Abstract:
NoC designs are based on a compromise of latency, power dissipation or energy, usually defined at design time. However, setting all parameters at design time can cause ei...Show MoreMetadata
Abstract:
NoC designs are based on a compromise of latency, power dissipation or energy, usually defined at design time. However, setting all parameters at design time can cause either excessive power dissipation (originated by router underutilization), or a higher latency. Moreover, routers with virtual channels have larger buffer sizes and more complex control, increasing the total costs. The situation worsens whenever the application changes its communication pattern, i.e., when a portable phone downloads a new service. In this paper we propose the use of a two-level adaptive buffer for a virtual channel router, where the buffers units and the virtual channels are dynamically allocated to increase router efficiency in a NoC, even under rather different communication loads. With the proposed architecture the buffer and virtual channels in the input channels of the routers can be adapted at run time. The adaptive virtual channel router decreases the latency in the worst case by 10%, and a reduction of 80% in the best case is achieved when compared to previous works.
Date of Conference: 03-05 October 2011
Date Added to IEEE Xplore: 17 November 2011
ISBN Information: