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Abstract—Vehicle-to-Vehicle Communication (V2V) is an up-
coming technology that can enable safer, more efficient trans-
portation via wireless connectivity among moving cars. The
key enabling technology, specifying the physical and medium
access control (MAC) layers of the V2V stack is IEEE 802.11p,
which belongs in the IEEE 802.11 family of protocols originally
designed for use in WLANs. V2V networks are formed on an
ad hoc basis from vehicular stations that rely on the delivery
of broadcast transmissions for their envisioned services and
applications. Broadcast is inherently more sensitive to channel
contention than unicast due to the MAC protocol’s inability to
adapt to increased network traffic and colliding packets never
being detected or recovered.

This paper addresses this inherent scalability problem of the
IEEE 802.11p MAC protocol. The density of the network can
range from being very sparse to hundreds of stations contenting
for access to the channel. A suitable MAC needs to offer the
capacity for V2V exchanges even in such dense topologies which
will be common in urban networks. We present a modified
version of the IEEE 802.11p MAC based on Reinforcement
Learning (RL), aiming to reduce the packet collision probability
and bandwidth wastage. Implementation details regarding both
the learning algorithm tuning and the networking side are
provided. We also present simulation results regarding achieved
message packet delivery and possible delay overhead of this
solution. Our solution shows up to 70% increase in throughput
compared to the standard IEEE 802.11p as the network traffic
increases, while maintaining the transmission latency within the
acceptable levels.

I. INTRODUCTION

V2V technology aims to enable safer and more sophisticated
transportation starting with minor, inexpensive additions of
communication equipment on conventional vehicles and mov-
ing towards network-assisted fully autonomous driving. It will
be a fundamental component of the Intelligent Transportation
Services and the Internet of Things (IoT). This technology
allows for the formation of Vehicular Ad Hoc Networks
(VANETs), a new type of network which allows the exchange
of kinematic data among vehicles, for the primary purpose
of safer and more efficient driving, as well as efficient traffic
management and other third-party services. VANETs can help
minimise road accidents and randomness in driving with on-
time alerts, as well as enhance the whole travelling experience
with new infotainment systems which allow acquiring naviga-
tion maps and other information from peers.

The V2V radio technology is based on the IEEE 802.11a
stack, adjusted for low overhead operations in the Dedicated
Short Range Communications (DSRC) spectrum (30 MHz in

the 5.9 GHz band for Europe). It is being standardised as
IEEE 802.11p [1]. The adjustments that have been made are
mainly for enabling exchanges without belonging in a Basic
Service Set. Consequently, communication via IEEE 802.11p
is not managed by a central access point (as in typical Wireless
LANs) but is ad hoc in nature.

A. Motivation

VANETs are the first large scale network to operate primar-
ily on broadcast transmissions, since the data exchanges are
often relevant for vehicles within an immediate geographical
Region of Interest (ROI) of the host vehicle. This allows the
transmission of broadcast packets (packets not addressed to a
specific MAC address), so that they can be received from every
vehicle within range without the overhead of authentication
and association with an access point. Broadcasting has always
been controversial for the IEEE 802.11 family of protocols [2],
since they treat unicast and broadcast frames differently. Radio
signals are likely to overlap with others in a geographical area
and two or more stations will attempt to transmit using the
same channel, leading to contention. Broadcast transmissions
are inherently unreliable and more prone to contention, since
the MAC specification in IEEE 802.11 does not request ex-
plicit acknowledgements (ACK packet) on receipt of broadcast
packets, to avoid the ACK storm phenomenon, which appears
when all successful receivers attempt to send back an ACK
simultaneously and consequently congest the channel. This has
not changed in the IEEE 802.11p amendment.

A MAC protocol is part of the data link layer (L2) of the
OSI model and defines the rules of how the various network
stations share access to the channel. The de-facto MAC layer
used in IEEE 802.11-based networks is called Carrier Sense
Multiple Access (CSMA) with Collision Avoidance (CA)
protocol. It is a simple decentralized contention-based access
scheme which has been extensively tested in WLANs and
mobile ad hoc networks. The IEEE 802.11p stack also employs
the classic CSMA/CA MAC. Although the proposed stack
works fine for sparse VANETs with few nodes, it quickly
shows its inability to accommodate increased network traffic
because of the lack of ACKs. The lack of ACKs not only
makes transmissions unreliable, but also does not provide any
feedback mechanism for the CSMA/CA backoff mechanism.
So it cannot adapt and resolve contention among stations when
the network is congested.



