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Abstract—Cooperative automatic driving, or platooning, is
a promising solution to improve traffic safety, while reducing
congestion and pollution. The design of a control system for
this application is a challenging, multi-disciplinary problem,
as cooperation between vehicles is obtained through wireless
communication. So far, control and network issues of platooning
have been investigated separately. In this work we design a
cooperative driving system from a joint network and control
perspective, determining worst-case upper bounds on the safety
distance subject to network losses, so the actual inter-vehicle gap
can be tuned depending on vehicle or network performance. By
means of simulation, we show that the system is very robust to
packet losses and that the derived bounds are never violated.

I. INTRODUCTION

Traffic congestion and safety are still two major problems
of modern transportation on roads. One promising solution to
such problems is cooperative driving. By means of wireless
communication, vehicles share information about their status
and the sensed surrounding environment, which drastically
increases the perception of what happens around them, enabling
cooperation. Using only standard in-car sensors, as currently
done by prototype self-driving vehicles, does not empower this
ability, thus in many ways self-driving vehicles share the same
limitations of human drivers. As an example, a wireless link
can let a vehicle know the future intended trajectory of another
one (at an intersection, as a long term destination or cruising
speed, etc), a feat that no on-board sensor can do.

To reduce highway congestion, the community has proposed
an application called Cooperative Adaptive Cruise Control
(CACC): a communication-enhanced version of a standard
Adaptive Cruise Control (ACC) that is capable of maintaining
a very small inter-vehicle spacing while ensuring passengers’
safety. The CACC forms trains of vehicles, called platoons, so
this application is also known with the name of cooperative
automatic driving, or platooning. Platooning provides benefits
in terms of efficiency, safety, and driving comfort [1], [2].
Lowering the inter-vehicle gap results in a better use of the
road infrastructure (where most of the space is now simply
wasted due to safety distances), improves traffic flow and thus
reduces congestion and, at the same time, the waste of fuel
due to start and stop dynamics caused by congestion itself.
Safety is improved because an automated systems takes control
over human driving, which, as shown by statistics, is the cause
of more than 90 % of the accidents [3]. Finally, comfort is

improved as there is no longer the need to focus on driving,
so the “former driver” is free to do other activities.

The design of a cooperative driving system is a control-
theoretical problem that is inevitably intertwined with network-
ing problems. The input to the control algorithm is information
about the other vehicles in the platoon, such as speed, position,
or acceleration, which is conveyed via wireless links, through
periodic broadcast (or beaconing), as well as via local sensors
that can improve the precision of distance and relative speed
measures. Given the inherent nature of a wireless link, data
packets can be lost, which in turn has a dramatic impact
on the performance of the application. Bad performance of
autonomous driving can result in injuries or loss of life.

Most of the works in the field do not consider, or consider
only partially, the impact of wireless impairments on the
performance of the control system. In this paper we design
a cooperative driving algorithm that specifically takes into
account error dynamics due to loss of data and ensures that a
predefined safety bound is never violated, given a particular
worst-case scenario. To the best of our knowledge, this is
the first attempt to jointly design a control algorithm and
a dedicated communication protocol that takes into account
packet losses. The main features of our proposal can be
summarized as follows:
• The design jointly considers control and network per-

formance. The controller parameters can be tuned to
obey some predefined bounds on the position error,
given an upper bound on the input error caused by
network impairments (Sections III and IV). By means
of simulations, we show that the controller never violates
the imposed safety constraints (Section V);

• The algorithm is capable to maintain a constant spac-
ing policy thanks to a leader plus bidirectional control
topology, which comes with no additional network over-
head with respect to a commonly assumed leader- plus
predecessor-following scheme (see Sections II and V);

• The vehicles in the platoon share a common target speed,
which can be changed by an external authority, e.g., an
optimal speed advisory infrastructure.

II. BACKGROUND AND RELATED WORK

The design of a cooperative automatic driving (or platooning)
system is definitely a challenging task, as is witnessed by the



large body literature on the topic. Different solutions have
been proposed, with different design assumptions and thus
characteristics. The main goal is to keep the inter-vehicle gap
as small as possible, while ensuring passengers’ safety. The
key difference to standard ACC solutions is the use of wireless
communication for sharing control data with potentially all
the vehicles in the platoon. Wireless communication allows a
vehicle to “see” behind other vehicles, which is not possible
by using standard radar sensors. In addition, by means of
communication, a vehicle can inform the others about what it
is going to do, letting them “know the future”.

