
The limited connectivity between qubits in existing quantum
computers necessitates the use of SWAP operations for 2-
qubit gates between qubits that are not directly connected.
This incurs additional computational costs and introduces
error accumulation. In a multi-tenant computing scenario,
adversaries can exploit these connectivity constraints by strate-
gically occupying specific qubits, by exploiting loop holes in
scheduler policies. Consequently, victim programs assigned to

ar
X

iv
:2

31
0.

17
42

6v
1

 [
qu

an
t-

ph
]

 2
6

O
ct

 2
02

3

qubits with poor connectivity experience additional SWAPs.
To illustrate this, let’s consider an example scenario where
we have an adversary with a 1-qubit program and a victim
with a 4-qubit program, both running on a 5-qubit hardware
with a certain connectivity graph (Fig. 1). We compare two
cases: Case-1: The victim program is allocated qubits 0, 1,
3, and 4, while the adversary program strategically occupies
qubit 2. Case-2: The victim program is allocated qubits 0,
1, 2, and 3, while the adversary program is allocated qubit
4. In the first case, the adversary occupies qubit 2, which
forces the victim circuit to utilize qubits (0, 1, 3, 4) that are
not as densely connected. As a result, the victim program
experiences a higher number of SWAPs due to the poor
connectivity of its allocated qubits. This negatively impacts
its performance and fidelity of computation. Conversely, in the
second case, the victim program runs on qubits that are more
densely connected, reducing the number of SWAPs required
and improving its overall performance.

Understanding and addressing such qubit connectivity-based
attacks is crucial for ensuring the reliability and security
of quantum computations in MTC environments. This paper
focuses on identifying the threats posed by adversary-induced
extra SWAPs and their potential impact on the reliability
and security of quantum computations. To the best of our
knowledge, this is the first attempt to delve into the new SWAP-
based fault injection threat space tailored specifically for MTC
quantum computing.

Contributions: We present (a) a novel SWAP-based fault
injection model, (b) a representative scheduler for MTC, (c)
exhaustive experiments using circuits of varying depths and
qubits, and (d) countermeasures against such attacks.

Paper organization: Section II provides background infor-
mation on quantum computing and related work. Section III
describes a representative scheduler for MTC. In section IV we
elaborate on the proposed threat model. Section V discusses
simulations, results, and analysis. In Section VI we discuss
countermeasures. Section VII concludes the paper.

II. BACKGROUND

A. Qubits and Quantum gates

Qubits are similar to classical bits in that they store data
through internal states such as |0⟩ and |1⟩. However due to
their quantum nature, qubits can exist in a superposition of
both |0⟩ and |1⟩. Furthermore, qubits can be entangled, which
means that the states of multiple qubits become correlated.
Mathematically, quantum gates are represented using unitary
matrices (a matrix U is unitary if UU† = I, where U† is the
adjoint of matrix U and I is the identity matrix).

B. Connectivity constraint and SWAP operations

In superconducting quantum systems, a qubit is linked to
one or more neighboring qubits via resonators (waveguides)
that allow a multi-qubit gate between them. The qubit connec-
tivity graph for an IBM computer is depicted in Fig. 1). The
native 2-qubit gate (CNOT in IBM and CZ in Rigetti) can only
be applied between connected qubits. For example, CNOT

between qubits 1 and 2 is permitted on the depicted device
because there is an edge in the graph between these qubits.
Since qubits 1 and 4 are not connected, CNOT cannot be
applied directly between them. This limited connectivity is a
challenge in quantum circuit mapping (referred to as coupling
constraints) which is handled by routing qubits via the SWAP
operation so that logical qubits with 2-qubit operations become
nearest neighbors, at the cost of:

(a) Increase in circuit depth: extra SWAP operations result
in an increase in the overall depth of the quantum circuit.

(b) Computational overhead: each SWAP operation con-
sumes additional gate resources and prolongs the execution
time of the circuit. The increase in gate count can lead to
longer computation times, making quantum algorithms more
susceptible to noise and decoherence effects.

(c) Error accumulation: as each SWAP operation intro-
duces its own sources of error, extra SWAP operations con-
tribute to error accumulation. The accumulation of errors can
severely impact the final results of the quantum computation
and reduce the reliability of the output.