The DSRC operation requires that L1 and L2 must be built
in a way that they can handle a large number of contenting
nodes in the communication zone, on the order of 50 to 100.
The system should not collapse from saturation if this number
is exceeded. Intel’s Automated Driving Solutions Division [3]
predict that autonomous cars will each generate approximately
4 terabytes of data in about an hour and a half of driving or
the amount of time a typical person spends in their car each
day. The data is divided into technical (i.e., vehicular, prox-
imity sensors, radars), crowd-sourced (i.e., maps, environment,
traffic, parking) and personal (i.e., VoIP, Internet radio, routes)
applications. We believe that a significant part of this data will
be exchanged through V2V links, making system scalability
a critical issue to address. There is a need for an efficient
MAC protocol for V2V communication purposes, that adapts
to the VANET’s density and transmitted data rate, since such
network conditions are not known a-priori.

B. Contribution

In this paper, we propose to apply Reinforcement Learning
(RL) [4] in the context of medium access control for broadcast
wireless communication in vehicular environments. Machine
Learning-based techniques have the potential to enter and
improve every layer of the network stack for the IoT and
other applications. RL is a general class of machine learning
algorithms fit for problems of sequential decision making and
control. It can be used as a parameter-perturbation/adaptive-
control method for Markov Decision Processes (MDPs) [5],
a discrete time stochastic control formulation. RL is based
on the idea that if an action is followed by a satisfactory
state of affairs, or by an improvement in the state of affairs
(or a reward function), then the agent’s tendency to produce
that action is strengthened, i.e., reinforced. Specifically, we
develop and evaluate a solution based on Q-Learning, a much-
used model-free RL algorithm that can solve MDPs with very
little information from the dynamic VANET environment but
still reveals effective solutions regarding contention control
for various network conditions. In addition, we employ a
strategy for building self-improving Q-Learning controllers
that yield instant performance benefits since the vehicle-
station’s deployment and always strive for optimum operation
while on-line.

The remainder of the paper is outlined as follows: Section
II reviews related work. Section III briefly reviews the IEEE
802.11p MAC protocol for broadcast communication. Section
IV presents the Reinforcement Learning model. The RL-based
MAC protocol for V2V broadcast communication is devel-
oped in Section V. In Section VI, we evaluate the proposed
protocol’s performance in comparison to the IEEE 802.11p
standard. Section VII presents our conclusions.

II. RELATED WORK

Related work in [6] shows that IEEE 802.11p exhibits lower
latency and higher delivery ratio than LTE in scenarios fewer
than 50 vehicles. More specifically, for smaller network den-
sities, the standard allows end-to-end delays less than 100 ms

and throughput of 10 kbps which satisfies the requirements set
by active road safety applications and few of the lightweight
cooperative traffic awareness applications. However, as the
number of vehicles increases, the standard is unable to accom-
modate the increased network traffic and support performance
requirements for more demanding applications.

When it comes to work which is focused specifically on
the MAC layer issues, [7] uses the Markov Decision Process
(MDP) formulation to design a MAC with deterministic back-
off for virtualized IEEE 802.11 WLANs. For V2V exchanges,
the work presented in [8] examines the IEEE 802.11p MAC
regarding channel contention using the Markov model from
[9] and proposes a passive contention estimation technique by
observing the count of idle inter-frame slots.