A key design choice is the logical control topology, indicat-
ing from which members each vehicle is considering data to
compute the control action. This is different from the actual
network topology, which is typically broadcast-like. Even if
the network topology is a full mesh, the control algorithm may
simply exploit a subset of the received information. As an
example, the controllers in [4]–[6] implement a predecessor-
following topology, where each vehicle is using the information
of its predecessor only. Other examples include a leader- and
predecessor-following topology [7], [8], which considers in
addition the information of the first vehicle. We also find bi-
directional [9] and potentially all-to-all [10] control topologies.

The choice of the control topology has implications on
the system performance, in particular with respect to the gap
policy. Predecessor-following control topologies are proven
to be string-stable only under a constant time headway gap
policy [4], [7]. This means that the distance is constant in time,
so the faster the vehicles, the larger the gap. If this policy is
not respected, then the string-stability property is violated, so
distance errors at the head of the platoon might be propagated
and amplified towards the end, potentially leading to collisions.
By adding a link to the leader, instead, the system can be
string-stabilized with respect to a constant spacing gap, i.e.,
the distance is fixed and it is not related to cruising speed [7].

String-stability, however, is not generally related to the
distance (or the time headway) vehicles should maintain to
avoid collisions in case of packet losses. The performance of
a cooperative automatic driving system is typically analyzed
with a pure control-theoretic approach, so that a quantitative
characterization of the safety gap as a function of the network
conditions is hard to find in the literature [11].

To address this issue, the present work proposes the joint
network and control design of a cooperative automatic driving
system. A theoretic bound on the minimum inter-vehicle
distance subject to packet losses is derived in a worst-case
scenario. If the conditions considered for the worst-case
analysis never occur, then the inter-vehicle distance can never be
smaller than the computed bound. To the best of our knowledge,
this is the first attempt to realize such kind of control system.

III. CONTROL ALGORITHM

The goal of our control model is to empower good coop-
erative driving performance and, at the same time, provide
an analytic framework for the design of the communication

Table I: Main notation used in the paper.

yi position of vehicle i

v(t) reference speed

d desired distance between vehicles

k elastic coefficient

h inter-vehicle friction coefficient

r vehicle-reference friction coefficient

δi communication-induced disturbance term

NL maximum number of consecutive packets lost

T Beacon interval

system in terms of information loss. We propose a class of dis-
tributed controllers (which can be seen either as spring-damper
mechanical systems, or as impedance-matched electromagnetic
systems, [12]) that ensure string stability as proven by Eq. (16)
in Section III-C.

The control action depends on information about the vehicle
in front and the one behind (predecessor-follower topology),
and all vehicles are “glued” together by a common dynamic
reference speed v(t), which can be imposed by the first vehicle
of the platoon, thus having a control topology similar to [7], or
can be decided by any other vehicle or taken from an external
source (e.g, speed indications coming from the infrastructure).
Even the leader follows the reference speed with a transient.
Table I reports the main notation used throughout the paper.

We consider the following dynamic model: for vehicle 1
(the leader),

(1)ÿ1 = −k(y1 − y2 − d)− h(ẏ1 − ẏ2)− r(ẏ1 − v) + δ1,

for vehicles i = 2, . . . N − 1,

(2)ÿi = −k(yi − yi+1 − d)− k(yi − yi−1 + d)

− h(ẏi − ẏi+1)− h(ẏi − ẏi−1)− r(ẏi − v) + δi

and, for vehicle N ,

ÿN =−k(yN −yN−1 +d)−h(ẏN − ẏN−1)−r(ẏN −v)+δN ,

(3)

where, besides the control algorithm coefficients h, k, and r,
δi is a disturbance factor essentially due to packet losses (the
dominant source of disturbance, as discussed in Section IV).

A. Analysis

Consider the model in Eqs. (1) to (3) with d = 0. This is
equivalent to changing the variables as ŷi = yi + d(1 − i),
i = 1, . . . , N , so that the condition ŷ1 = ŷ2 = · · · = ŷN is
achieved when the true distance between consecutive vehicles
is d as desired; we drop the hat to keep the notation simpler.