C. Relation to prior work

The field of quantum security has seen significant inter-
est, leading to various research efforts aimed at protecting
intellectual property (IP) [9] [10], combating Trojan insertion
[11] [12], and dealing with threats from untrusted hardware
providers [13]. The lack of exploration of attack surfaces in
a MTC setting, however, is a notable gap in the existing
literature. In this work, we aim to bridge this gap and focus on
vulnerabilities specific to MTC in superconducting hardware
systems. In [15], authors propose an adversarial attack model
that takes advantage of crosstalk on shared hardware in a
MTC setting. The adversary’s program is designed to exploit
crosstalk effects to compromise the victim’s quantum com-
putation. They demonstrate the attack’s success in lowering
a victim’s quantum program’s output probability. In another
recent study [14], the authors presents a vulnerability in
shared trapped-ion (TI) systems that require shuttle operations
for communication among traps. They identify the repeated
shuttle operations as a critical factor contributing to heightened
quantum bit energy and a decline in computation reliability
(fidelity). Building upon this insight, the authors propose an
attack strategy in which the adversary deliberately designs
their program to incur a significant number of shuttles within
their own program. This intentional increase in shuttle opera-
tions lowers the overall fidelity of the TI system, consequently
affecting the fidelity of the victim’s program as well. In
contrast, our work focuses on superconducting hardware sys-
tems, specifically on an attack scenario in which an adversary
occupies specific qubits, with the goal of adding extra SWAP
operations in the victim circuit during compilation.

III. SCHEDULER

The proposed quantum program scheduler algorithm (Algo-
rithm 1) aims to explore a SWAP-based attack model while

Fig. 2. Threat model in MTC: The scheduler determines job execution order and concurrent program allocations on the quantum hardware for a single run in
MTC. An adversary can exploit scheduler oversights and quantum hardware connectivity constraints. We compare two cases Baseline (Case-1): The victim
program is allocated qubits 0, 1, 2, and 3, while the adversary program is allocated qubit 4. Adversarial Attack (Case-2): The victim program is allocated
qubits 0, 1, 3, and 4, while the adversary program strategically occupies qubit 2. The extra SWAP introduced on the victim circuit highlights the impact of
the attack.

ensuring equitable utilization of quantum hardware for opti-
mizing program execution on NISQ computers. The scheduler
incorporates the following key features:

a) Fair-Share Queuing: The scheduler uses a fair-share
queuing mechanism at its core, dynamically selecting pro-
grams for execution to prevent resource monopolization. This
approach, like IBM’s current policy [16], identifies the group
with the least utilized share within the scheduling window,
ensuring that all users have equal access to quantum hardware.
Within each group, program execution is prioritized based on
the least used share, with the oldest jobs being prioritized first-
in-first-out (FIFO).

Example 1: To illustrate, we consider a scenario where five
jobs are submitted to the hardware and assuming their nor-
malized resource usages (i.e., usage divided by total allocated
usage) are as follows: Job1 (0.2), Job2 (0.3), Job3 (0.1), Job4
(0.1), and Job5 (0.3). According to the fair-share queuing, jobs
with the least usage will be prioritized, with a FIFO order
for older jobs. Therefore, the prioritized order from highest
to lowest would be: Job3 (0.1), Job4 (0.1), Job1 (0.2), Job2
(0.3), and Job5 (0.3).

b) Priority-Based Grouping: To enhance fairness and
prioritize program execution, the scheduler divides the pro-
gram queue into three distinct but equal priority groups: high,
medium, and low. Programs are assigned priorities based on
their scores i.e., lower scores get higher priority. Hence critical
programs are given precedence on the quantum hardware.

c) Program Selection: Once priority-based grouping is
established, the scheduler selects the program with the highest
priority from the fair-share queue for immediate execution.
The scheduler then explores opportunities for parallel execu-
tion, iteratively checking other programs in the queue with
comparable execution time that can be run simultaneously.
Thorough checks on qubit requirement, connectivity, mapping,
and no qubit sharing are conducted to ensure compatibility
and minimize unnecessary SWAP operations. For instance,
in Example 1, Job3 is chosen due to its highest priority.
The scheduler then evaluates Job4, Job1, Job2, and Job5

iteratively. The selection depends on meeting criteria such as
satisfying qubit requirements, having a total qubit count less
than the hardware limit, matching execution times, maintaining
connectivity, and adhering to compatibility constraints, which
ensure continuous qubit connectivity and no sharing between
jobs.

d) Priority Metric and Resource Allocation: The sched-
uler generates a priority metric (PM) for each program by
calculating the ratio of 2-qubit gates to total gates in the
program. Based on program priorities (high, medium, or low),
an initial qubit mapping is assigned. When a tie occurs, the
priority metric (the higher the PM, the higher the priority) is
used to resolve the mapping decision (for example, if two users
request to use the same qubit). The scheduler iterates through
programs until the batch running on the hardware is finished or
all available qubits for the next run are fully allocated mapping
for the next run.