RL is inspired by behaviourist psychology and deals with
how software agents should take actions in an environment
while aiming to maximize their cumulative reward. The prob-
lem because of its generality, is studied in many disciplines,
such as game theory, control systems, IT, simulation-based
optimization, statistics, and genetic algorithms. There have
been attempts to apply RL for optimizing the access control
layer of wireless networks. The protocol in [10] is targeted
on wireless sensor networks, optimising battery-power node
energy consumption. The protocol in [11] is targeted on
wireless vehicular networks that operate on a unicast basis. It
employs contention window adaptation [12] which is a proven
technique to improve the network contention because of in-
terference in wireless networks. The premise is interesting,
but the proposed IEEE 802.11p is a broadcast-based protocol.
The current literature does not deal with the broadcasting
issues within the context of contention resolution on the MAC
level. VANETs will be the first large-scale networks to operate
primarily on broadcast exchanges.

III. THE IEEE 802.11P MEDIUM ACCESS CONTROL

The MAC protocol is responsible for transferring data
securely when there is more than one station attempting to
access the same channel simultaneously. An efficient MAC
will strive for maximum channel utilization with minimum
collisions. The Distributed Coordination Function (DCF) is
the fundamental MAC technique of the IEEE 802.11-based
WLAN standards. DCF employs the CSMA/CA algorithm.

A. CSMA/CA algorithm

We start with the basic principle of the medium access
operation for IEEE 802.11-based networks, which works as
follows:
• Once a packet is ready for transmission, the station is

required to sense the state of the wireless medium before
transmitting (listen before talk) to determine whether
another station is transmitting or not.

• If it finds that the medium is continuously idle for a
DCF Interframe Space (DIFS) period, the station is given
permission to transmit after it goes through an additional
time period called backoff. The purpose of the backoff
is to introduce some asynchronisation which helps in



the case two station’s DIFS expire simultaneously. When
the backoff counter reaches 0, the packet is transmitted
immediately.

• If the channel turns busy during the DIFS interval, the
node defers from transmission until the medium is again
found idle for the duration of a DIFS interval.

• When a unicast packet has been received correctly, the
destination node waits for a Short Interframe Space
(SIFS) interval, to give priority to an ACK packet sent
back to the source node immediately after the reception
has finished to confirm successful reception.

B. Backoff Mechanism

The range of the generated random backoff timer is bounded
by the contention window. More especially, the node randomly
draws an integer b from the uniform distribution over the
interval [0, CW ], where the initial CW value equals CWmin,
and counts down for b time slot intervals before attempting
to transmit. The backoff value will be reduced only when the
channel is free, or else the counter freezes until the medium
turns idle again.

In the classic IEEE 802.11-based unicast networks, the CW
parameter adapts to a value between CWmin and CWmax,
depending on the delivery outcome of the transmitted packets.
If a packet transmission fails (ACK not received), the CW
parameter is doubled. If the following transmission fails, the
CW is doubled again and so goes on until it successfully
transmits a packet and receives an ACK, so it resets CW
to CWmin, or fails until it reaches CWmax. By using this
mechanism it is less probable that two or more nodes pick the
same b value and transmit simultaneously.

C. MAC-level Broadcasting

In broadcast transmissions, though, which is the primary
way of exchanging information in IEEE 802.11p-based net-
works, there is no reaction to increases in network load by
enlarging the CW. The reason for this is that original packets
are not acknowledged to avoid the acknowledgement storm
problem, because every recipient would invoke a SIFS interval
and try to send back an ACK, which would cause interference
and lead to collisions. Consequently, for the broadcasting case,
the backoff counter b reinitialises to a uniformly distributed
value within [0, CWmin] no matter the outcome of the at-
tempted transmission. The operation of CSMA/CA for both
unicast and broadcast transmissions can be seen in Fig. 1.

Fig. 1. A CSMA/CA cycle for both unicast and broadcast cases. It manages
channel access among transmitting nodes A and B.

IV. Q-LEARNING IN MARKOVIAN ENVIRONMENTS

A. Markov Decision Processes

In RL, the learning agents can be studied mathematically
by adopting the MDP formalism. An MDP is defined as a
(S,A, P,R) tuple, where S stands for the set of possible states,
As is the set of possible actions from state s ∈ S, Pa(s, s′)
is the probability to transit from a state s ∈ S to s′ ∈ S by
performing an action a ∈ A. Ra(s, s′) is the reinforcement
(or immediate reward), result of the transition from state s to
state s′ because of an action a, as seen in Fig. 2. The decision
policy π maps the state set to the action set, π : S → A.
Therefore, the MDP can be solved by discovering the optimal
policy that decides the action π(s) ∈ A that the agent will
make when in state s ∈ S.