Let 1̄ be the all-one vector 1̄> = [ 1 1 . . . 1 ] and define
the average position as

a(t) =

∑N
i=1 yi
N

=
1̄>y

N
.



Then we introduce a new vector z(t) whose components are
the differences zi = yi−1 − yi, i = 2, . . . , N :

z2(t)
z3(t)

...
zN (t)

 =


1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 −1



y1(t)
y2(t)
y3(t)

...
yN (t)

 , (4)

which can be synthetically written as

z(t) = Dy(t),

where D is the (N −1)×N matrix appearing in Eq. (4). Note
that the vector [ a(t) z>(t) ]>, including the average and the
differences, is in one-to-one correspondence with y(t).

With a few algebraic manipulations, the overall system can
be written in matrix form as

ÿ = −kLy − hLẏ − rẏ + r1̄v(t) + ∆, (5)

where L
.
= D>D ∈ RN×N and ∆ =

[
δ1 . . . δN

]>
. The

dynamics of the average position a,

ä(t) = −rȧ(t) + rv(t) +
1

N
1̄>∆, (6)

does not depend on k and h, while it does depend on the
average components ∆av

.
= 1

N 1̄>∆ of the disturbance.
Conversely, the dynamics of the differences z = Dy,

z̈ = −kMz − hMż − rż +D∆, (7)

where M .
= DD> ∈ R(N−1)×(N−1), does not depend on the

reference speed v(t), which can thus be changed as needed,
without changing the dynamics of the system or hampering its
safety. Then the system can be analyzed by separately studying
the evolution of Eq. (6) and of Eq. (7). Section III-B investigates
the average properties of the platoon, while Section III-C
explores the performance in terms of the differential dynamics
between vehicles.

B. The average dynamics

The transient from zero speed to the desired speed v(t) can
be studied by considering the system in Eq. (6) with initial
conditions a(0) = ȧ(0) = 0, meaning that the platoon is at rest
in an initial position (assumed to be position 0). Its solution
yields the average position

a(t) = vt− v

r
+
v

r
e−rt,

with average speed ȧ(t) = v − ve−rt and average acceleration
ä(t) = rve−rt. The acceleration is maximal at the beginning
and equal to rv. The time constant

τa =
1

r
(8)

can be controlled by choosing r based on the trade-off between
promptness and comfort.

C. The difference dynamics

A smooth average behavior of a platoon is important, but
the dynamics of the differences zi is fundamental for safety
and group behavior: zi = d means that two vehicles are at
the double of the desired distance d, while zi = −d means
collision! The key design specification is therefore

|zi|≤ αd, (9)

where 0 < α < 1 is a safety coefficient.
In wireless vehicular control, disturbances are essentially

originated by packet loss. If a packet is not received by a
vehicle, then there is a lack of information on the positions of
the preceding and/or following vehicles. The typical (indeed
probably the only reasonable one, given the small beaconing
time) assumption in this case is that the vehicles are at the same
distance with the same speed as the last transmitted information.
The discrepancy between the actual relative position and speed
and the estimated ones introduces a disturbance. Denoting by
y
i

the stale old information Eq. (2) yields

(10)
ÿi = −k(yi − yi+1

− d)− k(yi − yi−1
− d)

− h(ẏi − ẏi+1
)− h(ẏi − ẏi−1

)− r(ẏi − v).

We can rewrite the dynamics as

(11)ÿi = −k(yi − yi+1 − d)− k(yi − yi−1 − d)

− h(ẏi − ẏi+1)− h(ẏi − ẏi−1)− r(ẏi − v) + δi,

where

δi = h
d

dt
δyi+1 + h

d

dt
δyi−1 + kδyi+1 + kδyi−1 + rδv. (12)

Equation (12) gives a clear criterion to co-design the constants
h and k and the communication system to keep the error
within safe boundaries: Once a packet loss has occurred we can
investigate how the system recovers after the occurrence and
how the system behaves if the packet losses occur repeatedly
in a burst leading to a potentially larger difference between
the true information and the last received one.