IV. THREAT MODEL

A. Adversary capabilities

We assume that the adversary has (a) access to the quantum
hardware’s connectivity graph (typically a public information),
detailing permissible two-qubit gate connections and the ne-
cessity of SWAP operations between disconnected qubits. (b)
sufficient computational resources to analyze qubit quality
using error rates and the connectivity graph, enabling the
selection of suitable qubits to execute an attack.

B. Proposed SWAP injection attack model

When a quantum job is submitted to a specific quantum
system, it enters the scheduler alongside other jobs submitted
by different users, forming a pool of tasks awaiting execution
on the hardware. The scheduler determines the order of execu-
tion for these jobs and which programs can run concurrently
on the given quantum hardware for a single run in a MTC
environment. An adversary can take advantage of oversights
in different schedulers and exploit the connectivity constraints
present in the quantum hardware. In this context, both the

Algorithm 1: Quantum Program Scheduler
Input: Quantum programs in queue with fair share

policy scores.
Output: Quantum programs with allocated initial

qubits for next run.
1 Divide the fair-share queue into three priority groups:

high, medium, and low, based on scores (lower score
→ higher priority);

2 Calculate the priority metric (PM = total 2-qubit gates
/ total gates);

3 Initialize an empty queue for selected programs;
4 while Hardware is running previous batch and

programs in the fair-share queue do
5 Select the highest priority program from the queue;
6 for Each program in the fair-share queue do
7 if Program depth is comparable to the selected

program’s depth then
8 Check qubit feasibility, connectivity, and

mapping for parallel execution;
9 if Feasible then

10 Assign the initial qubit mapping based
on the program’s priority level;

11 if Same priority level then
12 Assign the initial qubit mapping

based on the PM (higher PM →
higher priority);

13 end
14 Queue up the program for execution;
15 Update the fair-share queue (remove the

selected program);
16 Break the loop and select the next

highest priority program;
17 end
18 end
19 end
20 end

Output: Execution order of the selected programs on
the quantum hardware

adversary’s program and the victim’s program are executed
on a quantum hardware with a predefined connectivity graph.
The graph defines direct interactions between certain qubits
through two-qubit gates (e.g., CNOT gates), while other qubit
pairs require SWAP operations to interact indirectly. The
adversary’s objective is to maximize the number of additional
SWAP operations imposed on the victim’s program by strategi-
cally occupying specific qubits of the connectivity graph. The
outlined threat model is depicted in Fig. 2. To illustrate the
impact of this attack model, we present a detailed case study
using a sample scheduler. Through strategic adversarial qubit
allocation, we demonstrate how the attack induces an increase
in SWAP operations on the victim’s program compared to an
alternate allocation baseline scenario.

Fig. 3. Qubit quality metric (Q) (where W1,W2,W3= 0) for a sample
hardware with the shown connectivity graph. The lower the Q, the more
likely it will be targeted by an adversary.

C. Attack scenario : Kitchen sink approach
We consider a “kitchen sink” attack scenario in which

an adversary targets victim programs using a variety of ad-
versarial programs. The adversary employs a comprehensive
strategy to exploit scheduler vulnerabilities (e.g., fair share
allocation policy) despite not knowing the exact target program
details (e.g., priority, number of qubits, execution time and
job number). The adversary, for example, can hog up certain
qubits by submitting multiple high-priority, medium-priority,
and low-priority jobs with varying qubit and execution time
requirements and high priority metric (Section III.d) biasing
the scheduler for qubit allotment thereby limiting victim
program access and resulting in unavoidable SWAP operations.
This will ensure the victim is attacked regardless of their
position and priority in the queue.