Fig. 2. Absract MDP model

B. Q-Learning

There are, though, many practical scenarios, such as the
channel access control problem studied in this work, for
which the transition probability Pπ(s)(s, s

′) or the reward
function Rπ(s)(s, s

′) are unknown, which makes it difficult
to evaluate the policy π. Q-learning [13] [14] is an effective
and popular algorithm for learning from delayed reinforcement
to determine an optimal policy π in absence of the transition
probability. It is a form of model-free reinforcement learning
which provides agents the ability to learn how to act optimally
in Markovian domains by experiencing the consequences of
their actions, without requiring maps of these domains.

In Q-learning, the agent maintains a table of Q[S,A], where
S is the set of states and A is the set of actions. At each
discrete time step t = 1, 2, . . . ,∞, the agent observes the
state st ∈ S of the MDP, selects an action at ∈ A, receives
the resultant reward rt and observes the resulting next state
st+1 ∈ S. This experience (st, at, rt, st+1) updates the Q-
function at the observed state-action pair, thus provides the
updated Q(st, at). The algorithm, therefore, is defined by
the function (1) that calculates the quantity of a state-action
(s, a) combination. The goal of the agent is to maximise
its cumulative reward. The core of the algorithm is a value
iteration update. It assumes the current value and makes a
correction based on the newly acquired information, as in (1).

Q(st, at)← Q(st, at) + α× [rt+

γ ×max
at+1

Q(st+1, at+1) −Q(st, at)] ,
(1)



where the discount factor γ models the importance of future
rewards. A factor of γ = 0 will make the agent “myopic”
or short-sighted by only considering current rewards, while
a factor close to γ = 1 will make it strive for a high
long-term reward. The learning rate α quantifies to what
extent the newly acquired information will override the old
information. An agent with α = 0 will not learn anything,
while with α = 1 it would consider only the most recent
information. The maxat+1∈AQ(st+1, at+1) quantity is the
maximum Q value among possible actions in the next state. In
the following sections we present employing (1) as a learning,
self-improving, control method for managing channel access
among IEEE 802.11p stations.

V. PROPOSED MAC PROTOCOL

The adaptive backoff problem fits into the MDP formula-
tion. RL is used to design a MAC protocol that selects the
appropriate CW parameter based on gained experience from its
interactions with the environment within an immediate com-
munication zone. The proposed MAC protocol features a Q-
Learning-based algorithm that adjusts the contention window
size based on binary feedback from probabilistic rebroadcasts
in order to avoid packet collisions.

A. The Action Selection Dilemma

The state space S contains the discrete IEEE 802.11p-
compatible CW values ranging from CWmin = 3 to
CWmax = 255. The CW is adapted prior to every packet
transmission by performing one of the following actions.

CWt+1
a∈{CWt − 1/2,CWt,CWt∗2−1}←−−−−−−−−−−−−−−−−−−− CWt . (2)

RL differs from supervised learning in that correct in-
put/output pairs are never presented, nor sub-optimal actions
are explicitly corrected. In addition, in RL there is a focus on
on-line performance, which involves finding a balance between
exploration of uncharted territory and exploitation of current
knowledge. This in practice translates as a trade-off in how
the learning agent in this protocol selects its next action for
every algorithm iteration. It can either randomly pick an action
from (2) (exploration) so that the algorithm can transit to
a different (s, a) pair and get experience (reward) for it, or
follow a greedy strategy (exploitation), and choose the action
with the highest Q-value for its current state given by

π(s) = argmax
a

Q(s, a) . (3)

B. Convergence Requirements

The RL algorithm’s purpose is to converge to a (near)
optimum output, in terms of CW. Watkins and Dayan [13]
proved that Q-Learning converges to the optimum action-
values with probability 1 as long as all actions are repeatedly
sampled in all states and the action-value pairs are represented
discretely.