Let us introduce the new variable

x = P>z,

to diagonalise the system, so that it is easier to study its stability,
where P is the orthonormal matrix such that M = PΩ2P>

and the diagonal entries of Ω2 = diag{Ω2
1, . . . ,Ω

2
N−1} are the

eigenvalues of M (i.e., the nonzero eigenvalues of L). Then,
Eq. (7) can be rewritten as

ẍ = −kΩ2x− hΩ2ẋ− rẋ+ δ̂, (13)

with δ̂ = P>D∆. Note that, being P orthonormal, it does not
change the Euclidean norm: ‖x‖= ‖P>z‖= ‖z‖.

If we apply the Laplace transform, with zero initial condi-
tions, we have

X(s) = [s2I + (hΩ2 + rI)s+ kΩ2]−1∆̂(s) = Γ(s)∆̂(s),



where Γ(s) is a diagonal matrix of transfer functions

Γ(s) = diag
{

1

s2 + (hΩ2
i + r)s+ kΩ2

i

}
.

The denominators of the transfer functions Γi(s) are second
order polynomials with positive coefficients, hence stability is
ensured because their roots (the poles of the transfer functions)
have a negative real part. We can also state the following result,
proven in the extended version of the paper [13].

Proposition 1: The poles of the transfer functions Γi(s) are
real and negative if

h >
k

r
. (14)

We assume that Eq. (14) holds, hence all poles are real and
negative, and we consider two problems:

1) the reaction of the platoon to an erroneous position of
one of more vehicles (with no disturbances);

2) the reaction of the platoon to disturbances that are
bounded in norm as ‖δ̂‖≤ ρ.

For the first problem, we assume that D∆ = 0 and that
at some time (t = 0 without loss of generality) there is a
mismatch in the position: z(0) = z0, with zero speed. Then,
we consider the Laplace transform: since L[z(t)] = Z(s),
L[ż(t)] = sZ(s) − z0 and L[z̈(t)] = s2Z(s) − sz0, from
Eq. (7) we get

[s2I + (hM + rI)s+ kM ]Z(s) = [sI + (hM + rI)]z0. (15)

Since X(s) = P>Z(s) and x0 = P>z0,

X(s) = [s2I + (hΩ2 + rI)s+ kΩ2]−1[sI + (hΩ2 + rI)]x0

.
= Φ(s)x0 = diag

{
s+ (hΩ2

i + r)

s2 + (hΩ2
i + r)s+ kΩ2

i

}
x0.

Then, the components of x evolve independently. Let us con-
sider the inverse transform φ(t) = diag{φi(t)} = L−1[Φ(s)].
We have that φi(0) = 1, from the initial value theorem
(limt→0 φi(t) = lims→∞ sΦi(s)). Hence φ(0) = I . Moreover,
all φi(t) are strictly decreasing, as can be shown by considering
their derivative:

L[φ̇i(t)] = sΦi(s)− φi(0) =
−kΩ2

i

s2 + (hΩ2
i + r)s+ kΩ2

i

.

This transfer function has real poles only, no zeros, and a
negative coefficient at the numerator, hence its inverse Laplace
transform φ̇i(t) is negative [14], [15]. Hence, all φi(t)’s are
equal to 1 at t = 0 and converge to 0 for t→∞ (because the
poles of the transfer function are real and negative). Therefore,
they must be always positive and bounded as ‖φ(t)‖≤ 1 for
all t. Hence, |xi(t)|< |x0,i| for t > 0. Coming back to z, the
inverse transform of Z(s) is z(t) = Pφ(t)P>z0. Hence, for a
perturbation of size ‖z0‖,
‖z(t)‖= ‖Pφ(t)P>z0‖= ‖φ(t)‖‖z0‖< ‖z0‖, for t > 0.

(16)
The previous inequality ensures string stability. Assume there is
a misplacement (error) measured by |zi(0)|= ζ , then ‖z0‖= ζ ,
this implies that ‖z(t)‖< ζ. Since the norm is greater or equal

than the magnitude of any component, then |zj(t)|≤ ζ: no
component will exceed the initial size ζ. More formally:

Proposition 2: If zi(0) = ζ 6= 0 and zj(0) = 0 for j 6= i,
then |zj(t)|≤ ζ for t > 0.

To determine the effect of a nonzero disturbance ∆, we can
consider Eqs. (7) and (13) indifferently, since the transformation
P> is norm-preserving. Consider Eq. (13) with ‖δ̂(t)‖≤ ρ.
Then, the transfer function is Γ(s): X(s) = Γ(s)∆̂(s).

If we assume zero initial conditions and consider the inverse
Laplace transform γ(t) = L−1[Γ(s)], the solution is given by
the convolution x(t) =

∫ t
0
γ(σ) δ̂(t− σ)dσ. Then

‖x(t)‖≤
∫ t

0

‖γ(σ)‖‖δ̂(t− σ)‖dσ ≤ ρ
∫ t

0

‖γ(σ)‖dσ

≤ ρ
∫ ∞

0

‖γ(σ)‖dσ = ρmax
k

∫ ∞
0

|γk(σ)|dσ = ρmax
k

∫ ∞
0

γk(σ)dσ.

We removed the absolute value because γk(σ) is a positive
function. In fact, it has real poles only, no zeros and a positive
coefficient at the numerator [14], [15]. The value of the integral
can be computed by means of the final value theorem:∫ ∞

0

γk(σ)dσ =
1

s2 + (hΩ2
i + rI)s+ kΩ2

i

∣∣∣∣
s=0

=
1

kΩ2
i

.

This results in the bound

‖x(t)‖≤ ρ 1

kΩ2
1

,

where Ω2
1 is the smallest eigenvalue of M (i.e., the smallest

nonzero eigenvalue of L). Recall that ‖x(t)‖= ‖z(t)‖.
As a final consideration, the error given by Eq. (12) scales

with k, h and r, if we assume that v is fixed and exactly
known. On the other hand, Eq. (14) is assumed to hold, hence
hr > k. If we take h/k = (1 + ε)/r, with ε > 0, the overall
error scales linearly with k, because we can write

‖δi‖= k

∥∥∥∥1 + ε

r

d

dt
δyi+1 +

1 + ε

r

d

dt
δyi−1 + δyi+1 + δyi−1

∥∥∥∥
≤ kδMi

,

hence, since ‖δ̂‖= ‖P>D∆‖ and ‖D‖≤ 2,

‖δ̂(t)‖≤ 2kδM
.
= ρ, (17)

where δM is a bound for the cumulative error of position and
speed (according to some norm). Then, we get the bound

‖x(t)‖≤ 2δM
Ω2

1

, (18)

which depends uniquely on the eigenvalue Ω2
1.

IV. MAPPING PACKET LOSSES TO ERROR BOUNDS

In cooperative driving the loss of packets is by far the
major source of disturbance: delays are negligible with direct
communications, and sensor errors are limited; the loss of
consecutive packet instead means that the controller is “blinded”
for hundreds of milliseconds. Let NL be the maximum number
of consecutive losses (burst) than can occur in the channel with
a certain probability bound. Above this value the network is



faulty, and the system should enter a disaster recovery phase,
which is out of the scope of this paper.

For the worst-case analysis we want to compute the bound
imposed by the loss of NL consecutive packets on the
disturbance term δi; we consider the error in Eq. (12). The error
is expressed as the sum of the position, speed, and reference
speed errors multiplied by their coefficients. With respect to
the position and the speed error, the upper bound can be
computed by considering the maximum jerk j̄ (the derivative
of acceleration) a vehicle can implement. We compute the
bounds on position and speed error as

δ̄ẏ =

∫ (NL+1)T

0

∫ t

0

j̄dt dt =
j̄

2
((NL + 1)T )

2 (19)

δ̄y =

∫ (NL+1)T

0

∫ t

0

∫ t

0

j̄dt dt dt =
j̄

6
((NL + 1)T )

3
, (20)

where T is the packet transmission interval. With respect to
the reference speed error, the bound depends on how much the
reference can change. In cruising conditions sharp changes of
reference are not needed and we set a maximum allowed change
in reference speed named v̄ between consecutive packets. By
combining Eqs. (12), (19) and (20) we obtain the error bound

(21)
δM = 2

(
h
j̄

2
((NL + 1)T )

2

+ k
j̄

6
((NL + 1)T )

3

)
+ rv̄ · (NL + 1).