D. Adversarial qubit selection
The choice of qubits for a SWAP-based attack is critical

for the adversary to accomplish the attack efficiently. The
adversary can consider several factors when selecting the
qubits for this attack, including:

(a) Number of Direct Connections: Qubits with more
direct connections provide more incentive for the adversary
to occupy.

(b) Connection Errors: Another important factor to con-
sider is the severity of connectivity errors associated with each
qubit.

(c) Readout Assignment Errors: readout assignment errors
are errors that occur during the measurement process, leading
to incorrect measurement outcomes. Qubits with higher read-
out assignment errors are more likely to produce erroneous
measurement results, which can be exploited by the adversary.

1) Qubit Quality Metric: We define a qubit quality metric
that combines the aforementioned factors to aid in the selection
of most viable qubits by the adversary.

Q = 1/DC ·W1 + CE ·W2 + RE ·W3 (1)

Where: DC represents the number of direct connections, CE
represents the connectivity errors, RE represents the readout

Fig. 4. Performance comparison of 100 different 6-qubit programs in five
different scenarios of qubit allocation on hardware (fake singapore[20 qubit]).
We report SWAP overhead (% increase in CNOT gates) and absolute number
of additional SWAPs added, for each configuration compared to configuration
5 (baseline).

Fig. 5. Performance comparison of 100 different 6-qubit program batches
with different program parameters (total gates, CNOT(CX) gates and depth)
on hardware (fake singapore[20 qubit]). We report SWAP overhead (%
increase in CNOT gates) and absolute number of additional SWAPs added,
for configuration 1 compared to configuration 5 (baseline).

assignment errors, and W1, W2, and W3 are weights assigned
to each factor.

These weights can be adjusted based on the adversary’s
goals and the quantum computer’s specific characteristics. By
calculating the qubit quality metric for each qubit, the adver-
sary can rank the qubits based on their potential to contribute
to the success of the SWAP-based attack. For example: Fig.
3 depicts the qubit metric calculated for a backend with (W1,
W2, W3) = 1. The higher the qubit quality score, the more
likely a qubit will be shortlisted for the attack.

V. RESULTS AND ANALYSIS

1) Experimental setup: We leverage the Qiskit open-source
quantum software development kit from IBM, employing a
Python wrapper for simulations. For benchmarks, we design
random quantum circuits with varying characteristics, includ-
ing qubit counts, gate counts, circuit depth, and connectiv-

ity patterns. For benchmark execution, we utilize Qiskit’s
fake provider module (fake vigo[6 qubit], fake singapore[20
qubit]), which comprises noisy simulators mimicking real IBM
Quantum systems through system snapshots. These snapshots
contain crucial information about the quantum system, such as
the coupling map, basis gates, and qubit parameters. During
compilation, a SWAP gate is reduced to a combination of
CNOT gates (usually 3-CNOT gates). Therefore, we use SWAP
overhead (% increase in CNOT gates) and absolute number
of additional SWAPs added as our performance metric.

2) Attack feasibility: The impact of resource allocation
in MTC: Resource allocation significantly impacts perfor-
mance of a quantum program in MTC. Long-distance in-
teractions between qubits increase SWAPs, leading to errors
and degraded fidelity. Conversely, higher connectivity reduces
SWAPs, enhancing efficiency and mitigating errors. Non-
preferential resource allocation due to an adversarial attack
may lead to extra added SWAPs. We evaluate the performance
of 100 different 6-qubit programs in five different scenarios
of qubit allocation on hardware (fake singapore[20 qubit])
with connectivity graph, as shown in the Fig.4. We contrast
these allocation scenarios with a baseline allocation, which
represents the most densely connected allocation. We report
the additional CNOT and SWAP operations introduced com-
pared to the baseline allocation configuration 5. We observe
a max of ≈55% and a median increase of ≈25% in SWAP
overhead between configurations 1 and 5 (baseline). Even for
the next best connected allocation we report an increase of
max ≈15% and a median increase of ≈8% for 100 different
circuits. An adversarial attack that prevents the victim
from occupying the most densely connected configuration
results in a detrimental increase in SWAP overhead.