The greedy policy with respect to the Q-values tries to
exploit continuously, however, since it does not explore all
(s, a) pairs properly, it fails satisfying the first criterion. At the

other extreme, a fully random policy continuously explores all
(s, a) pairs, but it will behave sub-optimally as a controller.
An interesting compromise between the two extremes is the
ε-greedy policy [4], which executes the greedy policy with
probability 1 − ε. This balancing between exploitation and
exploration can guarantee convergence and often good perfor-
mance.

The proposed protocol uses the ε-greedy strategy to fo-
cus the algorithm’s exploration on the most promising CW
trajectories. Specifically, it guarantees the first convergence
criterion by forcing the agent to sample all (s, a) pairs over
time with probability ε. Consequently, the proposed algorith-
mic implementation satisfies both convergence criteria, but
further optimisation is needed regarding convergence speed
and applicability of the system.

In practice the Q-Learning algorithm converges under dif-
ferent factors depending on the application and complexity.
When deployed in a new environment, the agent should mostly
explore and value immediate rewards, and then progressively
show its preference for the discovered (near) optimal actions
π(s) as it is becoming more sure of its Q estimates. This can
be achieved via the decay function shown in (4).

ε = α = 1− Ntx
Ndecay

for 0 ≤ Ntx ≤ Ndecay, (4)

where Ntx is the number of transmitted broadcast packets
and Ndecay is a pre-set number of packets that sets the
decay period. This decay function is necessary to guarantee
convergence towards the last known optimum policy in proba-
bilistic systems such as the proposed contention-based MAC,
since there is no known optimum final state. By reducing the
values of ε and α over time via (4), the agent is forced to
progressively focus on exploitation of gained experience and
strive for a high long term reward. This way, when approaching
the end of the decay period the found (near) optimal states-
CW/s are revealed.

C. A-Priori Approximate Controller

The above strategy can be used to get instant performance
benefits, starting from the first transmission. This is done by
pre-loading approximate controllers, pre-trained for different
transmitted bit rates and number of neighbours via (4), to the
station’s memory. These controllers define an initial policy
that positively biases the search and accelerates the learning
process.

The agent’s objective in this phase is to quickly populate its
Q-table with values (explore all the state-action pairs multiple
times) and form an initial impression of the environment. The
lookup Q-table is produced by encoding this knowledge (Q-
values) for a set period of Ndecay a priori and can be used
as an initial approximate controller which yields an instant
performance benefit since the system is deployed.

Q-learning is an iterative algorithm so it implicitly assumes
an initial condition before the first update occurs. Zero initial
conditions are used the very first time the algorithm is trained



on a set environment, except from some forbidden state-action
pairs with large negative values, so it does not waste iterations
in which it would try to increase/decrease the CW when it is
already set on the upper/lower limit. The algorithm is also
explicitly programmed to avoid performing these actions on
exploration. The un-trained, initial Q-table is set as in (5),
where the rows represent the possible states - CW sizes and
columns stand for the action space.

Q0[7][3] =



CW (CW − 1)/2 CW CW ∗ 2 + 1

3 −100 0 0
7 0 0 0
15 0 0 0
31 0 0 0
63 0 0 0
127 0 0 0
255 0 0 −100


(5)

We propose that each station employs different learning,
self-improving, controllers and uses the appropriate one de-
pending on a combination of sensed density and received bit
rate. This is feasible because the station has the ability to
sense the number of one-hop neighbours since they all transmit
heart-beat, status packets periodically. It also does not have
the memory constraints that typical sensor networks have. An
example of a controller’s table at the end of the ε decay period
as in (4) can be seen in (6). The controller has been trained
a-priori with γ = 0.7 and a decay period lasting for 180 s in
a 60-car network, where every car transmits 256 bytes every
100 ms. A trajectory leading to optimum/near-optimum CW/s
is being formed (depending on past experience) by choosing
the maximum Q-value for every CW-state, seen in bold font.
The controller in (6) oscillates between the values 31 and 63
when exploiting the Q-table to find the optimum CW.

Qπ[7][3] ≈



CW (CW − 1)/2 CW CW ∗ 2 + 1

3 −100 −0.07218 0.2388
7 −0.076 −0.0325 0.6748
15 0.198 0.28012 0.817
31 0.2896 0.2985 0.4917
63 0.4945 0.10115 0.2838
127 0.2043 −0.055 −0.0218
255 0.1745 −0.86756 −100


(6)

D. On-line Controller Augmentation

While the pre-trained, pre-loaded, approximate controller is
useful for speeding up the learning process as well as getting
an instant performance benefit, its drawback is that by default
it is not adaptive to change in the environment while on-line.
The on-line efficiency of the Q-Learning controller depends on
finding the right balance between exploitation of the station’s
current knowledge, and exploration for gathering new informa-
tion. This means that the algorithm must sometimes perform
actions other than the ones dictated by the current policy, to
update and augment that controller with new information.

While the station is on-line, exploratory action selection is
performed less frequently (ε = 0.1) than in a-priori learning

(4) (ε starts from 1), primarily to compensate for modelling
errors in the approximate controller. This means that the
controller in its on-line operation uses the optimum Q-value
90% of the time, and makes exploratory CW perturbations
10% of the time in order to gain new experience. In this
way the agent still has the opportunity to correct its behaviour
based on new interactions with the VANET and corresponding
rewards.

E. Implementation Details

In RL, the only positive or negative reinforcement an agent
receives upon acting so that it can learn to behave correctly
in its environment, comes in a form of a scalar reward signal.
Taking advantage of the link capacity for maximum packet
delivery (throughput) was of primary concern for this design,
aiming to satisfy the requirements of V2V traffic (frequent
broadcasting of kinematic and multimedia information). For
this purpose, the reward function is based on the success of
these transmissions. Reward r can be either 1 or -1 for success-
ful (ACK) and failed transmissions (no ACK) correspondingly.
A successful transmission from the same consecutive state
- CW is not given any reward. The following pseudo-code
summarizes our proposed protocol.

Algorithm 1 Q-Learning V2V MAC
1: Initialize Q0(CW,A) at t0 = 0 . as in (5)
2: procedure ACTION-SELECTION(CWt) . ε-greedy
3: if pε ≤ ε then
4: at+1 ← random[(CWt − 1)/2, CWt, CWt ∗ 2− 1]
5: else if pε ≥ 1− ε then
6: at+1 ← aπ . Optimum a from (3)
7: end if
8: if A-priori Controller Learning then
9: ε = α→ decay . according to rule (4)

10: else if On-line Learning then
11: ε = α→ constant
12: end if
13: CWt+1 ← CW at+1

14: end procedure
15: TX Broadcast Packet: MessageId . Transmit
16: procedure FEEDBACK(CWt+1, at+1) . Collect Reward
17: Initialize: RTT ← 0 s
18: if RX MessageId AND RTT < 0.1 s then
19: if at 6= (CWt+1 ←− CWt) then
20: rt ← 1
21: end if
22: else if RTT ≥ 0.1 s then
23: rt ← −1
24: end if
25: end procedure
26: Update Q(CWt+1, at+1) . according to rule (1)
27: GOTO 2

The first step of the MAC protocol would be to set the
default CW of the station to the minimum possible value,
which is suggested by the IEEE 802.11p standard. After
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Fig. 3. Trace of CW over time for a station. The first stage is the a-priori controller training phase via (4) for 3 minutes (or Ndecay = 1800 packets), then
on-line stage for 2 minutes, with an exploration to exploitation ratio of 1:9

that the node makes an exploratory move with probability ε
(exploration) or picks the best known action to date (highest
Q value) with probability 1− ε.

We use packet rebroadcasts as ACKs, since some will
be overheard from the source vehicle, even assuming that
they move at the maximum speed limit. These rebroadcasts
can happen for forwarding purposes and they enhance the
reliability of the protocol, since the original packet senders
can detect collisions, as well as provide a means to reward
if they succeed in successfully broadcasting a packet. We use
probabilistic rebroadcasting for simplicity, but various routing
protocols can be used instead.

Every time a packet containing original information is
transmitted, a timer is initiated which waits for a predefined
time for an overheard retransmission of that packet, which will
have the same MessageId. These broadcast packets are useful
for a short lifetime, which is the period between refreshes. So a
rebroadcast packet received after that period, is not considered
to be a valid ACK because the information will not be relevant
any more, since the nodes in VANETs attempt to broadcast
fresh information frequently (i.e., 1-10 Hz).

VI. PERFORMANCE EVALUATION

The medium access control (MAC) method of the vehicular
communication standard IEEE 802.11p has been simulated
in a realistic vehicular traffic scenario with vehicle-stations
periodically broadcasting packets. In order to evaluate the
performance of our novel proposed protocol in comparison
to the IEEE 802.11p protocol, simulations were carried out
using the latest version of the OMNeT++ simulator and the
Veins framework. Realistic mobility simulation is achieved by
using SUMO coupled with the OMNeT++ stack.

A. Simulation Setup

All the cars within the area content for access to medium
when trying to transmit a packet or rebroadcast a copy of one.
Retransmission probability is set so that a proportion of nodes
in the area of interest will rebroadcast the same information
upon receipt (i.e., for 100 cars it is set at 2%). We collect most
of our results within a specific ROI of ∼ 600 m x 500 m within
the University of Sussex campus, and we set the power to a
high enough level within the DSRC limit, in order to not be
influenced by border effects (hidden/exposed terminals). The

artificial campus map used for simulations can be seen in Fig.
4.

Fig. 4. Campus map used in network simulations

The achieved improvement on link-level contention was
of primary concern, so a multitude of tests were run for a
single hop scenario, with every node being within the range
of the others. By eliminating the hidden terminal problem
from the experiment and setting an infinite queue size, packet
losses from collisions can be accurately measured. A multi-hop
scenario is also presented, which makes the hidden terminal
effect apparent in the performance of the network.

The simulation run time for the proposed MAC protocol
consists of two stages, as seen in Fig.3. First is the approximate
controller training stage, which lasts for Ndecay = 1800
transmitted packets (or 180 s with fb = 10Hz). Then follows
the evaluation or on-line period which lasts for 120 s, in which
the agent acts with an ε = α = 0.1. During this time,
we benchmark the effect of the trained controllers regard-
ing network performance as well as keep performing some
learning for the controller augmentation. For IEEE 802.11p
simulations, only the evaluation stage is needed, which lasts
for the same time.

All cars in the network are continuously transmitting
broadcast packets, such as Cooperative Awareness Messages
(CAMs) or Decentralized Environmental Notification Mes-
sages (DENMs), with a period Tb = 1

fb
= 100ms. The

packets are transmitted using the highest priority, voice traffic
(AC VO) access category. In VANETs, the network density
changes depending on location and time of the day. We test



Parameter Value
Evaluation time 120 s

A-priori training time 180 s
Channel frequency 5.9 Ghz
Transmission rate 6 Mbps

Transmission power 1-hop: 100 mW, 2-hop: 40 mW
Packet size Lp 256 bytes

Backoff slot time 13µs
Broadcasting Frequency fb 10 Hz

No of relays ≥ 2 cars (probabilistic)
Discount rate γ 0.7
Learning rate α training: eq. (4), on-line: 0.1

Epsilon ε training: eq. (4), on-line: 0.1

TABLE I
SIMULATION PARAMETERS

the performance of the novel MAC against the standard IEEE
802.11p protocol for different number of cars. The data rate is
set at 6 Mbps so it can conveniently accommodate hundreds
of vehicles within the DSRC communication range.

B. Effect of Increased Network Density

We evaluate the scalability of the MAC protocols for a
varying number of vehicles travelling in the simulated map
described previously. The packet size Lp used in this scenario
is 256 bytes, and the broadcasting frequency fb is set at 10 Hz.
Fig. 5 shows the increase of successfully delivered packets
when using our novel MAC protocol. When using the standard
IEEE 802.11p, packet delivery ratio (PDR) decreases in denser
networks due to the increased collisions between data packets.
The proposed MAC is designed to adjust the size of CW as
needed to achieve maximum packet delivery.
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Fig. 5. PDR versus network density for broadcasting of 256-byte packets
with fb = 10Hz

The PDR for the proposed Q-Learning MAC is measured
after the initial, more exploratory phase (after the agent has
gained some experience). We observed a 37.5% increase in
performance (packets delivered) in a network formed of 80
cars when using the modified, “learning” MAC. There is a
slight loss in performance (4%) for 20-car networks. In such
sparse networks, the minimum CW is optimal, since with a big
CW (waiting for more b time slots), transmission opportunities

can be lost and the channel access delay will increase. When
using our learning protocol, the agent still explores larger
CW levels 10% of the time (ε = 0.1), for better adaptability
and augmentation of it’s initial controller. When the network
density exceeds 40 cars, the proposed learning MAC performs
much better regarding successful deliveries.
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Fig. 6. Packet Return Time (delay) versus network density for broadcasting
of 256-byte packets with fb = 10Hz

The Round-trip time (RTT) shown in Fig. 6 is defined as
the length of time it takes for an original broadcast packet to
be sent plus the length of time it takes for a rebroadcast of that
packet to be received by the original sender. We can see that
the increased CW of the learning MAC adds to the channel
access delay time. The worse case scenario simulated is for
100 simultaneous transceivers within the immediate range of
each other, in which the average RTT doubles to 32.8ms when
using the Q-Learning MAC. Given that both the transmission
and heard retransmission are of the same packet size, we can
assume that the mean delivery latency is 16.4ms when using
the learning MAC instead of 8ms for baseline IEEE 802.11p,
while PDR is improved by 54% .

C. Effect of Data Rate

We also examine the performance of both the standard and
enhanced protocol for different data rates. PDR is measured
for a network of 60 nodes without hidden terminals. The
broadcasting frequency is set at fb = 10Hz, and the packet
size Lp varies from 64 bytes to 512 bytes, as seen in Fig. 7.
For 512 byte packets the mean achieved throughput Tavg per
IEEE 802.11p node from (7) is 16.925 kbps. For the same
settings, the learning MAC stations each achieve 29.218 kbps
on average, yielding to a 72.63% increase in throughput. It is
clear that for larger packet transmissions the Q-Learning based
protocol will be much faster and more reliable.

Tavg = Lp × fb × 8 bit× PDR . (7)
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Fig. 7. PDR versus packet size for 60 vehicles broadcasting with fb = 10Hz

D. Effect of Multi-hop

In a network without fixed topology, the most common
way to disseminate information is to broadcast packets across
the network. In VANETs, vehicles often cooperate to deliver
data messages through multi-hop paths, without the need
of centralized administration. In this scenario we test the
performance of the proposed protocol when attempting to
transmit two hops away. We evaluate performance for two-hop
transmissions by reducing the transmission power to 40 mW.
As the network density increases, the proposed MAC offers a
valid delivery benefit for vehicle-stations contenting for access
on the same channel. The performance of both IEEE 802.11p
and the proposed learning MAC regarding two-hop packet
reception ratio is shown in Fig. 8.
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Fig. 8. PDR versus network density for broadcasting of 256-byte packets
with fb = 10Hz in a two-hop scenario

We see that because the hidden terminal phenomenon ap-
pears the performance deteriorates compared to the single hop
scenario, but the performance gain regarding packet delivery
is still apparent when using Q-Learning to adapt the backoff.
Packets lost are not recovered since we are concerned with the
performance of the link layer.

VII. CONCLUSION

We have introduced a contention-based MAC protocol for
V2V broadcast transmissions that relies on Q-Learning to
discover the optimum contention window by continuously
interacting with the network. We developed simulations to
demonstrate the effectiveness of our MAC protocol. Results
prove that the proposed protocol allows the network to scale
better to increased network density and accommodate higher
data rates compared to the IEEE 802.11p standard. This
translates to more reliable packet delivery and higher system
throughput, while maintaining acceptable delay levels. Future
studies will be focused on how the learning MAC responds to
drastic changes in the networking environment via invoking
the ε decay function while on-line, as well as improving
fairness and transmission latency.
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