It is necessary to double the position and speed error bounds
to consider both preceding and following vehicles. Finally, to
compute the maximum possible error we consider the smallest
non-zero eigenvalue Ω2

1 of L = D>D, computed using the
singular value decomposition of matrix D, and we exploit the
fact that ‖z‖≤ 2δM

Ω2
1

, in view of Eq. (18) and of the fact that
‖x‖= ‖z‖. Note that the value Ω2

1 depends on the number of
vehicles: the larger the number of vehicles, the smaller Ω2

1.
Finally, we set the inter-vehicle distance to

d >
2δM
Ω2

1

cs, (22)

where cs ≥ 1 is a safety coefficient.
Figure 1 plots the bound ‖z‖max= 2δM

Ω2
1

and, thus, the
minimum safety distance d as a function of the platoon size
N , for different maximum jerks j̄ and number of consecutive
losses NL. The remaining parameters are fixed: T = 100 ms,
v̄ = 1 km/h per packet1, k = 0.5, h = 0.71, r = 1. The
platoon size N has the largest impact, as the bound grows
more than linearly with N . The parameters NL and j̄ also
play a significant role, but the impact is not as large. In good
network conditions the control system is definitely performing
well, as the worst-case upper bound is below 3 m even with
8 vehicles. In non-ideal network conditions, instead, there is
an important trade-off in the choice of the parameters. To
have small inter-vehicle distances, we either need to ensure

1 This corresponds to 10 km/h per second with the given T , which is much
more than the normal speed change we expect while cruising.
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Figure 1: Error bound ‖z‖max as function of the platoon size N , for
different maximum jerks j̄ and burst size NL.

a high network reliability (thus, a low NL) or limit the size
of the platoon. Indeed, this allows us to easily regulate d and
dynamically adapt it to the network condition. Otherwise, the
performance of the vehicle can also be considered and, if
needed, altered for system tuning. For example, by limiting the
maximum jerk to 4 m/s3 the system can maintain a relatively
small distance while being robust the heavy packet losses. It
is important to remember that the bound ‖z‖max is computed
as a worst-case which, in reality, might never occur. In the
next section we show that the norm of the distance errors in
realistic conditions is much smaller than the bound ‖z‖max.

V. PERFORMANCE EVALUATION

We implement the proposed control system in the platooning
simulator PLEXE [16], which allows us to test the performance
of platooning control algorithms under realistic vehicle dynam-
ics and communication models. It is especially valuable for
assessing implementation-related issues as, e.g., the effect of
asynchronous control data. As the data exchange rate (10 Hz)
between vehicles is slower than the actuation control loop
(100 Hz [4]) and vehicles might not be synchronized, the data
provided to the algorithm might be incoherent from a time
perspective. As an example, the own GPS position might be
up to date, while the position of the front and back vehicles is
“frozen” to the value included within the last received beacon.

To cope with this issue the control system includes a
predictor, which computes missing values by interpolation.
More formally, assume that ÿt0 , ẏt0 , and yt0 are the acceleration,
speed, and position of a vehicle at time t0. To estimate speed



and position of such vehicle at the current time t, the control
system computes

ẏt = ẏt0 + ÿt0 (t− t0) , yt = yt0 +
t− t0

2
(ẏt + ẏt0) . (23)

The use of Eq. (23) makes PLEXE simulation extremely realistic
as this is what on-board controllers are expected to do.

A. Error Dynamics Comparison

We first show the dynamics of the vehicles without network
impairments. The goal is to understand the behavior of the
controller, which is qualitatively different from the solutions
proposed in the literature. We compare our algorithm with the
controller designed in [4], which is a well-known CACC using
a time headway spacing policy.

Figure 2 shows the distance error dynamics between vehicles
Vi and Vi−1 for a platoon of 8 cars under a sinusoidal
disturbance. For the CACC designed by Ploeg et. al., the leader
changes its speed following the sinusoidal pattern, while for our
controller we change the reference speed v. Figure 2a shows
the classical attenuation of the error dynamics towards the
tail of the platoon, thanks to the string-stability property. Our
approach (Fig. 2b) is string stable as well, but the maximum
attenuation occurs at the middle of the platoon and the dynamics
are symmetric with respect to the center.

We can make an analogy between our algorithm and a spring-
damper system (Fig. 3). We can imagine that consecutive
vehicles are connected through a spring, and an additional
spring which represents the reference speed v. When changing
the reference speed the vehicles are pushed back/pulled forward
all at the same time, and the “inner” springs take care of
attenuating the internal errors. A non trivial consequence of
this controller structure is that position errors are compensated
balancing the control effort between the front and rear vehicle,
while in most other controllers the effort is all on the rear
vehicle. This is in line with the “philosophy” of an autonomous
driving platoon and not of a human-driven vehicle followed by
partially automated vehicles. Further discussion on this topic
is beyond the scope of this paper.

B. Error Bound Analysis.

As a second analysis we perform a set of simulations to
empirically show that the error bound computed in Section III-C
is always respected. To this aim, we implement a scenario where
the leader vehicle continuously changes the reference speed
v by an amount v̄ for each packet (i.e., every T seconds).
In addition, we consider a channel causing burst losses at
the receivers. In particular, each received packet has a certain
probability of triggering a burst of losses. If a burst is triggered,
the vehicle discards all the incoming packets received until
the time nLT has elapsed, loosing nL consecutive packets for
each vehicle. nL is drawn from a discrete uniform distribution
U(1, NL). After the end of a burst, each receiver waits a
minimum amount of time before starting the next one. The
analysis on the bound is indeed valid when considering the
system at steady state. After a burst of losses, the system needs
a certain amount of time to converge (cf. Eq. (8)) to eliminate
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Figure 2: Qualitative comparison between a classic algorithm and the
proposed solution (distance errors under a sinusoidal disturbance).

V0V1V2V3

v

Figure 3: Spring-damper representation of the proposed control system.

the accumulated error. However, we also consider very small
network up-times (as small as 100 ms) to show the robustness
of our approach. Finally, we consider first order actuation lag
with a time constant τ = 0.5 s, i.e., the response of the engine
and the braking system to actuation commands ÿ is modeled

by the following transfer function ÿreal =
1

τs+ 1
ÿ, which

is a common and verified assumption [4], [6]–[8]. Table II
summarizes simulation parameters.

For each simulation s, we compute the norm of the error
vector as

‖zs‖= max
k

√√√√ N∑
i=1

(dk,i − d)
2
, (24)

where dk,i is the distance between vehicles Vi and Vi−1 at
simulation step k and d is the target distance. We then verify
that ‖zs‖≤ ‖z‖max for all the simulations, where ‖z‖max is
the theoretic bound for the norm, computed upon the parameters
chosen for that particular simulation.

In the computation of the theoretic bound, however, the
maximum jerk j̄ is not clearly defined. In the real world it can
either be a physical limit of the engine or the braking system,
or a design parameter. In the simulations there is no such limit.
For this reason, we post-analyze the maximum jerks obtained in
the simulations. Figure 4 shows an histogram of the maximum



Table II: Simulation parameters.

Parameter Value

k, h, T , τ 0.5, 0.71, 100 ms, 0.5 s

r
√

0.5, 1, 4
nL 1, ∼ U(1, 3), ∼ U(1, 5)
Start burst probability 1 %, 5 %, 10 %, 20 %, 30 %, 40 %, and 50 %
Minimum no-burst time 0.1 s, 0.3 s, 0.5 s, 1 s, and 3 s
v̄ 1 km/h per packet
Repetitions 10
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Figure 4: Distribution of maximum jerks measured over all simulation
runs.

jerk value of each simulation. Small maximum jerks (1.5 m/s3

to 3.5 m/s3) occur when packet loss events are unlikely and
for small values of the r parameter. Recall that r balances
the trade-off between settling time and driving comfort, so a
higher value is more likely to cause large acceleration changes.
Medium jerk values (5.5 m/s3 to 8 m/s3) are caused by a large
value of the r parameter (r = 4), or a small r value combined
with moderate packet losses. Finally, heavy losses cause large
maximum jerk values, as the system obtains control data after
long periods of silence, requiring strong actions to compensate
the error. To compute the theoretic error bounds we use the
minimum of the values shown in Fig. 4, i.e., 1.5 m/s3.

Figure 5 plots the simulation and theoretic bounds for
different combinations of the r and NL parameters. Simulation
bounds are marked with points, while theoretic bounds are
marked with crosses. The graph clearly shows that the theoretic
bounds are respected. The margin between simulation and
theory is large and this is due to two facts.