3) Impact of program complexities: We report the perfor-
mance of 100 different 6-qubit program batches with different
program parameters (total gates, CNOT(CX) gates, and depth)
in Fig. 5. We compare configuration 1 to configuration 5 (base-
line) in terms of SWAP overhead (% increase in CNOT gates)
and absolute number of additional SWAPs added. As program
complexity increased with higher depth and gate count, the
percentage increase in CNOT gates (SWAP overhead) de-
creased from a mean of ≈ 29% (for program batch of 50
gates) to ≈15% (for program batch of 300 gates). This implies
that the additional computational burden (SWAP overhead)
introduced by SWAP operations became less significant in
more complex circuits, however the absolute number of SWAP
operations increases (from a mean of ≈ 10% for the program
batch of 50 gates to ≈35% for the program batch of 300
gates) as expected. The attack is comparably effective, if
not more so, on smaller programs in comparison to larger
counterparts.

4) Effect of program size (i.e., number of qubits): We
analyzed 100 program batches for each qubit case ranging
from 4 to 10 qubits on the Fake Singapore. All configurations
had similar depth and gate count (Fig. 6). For each qubit
case, the least and the most densely connected (baseline)
configurations were compared. The results showed an average

Fig. 6. Performance comparison for 100 program batches for each qubit case
ranging from 4 to 10 qubits on the Fake Singapore with similar depth and
gate count. For each qubit case, the least and the most densely connected
(baseline) configurations were compared.

increase of ≈ 28% in mean SWAP overhead, with a maximum
increase of ≈ 70%. The extent of SWAP overhead is
influenced by both hardware connectivity and the potential
density of connections for different qubit programs.

VI. DEFENSE STRATEGY

Schedulers can use anomaly detection to identify unusual
submission patterns, such as excessive job requests or skewed
prioritization based on factors like job priority, qubit needs,
and execution times. When anomalies are detected, alerts
can be triggered. To address this, flagged users can either
run their programs independently (e.g., in a single execution
environment), or schedulers can dynamically adjust priorities
to allocate resources more fairly. Machine learning techniques,
particularly One-Class SVMs (Support Vector Machines), are
well-suited for detecting anomalous user behavior [17] in
program queues, which is essentially a one-class classification
problem. We propose a sample model to implement this
classifier:

Data collection, features and labels: Schedulers can col-
lect historical data on user behavior in the program queue.
This data would include features (with normal and anomalous
labels):

1) Job request frequency: Normal: Users who submit up to
a certain number of job requests per day. Anomalous: Users
who consistently submit more job requests than the defined
threshold.

2) Job concurrency: Normal: Users who submit a reason-
able number of jobs concurrently to the queue in a given
time window. Anomalous: Users who attempt to run a large
number of jobs concurrently.

3) Skewed Prioritization: Normal: Jobs for a specific user
with priority levels distributed evenly across a predefined
range. Anomalous: Jobs for a specific user with priority levels
heavily skewed toward either the highest or lowest end of the
priority range

4) User Account Activity: Normal: Users who maintain a
consistent level of account activity. Anomalous: Users who
exhibit bursts of activity or prolonged periods of inactivity.

5) Execution Duration vs. Priority: Normal: Jobs with
higher priority generally complete faster than lower-priority
jobs. Anomalous: Jobs with lower priority completing signif-
icantly faster than higher-priority jobs.

6) Resource Contention: Normal: Jobs that do not fre-
quently compete for the same resources. Anomalous: Jobs
that frequently contend for the same resources

Training and detection: The One-Class SVM model can
be trained exclusively on data representing “normal” and
abnormal behavior. This trained model can subsequently detect
anomalies in new data by assigning decision function scores.
Data points with scores well below a set threshold are identi-
fied as anomalies.

VII. CONCLUSION

In this paper we introduce a representative scheduler for
multi-tenant computing scenarios and propose a novel SWAP
injection attack model. We found up to a ≈55% increase with
a median of ≈25% in the swap overhead. We also propose a
sample machine learning model to detect any anomalous user
behavior as a countermeasure.

VIII. ACKNOWLEDGMENT

This work is supported in parts by NSF (CNS-1722557,
CNS-2129675, CCF-2210963, CCF-1718474, OIA-2040667,
DGE-1723687, DGE-1821766, and DGE-2113839), Intel’s
gift and seed grants from Penn State ICDS and Huck Institute
of the Life Sciences.

REFERENCES

[1] I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neu-
ral networks,” Nature Physics, 2019. [Online]. Available: https:
//doi.org/10.1038/s41567- 019- 0648- 8.

[2] Upadhyay, Suryansh, and Swaroop Ghosh. ”Robust and Secure Hybrid
Quantum-Classical Computation on Untrusted Cloud-Based Quantum
Hardware.” arXiv preprint arXiv:2209.11872 (2022).

[3] Y. Cao, J. Romero, and A. Aspuru-Guzik, “Potential of quantum com-
puting for drug discovery,” IBM Journal of Research and Development,
vol. 62, no. 6, pp. 6–1, 2018.

[4] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[5] Daniel Gottesman. 2009. An Introduction to Quantum Error
Correction and Fault-Tolerant Quantum Computation. (05 2009).
https://doi.org/10.1090/psapm/ 068/2762145

[6] Niu, Siyuan, and Aida Todri-Sanial. ”Enabling Multi-tenant computing
mechanism for quantum computing in the NISQ era.” Quantum 7 (2023):
925.

[7] Das, Poulami, et al. ”A case for Multi-tenant computing quantum
computers.” Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture. 2019.

[8] Matthew Reagor et al. 2018. Demonstration of universal parametric
entangling gates on a multi-qubit lattice. Science Advances 4, 2 (2018).

[9] Suresh, Aakarshitha and Saki, Abdullah Ash and Alam, Ma-
habubul and Topalaglu, Rasit o and Ghosh, Dr. Swaroop. A Quan-
tum Circuit Obfuscation Methodology for Security and Privacy,
10.48550/ARXIV.2104.05943. arXiv 2021.

[10] A. A. Saki, A. Suresh, R. O. Topaloglu and S. Ghosh, ”Split Compila-
tion for Security of Quantum Circuits,” 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), 2021, pp. 1-7, doi:
10.1109/ICCAD51958.2021.9643478.

[11] Cui, X., Saeed, S.M., Zulehner, A., Wille, R., Wu, K., Drechsler, R.
and Karri, R., 2018. On the difficulty of inserting trojans in reversible
computing architectures. IEEE Transactions on Emerging Topics in
Computing, 8(4), pp.960-972.

http://arxiv.org/abs/2209.11872
http://arxiv.org/abs/1411.4028

[12] Limaye, Nimisha, Muhammad Yasin, and Ozgur Sinanoglu. ”Revisiting
logic locking for reversible computing.” In 2019 IEEE European Test
Symposium (ETS), pp. 1-6. IEEE, 2019.

[13] Upadhyay, Suryansh, and Swaroop Ghosh. ”Robust and Secure Hybrid
Quantum-Classical Computation on Untrusted Cloud-Based Quantum
Hardware.” arXiv preprint arXiv:2209.11872 (2022).

[14] Saki, Abdullah Ash, Rasit Onur Topaloglu, and Swaroop Ghosh.
”Shuttle-exploiting attacks and their defenses in trapped-ion quantum
computers.” IEEE Access 10 (2021): 2686-2699.

[15] Ash-Saki, Abdullah, Mahabubul Alam, and Swaroop Ghosh. ”Analy-
sis of crosstalk in NISQ devices and security implications in multi-
programming regime.” In Proceedings of the ACM/IEEE International
Symposium on Low Power Electronics and Design, pp. 25-30. 2020.

[16] https://quantum-computing.ibm.com/services/resources/docs/resources/
manage/systems/queue

[17] Heller, Katherine, Krysta Svore, Angelos D. Keromytis, and Salvatore
Stolfo. ”One class support vector machines for detecting anomalous
windows registry accesses.” (2003).

http://arxiv.org/abs/2209.11872

	Introduction
	Background
	Qubits and Quantum gates
	Connectivity constraint and SWAP operations
	Relation to prior work

	Scheduler
	Threat model
	Adversary capabilities
	Proposed SWAP injection attack model
	Attack scenario : Kitchen sink approach
	Adversarial qubit selection
	Qubit Quality Metric

	Results and analysis
	Experimental setup
	Attack feasibility: The impact of resource allocation in MTC
	Impact of program complexities
	Effect of program size (i.e., number of qubits)

	Defense Strategy
	Job request frequency
	Job concurrency
	Skewed Prioritization
	User Account Activity
	Execution Duration vs. Priority
	Resource Contention

	Conclusion
	Acknowledgment
	References