First, the bound ‖z‖max is computed on the worst case: a
change in the reference speed, a burst loss of NL packets, and
a change in the dynamics with the maximum jerk should occur
at the same time. This is very unlikely even in a synthetic
scenario like the one we consider, especially because the jerk is
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Figure 5: Plot of the simulation (‖zs‖) and the theoretic (‖z‖max)
bounds, for different combinations of the r and NL parameters. The
‖z‖max values for (r,NL) = (1, 3) and (4, 5) are out of scale and
are not shown for the sake of clarity.
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Figure 6: Comparison of the speed dynamics when setting the reference
speed v = 0 km/h from v = 100 km/h with and w/o adaptive r.

a consequence of the control action computed by the algorithm.
Second, the predictor implemented within the control system

counteracts the effects of packet losses, estimating the position
and the speed of other vehicles during network down time.
The effectiveness of the predictor is evident, as the impact of
the burst length is smaller compared to the impact of r.

C. Emergency Braking

We tested the performance of the control system with respect
to cruising, which is the main purpose of a platooning control
algorithm. A platoon, however, is also required to react to
emergencies and external inputs. One example is an emergency
braking maneuver [17].

With “emergency braking” we refer here to the action of
coming to a complete stop with a strong deceleration. For
strong we mean a deceleration value which can be perceived
as uncomfortable by a passenger, i.e., a value larger than
4 m/s2 [18]. Differently from conventional CACC systems,
where the leader is controlled by an independent law, our
design controls leader’s behavior as well. Setting the reference
speed v = 0 is not enough, as the algorithm smoothly converges
to the desired speed with a comfortable deceleration and not in
“emergency mode”. To realize an emergency braking maneuver
we thus need to modify controller parameters “on the fly”, in
particular by acting on the desired speed v and the vehicle-
reference friction coefficient r. Let us assume that the leader
is traveling at speed v0. To implement the maneuver, we set
v = 0 and r = ddec

v0
, where ddec is the desired deceleration. This

causes the leader to start braking with a deceleration ddec and
progressively reduce the deceleration as its speed approaches
0. Figure 6 shows the comparison between the two approaches
when choosing a strong desired deceleration of 8 m/s2. When
the leader sets the reference speed v = 0 (5 s simulation time),
but does not adapt r the platoon takes 15 s to come down to
a complete stop, while when r is adapted to the situation of
a sudden unforeseen stop the platoon comes to a complete
stop in 3 s to 4 s. The average behavior is always smooth and
depends only hon how r is changed.

Figure 7 shows the differential dynamics of the maneuver
in terms of relative vehicles distance in the same conditions of
Fig. 6 in three different conditions: Without adapting r (Fig. 7a);
adapting r (Fig. 7b); and adapting r when the maneuver is
initiated by the fourth vehicle in the platoon V3 and not the first
one V0 as usual (Fig. 7c). As expected, changing dynamically
r allows a faster deceleration, but ends in larger deviation from
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Figure 7: Comparison of the relative vehicles’ position when setting the
reference speed v = 0 km/h from v = 100 km/h without adapting
r (a), adapting r (b), and adapting r (c) when the stop is declared by
V3.

d in inter-vehicles distance, that remain in any case in the
order of tens of cm. Interestingly, if the stop is declared by a
vehicle in the middle of the platoon, a feature this controller
enables, distance errors are smaller. After the platoon comes to
a complete stop, the vehicles keep moving very slowly to bring
the inter-vehicle distance exactly to d, but these are movements
of centimeters and vehicles can be conveniently stopped at any
distance if desired.

One observation to make in this scenario is that the theoretic
bound ‖z‖max is not valid during the emergency maneuvers,
as the parameters of the controller change and the scenario
is no more a standard cruise, but an emergency stop. The
platoon, however, remains very stable and distances, as shown
by results, remain well within safety, and indeed within the
“cruising bound”, even if it is not theoretically valid.

VI. CONCLUDING DISCUSSION AND FUTURE WORK

In this work we designed a cooperative automatic driving
algorithm from a joint network and control perspective. We
derived safety upper bounds on the inter-vehicle distance
depending on vehicle dynamics and packet losses caused
by network impairments, showing by means of simulations
that such bounds are never violated. On the contrary, the
bounds are respected with a large margin due to the robustness

of the algorithm to packet losses. Hence, our future work
aims at reducing the theoretic error bound by considering the
effect of a predictor or, alternatively, at designing an adaptive
message dissemination algorithm that reduces the broadcast
rate depending on the need. The latter objective would permit
to minimize network utilization while still guaranteeing the
safety and the robustness to the system. To the best of our
knowledge, this would be a significant achievement.
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